(19)
(11) EP 1 919 596 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
08.10.2014 Bulletin 2014/41

(21) Application number: 06792721.0

(22) Date of filing: 07.08.2006
(51) International Patent Classification (IPC): 
B01D 53/50(2006.01)
(86) International application number:
PCT/EP2006/065097
(87) International publication number:
WO 2007/020205 (22.02.2007 Gazette 2007/08)

(54)

METHOD OF REMOVING SULFUR DIOXIDE FROM A FLUE GAS STREAM

VERFAHREN ZUR ENTFERNUNG VON SCHWEFELDIOXID AUS EINEM RAUCHGASSTROM

PROCEDE D'ELIMINATION DE DIOXYDE DE SOUFRE DANS UN FLUX DE GAZ DE COMBUSTION


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 18.08.2005 US 208432

(43) Date of publication of application:
14.05.2008 Bulletin 2008/20

(73) Proprietor: Solvay Chemicals, Inc.
Houston, TX 77098-3009 (US)

(72) Inventor:
  • MAZIUK, John Jr
    Kingwood, Texas 77345 (US)

(74) Representative: Gilliard, Pierre et al
Solvay S.A. Intellectual Property Department Rue de Ransbeek, 310
1120 Bruxelles
1120 Bruxelles (BE)


(56) References cited: : 
US-A- 4 555 391
US-A- 4 960 445
US-A- 4 921 886
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to the purification of gases, and more particularly to a method of purifying flue gases which contain noxious gases such as SO2.

    [0002] Dry sorbent injection (DSI) has been used with a variety of sorbents to remove SOx and other gases from flue gas. However, DSI has typically been done in the past at temperatures much lower than 204.4°C (400° F) because equipment material, such as baghouse media, cannot withstand higher temperatures. For instance, in US4555391 is disclosed a process for removing S02 from a flue gas, wherein dry sodium sorbent is injected in the flue gas at a temperature of about 130°C. Additionally, many sorbent materials sinter or melt at temperatures near or greater than 204.4°C (400° F), which makes them less effective at removing gases. The reactions products of many sorbent materials also adhere to equipment and ducts at higher temperatures, which requires frequent cleaning of the process equipment. To operate at these lower temperatures, the combustion gases must often be cooled before the sorbent was injected. This is an undesirable extra process step.

    [0003] Thus, there is a need for a sorbent injection method that is effective at removing SOx gases at elevated temperatures.

    [0004] In one aspect, a method of removing SO2 from a flue gas stream including SO2 is provided. The method includes providing a source of trona and injecting the trona into the flue gas stream. The temperature of the flue gas is between 315.6°C (600° F) and 482.2°C (900° F). The trona is maintained in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the SO2 to reduce the concentration of the SO2 in the flue gas stream.

    [0005] In another aspect, a system for the removal of SO2 from a flue gas stream including SO2 is provided. The system includes a source of trona and a flue gas stream. The system also includes an injector for injecting the trona into the flue gas stream. The temperature of the flue gas is between 315.6°C (600° F) and 482.2°C (900° F). The system also includes an area for maintaining the trona in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the SO2 to reduce the concentration of the SO2 in the flue gas stream:

    [0006] The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The presently preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.

    FIG. 1 is a schematic of one embodiment of a flue gas desulfurization system.

    FIG. 2 is a graph showing the % SO2 removal as a function of normalized stochiometric ratio (NSR) for trona and sodium bicarbonate.

    FIG. 3 is a graph showing the % SO2 removal as a function of flue gas temperature (in °F) for one embodiment of a flue gas desulfurization system.

    FIG. 4 shows a perforated plate of an electrostatic precipitator after operation in one embodiment of a flue gas desulfurization system using trona.

    FIG. 5 shows a perforated plate of an electrostatic precipitator after operation in one embodiment of a flue gas desulfurization system using sodium bicarbonate.



    [0007] The invention is described with reference to the drawings in which like elements are referred to by like numerals. The relationship and functioning of the various elements of this invention are better understood by the following detailed description. However, the embodiments of this invention as described below are by way of example only, and the invention is not limited to the embodiments illustrated in the drawings.

    [0008] Dry sorbent injection (DSI) has been used as a low cost alternative to a spray dry or wet scrubbing system for the removal of SO2. In the DSI process, the sorbent is stored and injected dry into the flue duct where it reacts with the acid gas. The present invention provides a method of removing SO2 from a flue gas stream comprising SO2, preferably by injecting a sorbent such as trona into a flue gas stream to react with SO2. Trona is a mineral that contains about 85-95% sodium sesquicarbonate (Na2CO3-NaHCO3-2H2O). A vast deposit of mineral trona is found in southwestern Wyoming near Green River. As used herein, the term "trona" includes other sources of sodium sesquicarbonate. Embodiments in which the source of sesquicarbonate is mined trona are however preferred. The term "flue gas" includes the exhaust gas from any sort of combustion process (including coal, oil, natural gas or glass raw material for example). Flue gas typically includes SO2 along with other acid gases such as HCl, SO3, and NOx.

    [0009] A schematic of the process is shown in FIG. 1. The furnace or combustor 10 is fed with a fuel source 12, such as coal, and with air 14 to burn the fuel source 12. From the combustor 10, the combustion gases are conducted to a heat exchanger or air heater 40. The outlet of the heat exchanger or air heater 40 is connected to a particulate collection device 50. The particulate collection device 50 removes particles made during the combustion process, such as fly ash, from the flue gas before it is conducted to the gas stack 60 for venting. The particulate collection device 50 may be an electrostatic precipitator (ESP). Other types of particulate collection devices, such as a baghouse, may also be used for solids removal. The baghouse contains filters for separating particles made during the combustion process from the flue gas. Because of the relatively small particle size used in the process, the trona may act as a precoat on baghouse filter media.

    [0010] The SO2 removal system includes a source of trona 30. The trona 30 preferably has a mean particle size between about 10 micron and about 40 micron, most preferably between about 24 micron and about 28 micron. The trona is preferably in a dry granular form. A suitable trona source is T-200® trona, which is a mechanically refined trona ore product available from Solvay Chemicals, Green River, WY. T-200® trona contains about 97.5% sodium sesquicarbonate and has a mean particle size of about 24-28 micron. The SO2 removal system may also include a ball mill pulverizer 32, or other type of mill, for decreasing and/or otherwise controlling the trona particle size on site.

    [0011] The trona is conveyed from the trona source 30 to the injector 20. The trona may be conveyed pneumatically or by any other suitable method. Trona can be easily aerated for pneumatic transfer. Apparatus for injecting the trona or sodium sesquicarbonate is schematically illustrated in FIG. 1. Trona injection apparatus 20 introduces the trona into flue gas duct section 42, which is disposed at a position upstream of the baghouse inlet and upstream of the heat exchanger 40, if a heat exchanger or preheater is present. The trona injection system is preferably designed to maximize contact of the trona with the SOx in the flue gas stream. Any type of injection apparatus known in the art may be used to introduce the trona into the gas duct. For example, injection can be accomplished directly by a compressed air-driven eductor.

    [0012] The process requires no slurry equipment or reactor vessel if the trona is stored and injected dry into the flue duct 42 where it reacts with the acid gas. However, the process may also be used with humidification of the flue gas or wet injection of the trona. Additionally, the particulates can be collected wet through an existing wet scrubber vessel should the process be used for trim scrubbing of acid mist.

    [0013] The temperature of the flue gas varies with the location in the injection system and may also vary somewhat with time during operation. The temperature of the flue gas where the trona is injected is between 315.6 °C (600° F) and 482.2°C (900° F). The trona is maintained in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the SO2 to reduce the concentration of the SO2 in the flue gas stream. The temperature of the flue gas is preferably greater than 332.2 °C (630° F), and most preferably greater than 371.1°C (700° F). The temperature of the flue gas is preferably less than 426.7 (800° F), and most preferably less than 398.9°C (750° F). The temperature of the flue gas is most preferably between 371.1°C (700° F) and 398.9°C (750° F).

    [0014] The process may also be varied to control the flue gas temperature. For example, the flue gas temperature upstream of the trona may be adjusted to obtain the desired flue gas temperature where the trona is injected. Additionally, ambient air may be introduced into the flue gas stream and the flue gas temperature monitored where the trona is injected. Other possible methods of controlling the flue gas temperature include using heat exchanges and/or air coolers. The process may also vary the trona injection location or include multiple locations for trona injection.

    [0015] For the achievement of desulfurization, trona is preferably injected at a rate with respect to the flow rate of the SO2 to provide a normalized stoichiometric ratio (NSR) of sodium to sulfur of between about 1.0 and 1.5. The NSR is a measure of the amount of reagent injected relative to the amount theoretically required. The NSR expresses the stoichiometric amount of sorbent required to react with all of the acid gas. For example, an NSR of 1.0 would mean that enough material was injected to theoretically yield 100 percent removal of the SO2 in the inlet flue gas; an NSR of 0.5 would theoretically yield 50 percent SO2 removal. SO2 neutralization requires two moles of sodium per one mole of SO2 present.

    [0016] Unlike sodium bicarbonate, trona does not melt at elevated temperatures. Rather, sodium sesquicarbonate undergoes rapid calcination of contained sodium bicarbonate to sodium carbonate when heated at or above 135°C (275°F). It is believed that the "popcorn like" decomposition creates a large and reactive surface by bringing unreacted sodium carbonate to the particle surface for SO2 neutralization. The byproduct of the reaction is sodium sulfate and is collected with fly ash. The chemical reaction of the trona with the SO2 is represented below:

            2 [Na2CO3· NaHCO3 · 2H2O] → 3Na2CO3 + 5H2O + CO2

            Na2CO3 + SO2 → Na2SO3 + CO2

            Na2SO3 + 1/2O2 → Na2SO4

    The solid reaction products of the trona and the SO2 (primarily sodium sulfate) and unreacted soda ash may be collected in an electrostatic precipitator, or other particulate collection device. The total desulfurization is preferably at least about 70%, more preferably at least about 80%, and most preferably at least about 90%.

    [0017] In one embodiment, the flue gas stream further comprises SO3. The trona is maintained in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the SO3 to reduce the concentration of the SO3 in the flue gas stream. SO3 is typically more reactive with the sorbent than SO2, so the trona would remove the SO3 first. The chemical reaction of the trona with the SO3 is represented below:

            2 [Na2CO3 • NaHCO3 • 2H2O] → 3Na2CO3 + 5H2O + CO2

            Na2CO3 + SO3 → Na2SO4 + CO2



    [0018] The trona injection system may also be combined with other SOx removal systems, such as sodium bicarbonate, lime, limestone, etc. in order to enhance performance or remove additional hazardous gases such as HCl, NOx, for example.

    EXAMPLES



    [0019] A study was done in a commercial glass plant in Verona, CA using a hot side electrostatic precipitator (ESP) and no baghouse. Natural gas was used as a fuel source, and the source of sulfur was from the glass raw materials. The SO2 concentration in the flue gas was 800 ppm. The trona used was T-200® from Solvay Chemicals. The trona was injected in the duct using a compressed air blower and air lock feeder. Trona flow rates were measured by calibrating the airlock rpm with the trona weight loss in the trona storage bin. Trona feed rates varied from 22.7 to 95.7 kg/h (50 to 211 pounds/hr).

    EXAMPLE 1



    [0020] Trona was injected into flue gas at a temperature of 398.9 °C (750° F) at NSR values of 1.0, 1.2, and 1.4. FIG. 2 shows the % SO2 removal as a function of normalized stochiometric ratio (NSR) for trona. From these tests it can be seen that trona yielded SO2 removal rates of around 80% at an NSR of 1.2. FIG. 4 shows a perforated plate of an ESP in the glass plant after operation of the SO2 removal system for five months using trona. It can be seen that the plate is relatively free of solids buildup.

    EXAMPLE 2



    [0021] As a comparative example, sodium bicarbonate was injected under the same conditions as Example 1 at an NSR of 1.2. The result is shown in FIG. 2. The % SO2 removal of 72% was significantly lower than that of the trona at the same temperature and NSR. FIG. 5 shows a perforated plate of an ESP in the glass plant after operation of the SO2 removal system using sodium bicarbonate. It can be seen that the plate has significant solids buildup.

    EXAMPLE 3



    [0022] Trona was injected into flue gas at a NSR of 1.5 in a temperature range of 398.9 °C (750° F) to 429.4°C (805° F). FIG. 3 shows the % SO2 removal as a function of flue gas temperature. From these tests it can be seen that trona yielded SO2 removal rates of up to 91% and was effective over a wide range of elevated temperatures.

    [0023] From the above experiments it can be seen that trona was more effective than sodium bicarbonate at removing SO2 from a flue gas stream at elevated temperatures. Thus, the system can use less sorbent material than a sodium bicarbonate system to achieve the same sulfur reduction. Additionally, it can be seen that trona had good performance over a wide range of elevated temperatures. Finally, the SO2 removal system using trona had much less solids buildup in the perforated plates of the ESP than a system using sodium bicarbonate.

    [0024] The embodiments described above and shown herein are illustrative and not restrictive. The scope of the invention is indicated by the claims rather than by the foregoing description and attached drawings. The invention may be embodied in other specific forms without departing from the invention as set forth in the claims. Accordingly, these and any other changes which come within the scope of the claims are intended to be embraced therein.


    Claims

    1. A method of removing SO2 from a flue gas stream comprising SO2, comprising:

    - providing a source of trona;

    - injecting the trona into the flue gas stream, wherein the temperature of the flue gas is between 315.6°C (600° F) and 482.2 °C (900° F); and

    - maintaining the trona in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the SO2 to reduce the concentration of the SO2 in the flue gas stream.


     
    2. The method of claim 1 wherein the mean particle size of the trona is less than about 40 micron.
     
    3. The method of claim 1 wherein the mean particle size of the trona is between about 10 micron and about 40 micron.
     
    4. The method of claim 1 wherein the mean particle size of the trona is between about 24 micron and about 28 micron.
     
    5. The method of claim 1 wherein the temperature of the flue gas is greater than 332.2°C (630° F).
     
    6. The method of claim 1 wherein the temperature of the flue gas is greater than 371.1°C (700° F).
     
    7. The method of claim 1 wherein the temperature of the flue gas is less than 426.7°C (800° F).
     
    8. The method of claim 1 wherein the temperature of the flue gas is less than 398.9 °C (750° F).
     
    9. The method of claim 1 wherein the temperature of the flue gas is between 371.1 °C (700° F) and 398.9 °C (750° F).
     
    10. The method of claim 1 wherein the trona is injected at a rate with respect to the flow rate of the SO2 to provide a normalized stoichiometric ratio of sodium to sulfur of between about 1.0 and 1.5.
     
    11. The method of claim 1 wherein the trona is injected as a dry material.
     
    12. The method of claim 1 further comprising milling the trona to a desired mean particle size at a location proximate the flue gas stream.
     
    13. The method of claim 1 further comprising collecting a reaction product of the trona and the SO2 in an electrostatic precipitator.
     
    14. The method of claim 1 wherein the flue gas stream further comprises SO3, further comprising maintaining the trona in contact with the flue gas for a time sufficient to react a portion of the trona with a portion of the S03 to reduce the concentration of the SO3 in the flue gas stream.
     
    15. The method of claim 1 further comprising adjusting the flue gas temperature upstream of the trona to obtain the desired flue gas temperature where the trona is injected.
     
    16. The method of claim 15 wherein the adjusting further comprises introducing ambient air into the flue gas stream and monitoring the flue gas temperature where the trona is injected.
     
    17. The method of claim 15 wherein the adjusting further comprises controlling the flow of a material through a heat exchanger in communication with the flue gas.
     


    Ansprüche

    1. Verfahren zum Entfernen von SO2 aus einem Abgasstrom, der SO2 umfasst, umfassend:

    - Bereitstellen einer Quelle von Trona;

    - Injizieren des Trona in den Abgasstro m, wobei die Tem peratur des Abgases zwischen 315,6 C (600 F) und 482,2°C (900°F) beträgt; und

    - Halten des Trona in Kontakt mit dem Abgas über eine Zeit, die ausreicht, um einen Teil des Trona mit einem Teil des SO2 umzusetzen, um die Konzentration des SO2 in dem Abgasstrom zu verringern.


     
    2. Verfahren gemäß Anspruch 1, wobei die mittlere Partikelgröße des Trona weniger als etwa 40 Mikrometer beträgt.
     
    3. Verfahren gemäß Anspruch 1, wobei die mittlere Partikelgröße des Trona zwischen etwa 10 Mikrometer und etwa 40 Mikrometer beträgt.
     
    4. Verfahren gemäß Anspruch 1, wobei die mittlere Partikelgröße des Trona zwischen etwa 24 Mikrometer und etwa 28 Mikrometer beträgt.
     
    5. Verfahren gemäß Anspruch 1, wobei die Temperatur des Abgases mehr als 332,2 °C (630 °F) beträgt.
     
    6. Verfahren gemäß Anspruch 1, wobei die Temperatur des Abgases mehr als 371,1 °C (700 °F) beträgt.
     
    7. Verfahren gemäß Anspruch 1, wobei die Temperatur des Abgases weniger als 426,7 °C (800 °F) beträgt.
     
    8. Verfahren gemäß Anspruch 1, wobei die Temperatur des Abgases weniger als 398,9 °C (750 °F) beträgt.
     
    9. Verfahren gemäß Anspruch 1, wobei die Temperatur des Abgases zwischen 371,1 C (700 F) und 398,9°C (750°F) beträgt.
     
    10. Verfahren gemäß Anspruch 1, wobei das Trona mit einer Rate bezogen auf die Flussrate des SO2 injiziert wird, die ein normalisiertes stöchiometrisches Verhältnis von N atrium zu Schwefel zwischen etwa 1,0 und 1,5 bereitstellt.
     
    11. Verfahren gemäß Anspruch 1, wobei das T rona als T rockenmaterial injiziert wird.
     
    12. Verfahren gemäß Anspruch 1, ferner umfassend Mahlen des Trona auf eine gewünschte mittlere Partikelgröße an einem Ort nahe dem Abgasstrom.
     
    13. Verfahren gemäß Anspruch 1, ferner um fassend Sammeln eines Reaktionsprodukts des Trona und des SO2 in ein em elektrostatischen Präzipitator.
     
    14. Verfahren gemäß Anspruch 1, wobei der A bgasstrom ferner SO3 umfasst, ferner umfassend Halten des Trona in Kontakt mit dem Abgas über eine Zeit, die ausreicht, um einen Teil des Trona mit einem Teil des SO3 umzusetzen, um die Konzentration des SO3 in dem Abgasstrom zu verringern.
     
    15. Verfahren gemäß Anspruch 1, ferner um fassend Einstellen der Abgastemperatur dem Trona vorgeschaltet, um die gewünschte Abgastemperatur zu erhalten, wo das Trona injiziert wird.
     
    16. Verfahren gemäß Anspruch 15, wobei das Einstellen ferner Einführen von Umgebungsluft in den Abgasstrom und Überwachen der Abgastemperatur, wo das Trona injiziert wird, umfasst.
     
    17. Verfahren gemäß Anspruch 15, wobei das Einstellen ferner Steuern des Flusses eines Materials durch eine n Wärmeaustauscher in Verbindung mit dem Abgas umfasst.
     


    Revendications

    1. Procédé d'abattement de SO2 d'un flux de gaz de combustion comprenant du SO2, comprenant:

    - l'obtention d'une source de trona;

    - l'injection du trona dans le flux de gaz de combustion, la température du gaz de combustion se situant entre 315,6°C (600°F) et 482,2°C (900°F) ; et

    - le maintien du trona en contact avec le gaz de combustion pendant un temps suffisant pour faire réagir une partie du trona avec une partie du SO2 afin de réduire la concentration du SO2 dans le flux de gaz de combustion.


     
    2. Procédé selon la revendication 1 dans lequel la taille moyenne de particules du trona est inférieure à environ 40 µm.
     
    3. Procédé selon la revendication 1 dans lequel la taille moyenne de particules du trona se situe entre environ 10 µm et environ 40 µm.
     
    4. Procédé selon la revendication 1 dans lequel la taille moyenne de particules du trona se situe entre environ 24 µm et environ 28 µm.
     
    5. Procédé selon la revendication 1 dans lequel la température du gaz de combustion est supérieure à 332,2°C (630°F).
     
    6. Procédé selon la revendication 1 dans lequel la température du gaz de combustion est supérieure à 371,1°C (700°F).
     
    7. Procédé selon la revendication 1 dans lequel la température du gaz de combustion est inférieure à 426,7°C (800°F).
     
    8. Procédé selon la revendication 1 dans lequel la température du gaz de combustion est inférieure à 398,9°C (750°F).
     
    9. Procédé selon la revendication 1 dans lequel la température du gaz de combustion se situe entre 371,1°C (700°F) et 398,9°C (750°F).
     
    10. Procédé selon la revendication 1 dans lequel le trona est injecté à un débit par rapport au débit du SO2 permettant d'obtenir un rapport stoechiométrique normalisé du sodium au soufre entre environ 1,0 et 1,5.
     
    11. Procédé selon la revendication 1 dans lequel le trona est injecté sous la forme d'une matière sèche.
     
    12. Procédé selon la revendication 1 comprenant en outre le broyage du trona jusqu'à une taille moyenne de particules souhaitée à un endroit proche du flux de gaz de combustion.
     
    13. Procédé selon la revendication 1 comprenant en outre la collecte d'un produit de réaction du trona et du SO2 dans un filtre électrostatique.
     
    14. Procédé selon la revendication 1 dans lequel le flux de gaz de combustion comprend également du SO3, comprenant en outre le maintien du trona en contact avec le gaz de combustion pendant un temps suffisant pour faire réagir une partie du trona avec une partie du SO3 afin de réduire la concentration du SO3 dans le flux de gaz de combustion.
     
    15. Procédé selon la revendication 1 comprenant en outre l'ajustement de la température du gaz de combustion en amont du trona pour obtenir la température du gaz de combustion souhaitée là où le trona est injecté.
     
    16. Procédé selon la revendication 15 dans lequel l'ajustement comprend en outre l'introduction d'air ambiant dans le flux de gaz de combustion et la surveillance de la température du gaz de combustion là où le trona est injecté.
     
    17. Procédé selon la revendication 15 dans lequel l'ajustement comprend en outre le contrôle du débit d'une matière à travers un échangeur de chaleur en communication avec le gaz de combustion.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description