(19) |
|
|
(11) |
EP 2 593 627 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
14.05.2014 Bulletin 2014/20 |
(22) |
Date of filing: 24.06.2011 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/EP2011/003116 |
(87) |
International publication number: |
|
WO 2012/007094 (19.01.2012 Gazette 2012/03) |
|
(54) |
CONTROL SYSTEM FOR ARCHITECTURAL COVERINGS WITH REVERSIBLE DRIVE AND SINGLE OPERATING
ELEMENT
STEUERSYSTEM FÜR GEBÄUDEABDECKUNGEN MIT UMKEHRBAREM ANTRIEB UND EINZELNEM BEDIENELEMENT
SYSTÈME DE COMMANDE POUR COUVERTURES D'OUVERTURES ARCHITECTURALES AYANT UN ENTRAÎNEMENT
RÉVERSIBLE ET UN SEUL ÉLÉMENT DE MAN UVRE
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(30) |
Priority: |
14.07.2010 EP 10169575
|
(43) |
Date of publication of application: |
|
22.05.2013 Bulletin 2013/21 |
(73) |
Proprietor: Hunter Douglas Industries B.V. |
|
3071 EL Rotterdam (NL) |
|
(72) |
Inventor: |
|
- DEKKER, Nicolaas
NL-3162 PA Rhoon (NL)
|
(74) |
Representative: Smith, Samuel Leonard |
|
J A Kemp
14 South Square Gray's Inn
London WC1R 5JJ Gray's Inn
London WC1R 5JJ (GB) |
(56) |
References cited: :
EP-A2- 1 455 049 WO-A1-2008/094720
|
EP-A2- 1 728 963 US-A1- 2004 226 663
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to retractable coverings for architectural openings, and more
particularly, an operating system for controlling retractable coverings for architectural
openings using a single operating element for manual actuation.
[0002] The present invention provides for a retractable coverings for architectural openings
utilizing a control system having a single operating element allowing a user to move
a retractable covering for architectural openings between extended and retracted positions
by imparting a repetitive motion to the operating element. When the retractable covering
is disposed vertically, a user can raise or lower the retractable covering by imparting
a repetitive up and down motion to the pull cord.
[0003] Examples of such coverings are known from e.g.
EP 1455049,
EP 1728963, and
WO 2008/094720 where an operating cord can be pulled from an operating cord spool and a spring motor
in the spool retracts the cord such that a repetitive pull cord motion is possible.
The operating spool drives an input assembly. The direction and position in which
the pull cord is manipulated will engage a shift arm which acts on the input assembly
and together with additional means dictates the direction of rotation of an output
means relative to the direction of rotation of the input assembly.
As described in
EP 1455049 the input assembly includes a planetary gear transmission with a sun gear integrally
connected to the operating pull cord spool, a planet carrier with planet gears, a
spider and a ring gear. When a user pulls the cord from the operating spool, which
represents a first motion transfer element, the spool rotates in counter clockwise
direction. Because the sun gear is integral with the operating spool it also rotates
in counter clockwise direction. When a user pulls the operating cord in a first angularly
deflected direction (i.e. at an angle with respect to the vertical direction) to lift
the shade, a shift arm pivots and a pawl tooth engages ratchet teeth on an outer circumference
of the planet carrier, which prevents the planet carrier from rotating. The counter
clockwise rotation of the sun gear now causes clockwise rotation of the planet gears,
which in turn engage the ring gear - acting as a second motion transfer element -
to turn in a clockwise direction. When the user pulls the operating cord in a second
angular direction the shift arm does not pivot and the planet carrier is allowed to
rotate, which it does in counter clockwise direction. By rotating in counter clockwise
direction the planet carrier engaged the spider to turn in counter clockwise direction
and the spider acts as a one-way clutch and engages the ring gear in counter clockwise
rotation.
[0004] Thus the transmission is operative to translate rotation of the input sun gear into
either the same direction or the opposite direction of rotation of the output ring
gear by a combination of the shift arm and the spider, which together dictate the
direction of rotation of the ring gear relative to the direction of rotation of the
sun gear.
[0005] A drawback of this system is that for the spider to be able to engage the ring gear
the ring gear requires a special shape because the spider will engage an inner toothed
rim of the ring gear with one or more of its legs. The ring gear thus needs to surround
at least that part of the planet carrier which carries the spider. This results in
a relatively large outer diameter of the transmission and thus of the input/output
assemblies. For window coverings other than roller blinds the space, such as space
provided in a head rail, is generally very limited and constrained.
[0006] It is therefore an object of the invention to provide a control system having a single
operating element allowing a user to move a retractable covering for architectural
openings between extended and retracted positions by imparting a repetitive motion
to the operating element that allows a convenient small outer diameter such that it
can also fit within head rails, or other confined spaces of window coverings other
than roller blinds. Accordingly it is an object of the present invention to propose
an improved control unit and system for the operation of coverings for architectural
openings. In a more general sense it is thus an object of the invention to overcome
or ameliorate at least one of the disadvantages of the prior art. It is also an object
of the present invention to provide alternative structures which are less cumbersome
in assembly and operation and which moreover can be made relatively inexpensively.
Alternatively it is also an object of the invention to at least provide the public
with a useful choice.
[0007] To this end the invention provides a control unit as defined in appended claim 1.
[0008] Advantageously the control means further includes a shift arm rotationally supported
about an axis parallel to the axis of rotation of the rotational input member, the
shift arm being adapted to be engaged by the single operating element in the first
position of angular deflection, so as to cause engagement with the planet carrier
to arrest the planet carrier in a stationary position and adapted to be disengaged
by the single operating element in a second position of angular deflection, so as
to allow rotation of the planet carrier. It is thereby further advantageous when the
shift element can be engaged by the single operating element, upon manual actuation
thereof, in a first angular direction to hold the planet carrier stationary and in
a second angular direction to allow the planet carrier to rotate.
[0009] Advantageously, the switch ring is brought into and out of engagement with the ring
gear by moving in an axial direction through rotation of the planet carrier. Such
a control unit can advantageously also be arranged to have the planet carrier comprise
a helical track on a perimeter thereof, and provide the switch ring with a protrusion
engaging the helical track of the planet carrier. Thereby rotation of the planet carrier
urges the switch ring into axial engagement with the ring gear, whereupon the planet
carrier and the ring gear rotate together in the same rotational sense as the rotational
input member.
[0010] The control unit can be further improved when the shift arm has a pawl tooth adapted
to engage with ratchet teeth on an outer circumference of the planet carrier.
[0011] In another advantageous arrangement the switch ring has a first set of ratchet teeth
on an axial face thereof facing an axial end of the ring gear, and wherein the ring
gear has a complementary set of ratchet teeth on its axial end facing the set of ratchet
teeth on the switch ring.
[0012] The single operating element can advantageously be a flexible element and the rotational
input member can be an operating cord spool for storable receipt of windings of the
operating element. In this particular arrangement the sun gear may project from an
axial end surface of the operating cord spool.
[0013] The control unit may be further improved by the return mechanism including a coil
spring.
[0014] The control unit may also advantageously further include an automatic brake mechanism
operatively engaged between the cylindrical cavity and each of the ring gear and the
rotational driven member. In particular such an automatic brake mechanism may include
a wrap spring.
[0015] The control unit according to the invention may further benefit from the ring gear
being shaped as a cylindrical body comprising a toothed inner circumferential surface
for cooperation with the planet gears.
[0016] The invention also includes a covering for an architectural opening including: at
least one covering that is retractable and extendible by a mechanism for moving the
at least one covering member between extended and retracted positions, and a control
unit of the invention. Such a covering may be advantageously improved when the mechanism
for moving comprises a system for winding and unwinding at least one lift cord onto
and from a cord spool by driving the cord spool in a first direction or a second direction
by the control unit.
[0017] Further aspects and advantages of the invention will be apparent from the detailed
description below of particular embodiments and drawings threof, in which:
Figure 1 is a schematic view of a window covering with a head rail depicted partially
depicted open to show the control system according to the invention;
Figure 2 is a perspective view showing the control unit in isolation;
Figure 3 is an exploded view of the control system of the invention;
Figure 4 is a cross-sectional view of the control system of the invention; and
Figure 5 is a partial detail view of the operating cord, operating spool, and shift
arm.
[0018] Figure 1 shows a roman shade 1 with head rail 3 in which on a driven shaft 5 a pair
of left and right lift cord spools are mounted 7, 9. The shade further includes shade
material 11, a bottom bar 13 and a pair of left and right lift cords 15, 17. Each
lift cord is connected with a first end 15A, 17A to the respective left or right lift
cord spools 7, 9 and with another end 15B, 17B to the bottom bar 13. When the lift
cord spools 7, 9 are driven to rotate in a first direction to lift the bottom bar
13 and retract the shade material 11, the left and right cords 15, 17 are wound about
the respective left and right spools 7, 9 and the shade is lifted or retracted. When
the lift cord spools 7, 9 are driven to rotate in a second, opposite direction the
lift cords 15, 17 will be unwound from the spools 7, 9 and the bottom rail 13 will
be lowered and the shade material 11 extended. In order to drive the lift cord spools
7, 9 a control unit 19 is mounted in the head rail and drivingly connected to one
end of the driven shaft 5. The control system includes a housing 21 and an opening
23 through which an operating cord 25 extends. The operating cord includes an operating
length 25A and a manipulating length 25B separated by a stopper 27. The stopper prevents
the manipulating length 25B of the operating cord being retracted into the housing
21 and onto the operating cord spool (not shown in this Figure). The manipulating
length 25B of the operating cord 25 is provided at its free end with a tassel 29.
[0019] In Figure 2 the control unit 19 is shown separate from the head rail and roman shade
of Figure 1. The control unit 19 has a substantial cylindrical housing 21. The operating
cord 25 extends with its operating end 25A from the opening 23 of a cord guide 33
attached to the housing 21. Left and right hand end caps 24, 26 close off the axial
ends of housing 21 and a rotational output member 30 for driving the driven shaft
5, protrudes axially from the left hand end cap 24. The left hand end cap 24 has arms
28 extending axially over the outer circumference of cylindrical housing 21 and are
adapted to fit snugly inside of the head rail 3.
[0020] The control unit 19 is shown further in an exploded view in Figure 3. The control
unit 19 includes housing 21 which is a generally cylindrical hollow body having a
left 21A and a right end 21B to which the left and right end caps 24, 26 can be mounted.
The left end cap has axially extending arms 28 which snap onto protrusions 29 on the
outer circumference of the housing and thus secure the end cap to the housing. In
the housing adjacent its right end 21B a cut-out 31 is provided for receiving the
cord guide 33 therein. The cord guide 33 thereby is mounted adjacent to the operating
cord spool 35. The operating cord spool 35 is a cylindrical body having an outer circumference
37 about which the operating cord 25 can be wound. In further reference to Figure
3 and starting from the right hand end, it is seen that the right end cap 26 houses
a clock spring 39. The clock spring is effective in biasing the operating cord spool
35 to a first end position in which the operating cord 25 is would with its operating
length 25A onto the outer circumference 37 of the cord spool 35. Between the operating
cord spool 35 and the cord guide 33 the operating length 25A of the operating cord
25 is guided over a shift arm 41. The shift arm 41 is pivotally mounted on a shaft
43. A sun gear 45 extends axially of the operating cord spool 25 and may be guided
by an optional bearing plate 47 before extending centrally through a planet carrier
49.
[0021] The planet carrier 49 has a plurality of shafts 51 for rotatively receiving an equal
number of planet gears 53. The shafts 51 are separated by posts 55. The shafts 51
and posts 55 have their free ends engaged by an annular cage 57. The planet carrier
has radial ratchet teeth 59 on axial right hand end thereof. Immediately to the axial
left of the ratchet teeth 59 the planet carrier cylindrical boss 61 on which perimeter
surface helical tracks in the form of helix grooves 63 are formed. A switch ring 65
is rotatively received about the cylindrical boss 61. The switch ring 65 has inwardly
projecting fingers 67 (three of which are visible in Figure 3), for engaging the helix
grooves 63. On an axial left hand face thereof the switch ring 65 is provided with
axial ratchet teeth 69. The axial ratchet teeth 69 of the switch ring 65 can engage
complementary ratchet teeth 71 on a right hand axial end of a ring gear 73. The ring
gear 73 has internal gear teeth (not visible in Figure 3, but conventional for planetary
gear arrangements) that mesh with the planet gears 53 when the planet carrier 49 is
inserted in its interior. The radial ratchet teeth 59 on the planet carrier 49 cooperate
with a detent 75 on the shift arm 41. The planet carrier 73 on a left hand axial end
thereof has opposite wrap spring contractor abutment surfaces 77, 79 to extend inwardly
of a wrap spring 81. The rotational output member 30 has a wrap spring expanding finger
83 extending axially from a left hand axial end of the rotational output member 30.
The wrap spring 81 in its relaxed state engages an inner circumferential surface of
the housing 21. The entire assembly of Figure 3 in assembled condition is held together
by the right hand and left hand end caps 24, 26. To this end the axially extending
arms 28 of the left hand end cap 24 engage with the protrusions 29. Similarly the
right hand end cap 26 has axially extending arms 85 engaging protrusions 87 on the
outer surface of housing 21.
[0022] Figure 4 shows a longitudinal cross section of the control unit 19 in its assembled
condition. It is easily seen that the operating cord spool 35, the planet carrier
49, ring gear 73 and output member 30 all fit snugly within the interior of the housing
21. As shown in Figure 4 the switch ring 65 is in axial engagement with the ring gear
73, through the complementary ratchet teeth 69, 71. In this position the switch ring
65 has its inwardly projecting fingers 67 (visible only in Figure 3) abutted against
axially extending end surfaces of the relevant helix grooves 63. When the rotation
of the planet carrier 49 that has caused engagement between the switch ring 65 and
the ring gear 73 is continued in the same direction, then the planet gear will rotate
together with the ring gear 73. This will be the rotational direction when the operating
cord 25 is pulled and the operating cord spool 35 rotated by its unwinding there from.
This rotational direction will also be used for lowering the bottom bar 13 and extend
the shade material 11 to the position shown in Figure 1. The operating cord 25 is
pulled in repetitive strokes and thereby only incrementally rotates the ring gear
63 in the lowering direction. Rotation of the ring gear 73 in the lowering direction
also causes the abutment surface 77 to engage an inwardly bend spring tang 81A (see
Figure 3) of the wrap spring 81. Engagement of the spring tang 81 by the abutment
surface 77 in the direction of lowering contracts the wrap spring 81 and disengages
it from the inner surface of the housing 21. Further rotation of the abutment surface
77 also causes it to engage the finger 83 and thereby rotate the output member 30
in the same sense. Once the operating cord spool 35 has reached its second end position
in which the operating length 25A of the operating cord has been fully unwound from
its outer circumference 37, the operating cord 25 is relaxed and allowed to rewind
itself under the action of the clock spring 39. During this movement the wrap spring
81 reengages the inner circumference of the housing 21. This will hold the shade material
and bottom bar in the adjusted position. Should the weight of the adjusted shade and
bottom rail be urging on the output member 30, this will only engage one of the inwardly
bend spring tangs 81A, 81B of wrap spring 81 and thereby reinforce its grip on the
inner surface of the housing 21 by further expanding the wrap spring 81. The wrap
spring 81 thus functions as an automatic brake means to retain the shade in its adjusted
position. While the output member 30 is kept stationary the operating cord spool 35
is returned to its first position by the clock spring 39 and the operating length
25A of the operating cord is rewound on the outer circumference 37 of the cord spool
35. During this reverse motion of the operating cord 25 and cord spool 35, the switch
ring 65 is moved out of engagement with the ring gear 73 as it is being moved to the
right by the helical grooves 63 acting on the inwardly directed fingers 67. In the
first end position of the operating cord spool 35, the operating cord 25 can be manipulated
in two different ways.
[0023] Pulling the operating cord 25 in a first position of angular deflection will keep
the shift arm 41 and its detent 75 disengaged from the radial ratchet teeth 59 of
the planet carrier 49. This first position of the operating cord 25 is shown in dotted
lines in Figure 3. Pulling in that first direction of angular deflection will effectively
continue the lowering operation of the shade. As will be understood from Figures 3
and 5 in particular the operating cord 25 will engage a depending arm 89 on the shift
arm 41 and thereby keep the detent 75 disengaged from the radial ratchet teeth 59
of the planet carrier 49.
[0024] Because the ratchet teeth 59 are not engaged by the detent 75 the planet carrier
49 is free to rotate and will move the switch ring 65 back into engagement with the
ring gear 73 and the above described lowering of the shade by further unwinding of
the lift cords 15, 17 will continue.
[0025] However, from the first end position of the operating cord spool 35 it is also possible
to pull the operating cord 25 in a second position of angular deflection. The second
position of angular deflection of the operating cord 25 is shown in firm lines in
Figures 3 and 5. In the second position of angular deflection the operating cord 25
is effective to bring the shift arm 41 and its detent 75 into engagement with the
radial ratchet teeth 59 of the planet carrier 49. As seen in Figures 3 and 5, the
operating cord 25 with its operating length 25A is routed behind a cylindrical portion
of shaft arm 41, with which it is jounalled on its shaft 43. Frictional engagement
of this cylindrical portion by the cord 25 will rotate the detent 75 in engagement
with the ratchet teeth 59. This friction between the cylindrical portion and the cord
will keep the planet carrier 49 stationary and the sun wheel 45 will now be allowed
to rotate the planet gears 53 into opposite rotation. The stationary planet carrier
49 will also retain the switch gear 65 out of engagement from the ring gear 73. The
ring gear 73 by rotation of the planet gear 53 on the stationary planet carrier 49
will now cause the ring gear 73 to rotate in an opposite direction with respect to
the operating cord spool 35. Opposite rotation of the ring gear will bring abutment
surface 79 thereof in engagement with inwardly bend spring tang 81B of the wrap spring
81. The wrap spring 81 will thereby be contracted and disengaged from the inner surface
of housing 21. Rotation of the ring gear 73 in this direction will engage the finger
83 of the output member 30 and also rotate it in an opposite direction with the effect
that the shade is raised by rewinding of the lift cords 15, 17 (see Figure 1). After
a full pull of the operating cord 25 return of the operating cord spool 35 to its
first end position, after relaxing of the operating cord 25 is similar for both modes
of operation.
[0026] The mechanism just described is very effective in offering two modes of operation
- i.e. lowering and raising - by a single operating element. It also offers an ergonomically
optimal length of manual pull, that is independent of the size of the window covering.
Furthermore the single depending cord element for operating the window covering offers
child safety over the conventional looped operating cords.
[0027] Thus there may be provided a control system having a single operating element allowing
a user to move a retractable covering for architectural openings between extended
and retracted positions by imparting a repetitive motion to the operating element
including:
- an operating cord spool 35 associated with an operating element 25,
- the spool having an outer circumference 37 about which the operating element can be
wound and an axial surface from which a first or sun gear 45 projects,
- the sun gear being part of a planetary gear transmission,
- the transmission further including a plurality of planet gears 53 on a planet carrier
49 and a ring gear 73,
- the ring gear having the shape of a cylindrical body comprising an inner circumferentially
toothed ring-like surface acting as the ring gear for cooperation with the planet
gears,
- an output assembly 30, 81 operatively connected to said ring gear, and
- means for dictating the direction of rotation of the ring gear relative to the direction
of rotation of the sun gear,
wherein said means comprise
- a shift arm 41 pivotally supported on an axis parallel to the axis of rotation of
the cord spool and adjacent the cord spool such that in operational friction between
the operating element and the shift arm causes the shift arm to pivot and engage the
planet carrier thus arresting the planet carrier against rotating,
- a switch ring 65 rotatably mounted on a helical track 63 formed on the outer circumference
61 of the planet carrier such that when the planet carrier rotates this rotation pushes
the switch ring in axial direction towards the ring gear until the switch ring engages
an axial end of the ring gear and thus couples the planet carrier to rotate as one
with the ring gear body.
[0028] It is thus believed that the operation and construction of the present invention
will be apparent from the foregoing description. The invention is not limited to any
embodiment herein described and, within the purview of the skilled person; modifications
are possible within the scope of the appended claims. Equally kinematic inversions
are possible. In the claims, any reference signs shall not be construed as limiting
the claim. The term 'comprising' when used in this description or the appended claims
should not be construed in an exclusive or exhaustive sense but rather in an inclusive
sense. Thus the expression 'comprising' as used herein does not exclude the presence
of other elements or steps then those listed in a claim. Furthermore, the words 'a'
and 'an' shall not be construed as limited to 'only one', but instead are used to
mean 'at least one', and do not exclude a plurality. The mere fact that certain measures
are recited in mutually different claims does not indicate that a combination of these
measures cannot be used to advantage. Expressions such as: "means for ..." should
be read as: "component configured for ..." or "member constructed to ...". The use
of expressions like: "critical", "preferred", "especially preferred" etc. is not intended
to limit the invention. Features which are not specifically or explicitly described
or claimed may be additionally included in the structure according to the present
invention.
1. Control unit (19) for rotationally driving, in a selected one of rotationally opposite
directions, a mechanism for moving a covering (11) for an architectural opening between
extended and retracted positions, the control unit (19) including:
a housing (21) having a generally cylindrical cavity therein;
a single operating element (25) enabling operation by manually imparting a repetitive
linear motion thereto;
a rotational input member (35) for engagement by the single operating element (25)
and journalled with respect to the cylindrical cavity for rotation movement between
first and second rotational positions;
a return mechanism (39) for returning the rotational input member (35) from the second
rotational position back to the first rotational position;
a sun gear (45) driven by the rotational input member (35) and positioned substantially
concentrically with respect to the cylindrical cavity;
a planet carrier (49) and a plurality of planet gears (53) engaged by the sun gear
(45);
a ring gear (73) engaged by the planet gears (53), the planet gears (53) being each
rotationally supported on the planet carrier (49) and the planet carrier (49) and
ring gear (73) being each rotationally supported with respect to the cylindrical cavity;
a rotational output member (30), adapted to be driven by the ring gear (73); and
control means operative to translate rotation of the sun gear (45) in rotation of
the ring gear (73) in one of rotation in the same direction and rotation in an opposite
direction with respect to rotation of the sun gear (45), wherein the direction of
rotation is dictated by selective operating the single operating element (25) in one
of a first position of angular deflection and in a second position of angular deflection;
characterized in that:
a switch ring (65) is operatively engaged between the planet carrier (49) and the
ring gear (73) to couple the planet carrier to the ring gear in one of opposite rotational
directions, thereby the rotational output member (30) rotates in the same direction
as the rotational input member (35) when the planet carrier (49) is coupled to the
ring gear (73) and rotates in a direction opposite thereto, when the planet carrier
(49) is held stationary.
2. Control unit according to claim 1, wherein the control means include a shift arm (41)
rotationally supported about an axis parallel to the axis of rotation of the rotational
input member (35), the shift arm (41) being adapted to be engaged by the single operating
element (25) in the first position of angular deflection, so as to cause engagement
with the planet carrier (49) to arrest the planet carrier (49) in a stationary position
and adapted to be disengaged by the single operating element (25) in a second position
of angular deflection, so as to allow rotation of the planet carrier (49).
3. Control unit according to claim 2, wherein the shift arm (41) can be engaged by the
single operating element (25), upon manual actuation thereof, in a first angular direction
to hold the planet carrier (49) stationary and in a second angular direction to allow
the planet carrier (49) to rotate.
4. Control unit according to claim 1, 2 or 3, wherein the switch ring (65) is brought
into and out of engagement with the ring gear (73) by moving in an axial direction
through rotation of the planet carrier (49).
5. Control unit according to claim 4, wherein the planet carrier (49) comprises a helical
track (63) on a perimeter thereof, and wherein the switch ring (65) has a protrusion
engaging the helical track (63) of the planet carrier (49), whereby rotation of the
planet carrier (49) urges the switch ring (65) into axial engagement with the ring
gear (73), whereupon the planet carrier (49) and the ring gear (73) rotate together
in the same rotational sense as the rotational input member (35).
6. Control unit according to one of claims 1 to 5, wherein the switch ring (65) has a
first set of ratchet teeth (69) on an axial face thereof facing an axial end of the
ring gear (73), and wherein the ring gear (73) has a complementary set of ratchet
teeth (71) on its axial end facing the set of ratchet teeth on the switch ring (65).
7. Control unit according to one of claims 2 to 5, wherein the shift arm (41) has a pawl
tooth adapted to engage with ratchet teeth (59) on an outer circumference of the planet
carrier.
8. Control unit according to one of claims 1 to 7, wherein the single operating element
is a flexible element (25) and the rotational input member (35) is an operating cord
spool (35) for storable receipt of windings of the single operating element.
9. Control unit according to claim 8, wherein the sun gear (45) projects from an axial
end surface of the operating cord spool (35).
10. Control unit according to one of claims 1 to 9, wherein the return mechanism includes
a coil spring (39).
11. Control unit according to one of claims 1 to 10, further including an automatic brake
mechanism (81) operatively engaged between the cylindrical cavity and each of the
ring gear (73) and the rotational output member (30).
12. Control unit according to claim 11, wherein the automatic brake mechanism includes
a wrap spring (81).
13. Control unit according to one of claims 1 to 12, wherein the ring gear (73) is shaped
as a cylindrical body comprising a toothed inner circumferential surface for cooperation
with the planet gears (53).
14. Covering for an architectural opening including: at least one covering that is retractable
and extendible by a mechanism for moving the at least one covering member between
extended and retracted positions, and a control unit (19) of any one of claims 1 to
13.
15. Covering according to claim 14, wherein the mechanism for moving comprises a system
for winding and unwinding at least one lift cord (15) onto and from a cord spool (9)
by driving the cord spool (9) in a first direction or a second direction by the control
unit (19).
1. Steuereinheit (19) zum Drehantrieb eines Mechanismus zum Bewegen einer Abdeckung (11)
für eine architektonische Öffnung in einer aus drehmäßig entgegengesetzten Richtungen
gewählten Richtung zwischen einer ausgefahrenen und einer eingezogenen Position, wobei
die Steuereinheit (19) Folgendes aufweist:
ein Gehäuse (21) mit einem allgemein zylindrischen Hohlraum,
ein einziges Betriebselement (25), das den Betrieb ermöglicht, indem es manuell mit
einer repetitiven linearen Bewegung beaufschlagt wird,
ein Dreheingangselement (35) zur Ineingriffnahme durch das einzige Betriebselement
(25), wobei das Dreheingangselement (35) bezüglich des zylindrischen Hohlraums für
eine Drehbewegung zwischen der ersten und der zweiten Drehposition gelagert ist,
einen Rückholmechanismus (39) zum Rückholen des Dreheingangselements (35) aus der
zweiten Drehposition zurück in die erste Drehposition,
ein von dem Dreheingangselement (35) angetriebenes Sonnenrad (45), das im Wesentlichen
konzentrisch bezüglich des zylindrischen Hohlraums positioniert ist,
einen Planetenträger (49) und mehrere Planetenräder (53), die vom Sonnenrad (45) in
Eingriff genommen sind,
ein Hohlrad (73), das von den Planetenrädern (53) in Eingriff genommen ist, die jeweils
drehmäßig am Planetenträger (49) gestützt sind, wobei der Planetenträger (49) und
das Hohlrad (73) jeweils drehmäßig bezüglich des zylindrischen Hohlraums gestützt
sind,
ein Drehausgangselement (30), das geeignet ist, vom Hohlrad (73) angetrieben zu werden,
und Steuermittel, die dahingehend wirken, die Drehung des Sonnenrads (45) in Drehung
des Hohlrads (73) in eine Drehung in dieselbe Richtung oder eine Drehung in eine entgegengesetzte
Richtung bezüglich der Drehung des Sonnenrads (45) zu translatieren, wobei die Drehungsrichtung
durch gezieltes Betreiben des einzigen Betriebselements (25) in einer ersten Winkelumlenkungsposition
oder einer zweiten Winkelumlenkungsposition bestimmt ist,
dadurch gekennzeichnet, dass
ein Schaltring (65) zwischen dem Planetenträger (49) und dem Hohlrad (73) in Wirkeingriff
steht, um den Planetenträger in einer von entgegengesetzten Drehrichtungen an das
Hohlrad zu koppeln, wodurch sich das Drehausgangselement (30) in derselben Richtung
wie das Dreheingangselement (35) dreht, wenn der Planetenträger (49) an das Hohlrad
(73) gekoppelt ist und sich in einer entgegengesetzten Richtung dazu dreht, wenn der
Planetenträger (49) stationär gehalten wird.
2. Steuereinheit nach Anspruch 1, wobei die Steuermittel einen Schaltarm (41) aufweisen,
der drehmäßig um eine parallel zu der Rotationsachse des Dreheingangselements (35)
verlaufende Achse gestützt und geeignet ist, von dem einzigen Betriebselement (25)
in der ersten Winkelumlenkungsposition in Eingriff genommen zu werden, um einen Eingriff
mit dem Planetenträger (49) zu veranlassen, um den Planetenträger (49) in einer stationären
Position zu arretieren, sowie geeignet ist, von dem einzigen Betriebselement (25)
in einer zweiten Winkelumlenkungsposition außer Eingriff gebracht zu werden, um eine
Drehung des Planetenträgers (49) zu gestatten.
3. Steuereinheit nach Anspruch 2, wobei der Schaltarm (41) bei manueller Betätigung des
einzigen Betriebselements (25) in einer ersten Winkelrichtung von diesem in Eingriff
genommen werden kann, um den Planetenträger (49) stationär zu halten, und in einer
zweiten Winkelrichtung, damit sich der Planetenträger (49) drehen kann.
4. Steuereinheit nach Anspruch 1, 2 oder 3, wobei der Schaltring (65) mit dem Hohlrad
(73) in und außer Eingriff gebracht wird, indem er sich durch Drehung des Planetenträgers
(49) in einer axialen Richtung bewegt.
5. Steuereinheit nach Anspruch 4, wobei der Planetenträger (49) an einem Umfang davon
eine Spiralbahn (63) umfasst und wobei der Schaltring (65) einen Vorsprung hat, der
die Spiralbahn (63) des Planetenträgers (49) in Eingriff nimmt, wodurch der Schaltring
(65) durch die Drehung des Planetenträgers (49) in axialen Eingriff mit dem Hohlrad
(73) gedrängt wird, woraufhin sich der Planetenträger (49) und das Hohlrad (73) gemeinsam
in derselben Drehrichtung wie das Dreheingangselement (35) drehen.
6. Steuereinheit nach einem der Ansprüche 1 bis 5, wobei der Schaltring (65) einen ersten
Satz Sperrzähne (69) an einer axialen Fläche davon hat, die einem axialen Ende des
Hohlrads (73) zugewandt sind, und wobei das Hohlrad (73) einen komplementären Satz
Sperrzähne (71) an seinem axialen Ende hat, die dem Satz Sperrzähne am Schaltring
(65) zugewandt sind.
7. Steuereinheit nach einem der Ansprüche 2 bis 5, wobei der Schaltarm (41) einen Klinkenzahn
hat, der geeignet ist, mit Sperrzähnen (59) an einem Außenumfang des Planetenträgers
in Eingriff zu kommen.
8. Steuereinheit nach einem der Ansprüche 1 bis 7, wobei das einzige Betriebselement
ein flexibles Element (25) ist und das Dreheingangselement (35) eine Betriebsschnurspule
(35) für die lagerungsfähige Aufnahme von Windungen des einzigen Betriebselements
ist.
9. Steuereinheit nach Anspruch 8, wobei das Sonnenrad (45) von einer axialen Endfläche
der Betriebsschnurspule (35) vorragt.
10. Steuereinheit nach einem der Ansprüche 1 bis 9, wobei der Rückholmechanismus eine
Schraubenfeder (39) aufweist.
11. Steuereinheit nach einem der Ansprüche 1 bis 10, die ferner einen automatischen Bremsmechanismus
(81) aufweist, der zwischen dem zylindrischen Hohlraum und jeweils dem Hohlrad (73)
und dem Drehausgangselement (30) in Wirkeingriff steht.
12. Steuereinheit nach Anspruch 11, wobei der automatische Bremsmechanismus eine Schlingfeder
(81) aufweist.
13. Steuereinheit nach einem der Ansprüche 1 bis 12, wobei das Hohlrad (73) als ein zylindrischer
Körper gestaltet ist, der eine gezahnte Innenumfangsfläche zum Zusammenwirken mit
den Planetenrädern (53) umfasst.
14. Abdeckung für eine architektonische Öffnung, die Folgendes aufweist: mindestens eine
Abdeckung, die durch einen Mechanismus zum Bewegen des mindestens einen Abdeckungselements
zwischen einer ausgefahrenen und einer eingezogenen Position einziehbar und ausfahrbar
ist, und eine Steuereinheit (19) nach einem der Ansprüche 1 bis 13.
15. Abdeckung nach Anspruch 14, wobei der Bewegungsmechanismus ein System zum Aufwickeln
und Abwickeln mindestens einer Hebeschnur (15) auf eine bzw. von einer Schnurspule
(9), indem die Schnurspule (9) durch die Steuereinheit (19) in eine erste Richtung
oder eine zweite Richtung angetrieben wird, umfasst.
1. Unité de commande (19) destinée à entraîner en rotation, dans une direction sélectionnée
parmi des directions opposées dans le sens de la rotation, un mécanisme permettant
de déplacer une couverture (11) pour une ouverture architecturale entre des positions
déployée et rétractée, l'unité de commande (19) comportant :
un boîtier (21) ayant une cavité globalement cylindrique à l'intérieur de celui-ci
;
un seul élément d'actionnement (25) permettant un actionnement en communiquant manuellement
un mouvement linéaire répétitif à celui-ci ;
un élément d'entrée de rotation (35) destiné à s'engager avec le seul élément d'actionnement
(25) et tourillonné par rapport à la cavité cylindrique pour un mouvement de rotation
entre des première et deuxième positions de rotation ;
un mécanisme de retour (39) destiné à ramener l'élément d'entrée de rotation (35)
depuis la deuxième position de rotation jusqu'à la première position de rotation ;
un planétaire (45) entraîné par l'élément d'entrée de rotation (35) et positionné
de manière essentiellement concentrique par rapport à la cavité cylindrique ;
un porte-satellites (49) et une pluralité de satellites (53) engagés par le planétaire
(45) ;
une couronne (73) engagée par les satellites (53), les satellites (53) étant chacun
supporté en rotation sur le porte-satellites (49) et le porte-satellites (49) et la
couronne (73) étant chacun supporté en rotation par rapport à la cavité cylindrique
;
un élément de sortie de rotation (30), adapté pour être entraîné par la couronne (73)
; et
des moyens de commande fonctionnant pour transformer une rotation du planétaire (45)
en rotation de la couronne (73) dans l'une de la rotation dans la même direction et
de la rotation dans une direction opposée par rapport à la rotation du planétaire
(45), où la direction de rotation est dictée par actionnement sélectif du seul élément
d'actionnement (25) dans l'une d'une première position de déviation angulaire et d'une
deuxième position de déviation angulaire, caractérisée en ce que :
une bague de commutation (65) est engagée de manière fonctionnelle entre le porte-satellites
(49) et la couronne (73) pour coupler le porte-satellites à la couronne dans l'une
des directions de rotation opposées, ainsi l'élément de sortie de rotation (30) tourne
dans la même direction que l'élément d'entrée de rotation (35) lorsque le porte-satellites
(49) est couplé à la couronne (73) et tourne dans une direction opposée à celui-ci,
lorsque le porte-satellites (49) est maintenu fixe.
2. Unité de commande selon la revendication 1, dans laquelle les moyens de commande comportent
un bras de déplacement (41) supporté en rotation autour d'un axe parallèle à l'axe
de rotation de l'élément d'entrée de rotation (35), le bras de déplacement (41) étant
adapté pour être engagé par le seul élément d'actionnement (25) dans la première position
de déviation angulaire, de manière à provoquer l'engagement avec le porte-satellites
(49) pour arrêter le porte-satellites (49) dans une position fixe et adapté pour être
désengagé par le seul élément d'actionnement (25) dans une deuxième position de déviation
angulaire, de manière à permettre la rotation du porte-satellites (49).
3. Unité de commande selon la revendication 2, dans laquelle le bras de déplacement (41)
peut être engagé par le seul élément d'actionnement (25), lors de son actionnement
manuel, dans une première direction angulaire pour maintenir le porte-satellites (49)
fixe et dans une deuxième direction angulaire pour permettre la rotation du porte-satellites
(49).
4. Unité de commande selon la revendication 1, 2 ou 3, dans laquelle la bague de commutation
(65) est amenée à s'engager et à se désengager de la couronne (73) en se déplaçant
dans une direction axiale par le biais de la rotation du porte-satellites (49).
5. Unité de commande selon la revendication 4, dans laquelle le porte-satellites (49)
comprend une piste hélicoïdale (63) sur un périmètre de celui-ci, et où la bague de
commutation (65) a une saillie s'engageant avec la piste hélicoïdale (63) du porte-satellites
(49), moyennant quoi la rotation du porte-satellites (49) pousse la bague de commutation
(65) en engagement axial avec la couronne (73), suite à quoi le porte-satellites (49)
et la couronne (73) tournent ensemble dans le même sens de rotation que l'élément
d'entrée de rotation (35).
6. Unité de commande selon l'une des revendications 1 à 5, dans laquelle la bague de
commutation (65) a un premier ensemble de dents triangulaires (69) sur une face axiale
de celle-ci faisant face à une extrémité axiale de la couronne (73), et où la couronne
(73) a un ensemble complémentaire de dents triangulaires (71) sur son extrémité axiale
faisant face à l'ensemble de dents triangulaires sur la bague de commutation (65).
7. Unité de commande selon l'une des revendications 2 à 5, dans laquelle le bras de déplacement
(41) a une dent d'encliquetage adaptée pour s'engager avec des dents triangulaires
(59) sur une circonférence extérieure du porte-satellites.
8. Unité de commande selon l'une des revendications 1 à 7, dans laquelle le seul élément
d'actionnement est un élément flexible (25) et l'élément d'entrée de rotation (35)
est une bobine de cordon d'actionnement (35) permettant la réception stockable d'enroulements
du seul élément d'actionnement.
9. Unité de commande selon la revendication 8, dans laquelle le planétaire (45) fait
saillie à partir d'une surface d'extrémité axiale de la bobine de cordon d'actionnement
(35).
10. Unité de commande selon l'une des revendications 1 à 9, dans laquelle le mécanisme
de retour comporte un ressort hélicoïdal (39).
11. Unité de commande selon l'une des revendications 1 à 10, comportant en outre un mécanisme
de freinage automatique (81) engagé de manière fonctionnelle entre la cavité cylindrique
et chacun de la couronne (73) et de l'élément de sortie de rotation (30).
12. Unité de commande selon la revendication 11, dans laquelle le mécanisme de freinage
automatique comporte un ressort enroulé (81).
13. Unité de commande selon l'une des revendications 1 à 12, dans laquelle la couronne
(73) se présente sous la forme d'un corps cylindrique comprenant une surface circonférentielle
interne dentée pour coopérer avec les satellites (53).
14. Couverture pour une ouverture architecturale comportant : au moins une couverture
qui peut être rétractée et déployée par un mécanisme permettant de déplacer l'au moins
un élément de couverture entre des positions déployée et rétractée, et une unité de
commande (19) de l'une quelconque des revendications 1 à 13.
15. Couverture selon la revendication 14, dans laquelle le mécanisme de déplacement comprend
un système pour l'enroulement d'au moins un cordon de tirage (15) sur une bobine de
cordon (9) et son déroulement à partir de cette dernière en entraînant la bobine de
cordon (9) dans une première direction ou une deuxième direction par l'unité de commande
(19).
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description