[Technical Field]
[0001] The present invention relates to a piercing nut manufacturing apparatus wherein a
nut itself pierces a metal plate, and a peripheral edge portion of the pierced hole
is swaged and fastened to the metal plate. Particularly, it relates to the improvement
of a high stress type piercing nut manufacturing apparatus that can be realized due
to great clinching forces actually obtained as proposed by the inventor in
JP H8 - 29392, namely
USP5,618,237 and
EP0663247A1, (Patent document 1).
[Background Art]
[0002] The piercing nut manufacturing apparatus mentioned above in
JP H8 - 29362 performs the operation by using a nut former and has such an excellent advantage
that, when both opposing side walls defining an annular groove formed between a cylindrical
pilot portion, of which an end portion thereof disposed centrally of a square nut
body serves as a punch for piercing a metal plate, and a side wall protruding along
the peripheral edge of the nut body so as to surround the pilot portion are slanted
against the axial line (central axis of the nut body) in order to form the annular
groove into a dovetail groove, it is possible to realize mass-production of high-quality
high-stress type piercing nuts capable of obtaining constant and great clinching forces
because of high dimensional accuracy with respect to the inside and outside dimensions
of the annular groove as well as excellent piercing operation by the pilot portion.
[0003] When a high-stress type piercing nut as described above is manufactured by using
a nut former, a nut blank finished with each forming process shown in Fig. 1 ~ 3 of
the Patent document 1 (
JPH 8 - 29392) is pushed out in front of the die for each process, and it is held by a pair of
opposing fingers of a transfer mechanism reciprocating along the front vicinity of
the die and is transferred to the die for the next process in order to perform the
next process. However, when the nut blank finished with the forming operation in the
piercing and pilot portion enlarging process shown in Fig. 2 of the Patent document
1 is transferred to the side wall slanting forming process shown in Fig. 3, there
arises a problem described in the following.
[0004] Fig. 14 and Fig. 15 are explanatory diagrams showing the operational process such
that nut blank 11 finished with the piercing and pilot portion enlarging process shown
in Fig. 2 of the Patent document 1 (
JPH 8 - 29392) is pushed out from die 31 and held by a pair of opposing fingers 39, 39 of the transfer
mechanism reciprocating along the front of die 31. Both fingers 39, 39 are activated
by a spring (not shown) in the direction of approaching each other, and the space
between the two fingers is a little smaller than the opposite side dimension of nut
blank 11.
[0005] Taper wall 34 widening outwardly is disposed at the base portion of piercing punch
33 installed in concave (cavity) 32 of die 31, and annular protrusion 36 which protrudes
so as to surround taper wall 34 is disposed at the end surface of cylindrical insert
35 arranged externally (radially outwards) of piercing punch 33, and cylindrical insert
35 is securely held by holder 37.
[0006] When nut blank 11 inserted into concave 32 of die 31 is pressed by cylindrical punch
38, the cylindrical punch 38 and piercing punch 33 cooperate to punch out preliminary
undercut hole, not a through-hole, of nut blank 11 in order to form undercut screw-hole
12. Subsequently, in a state such that the annular protrusion 36 of cylindrical insert
35 is inserted into annular groove 15, the end surface of pilot portion 13 is radially
widened by taper wall 34, causing the peripheral side wall surface 16 thereof to be
slanted against the axial line and the cross section of annular groove 15 to be formed
into a dovetail shape widening in the depth direction of the annular groove 15. Also,
the outer end edge (the edge of peripheral side wall surface 16 as well) of pilot
portion 13 is abutted on the inner side surface of annular protrusion 36 and is restrained
from the occurrence of excessive slanting deformation, thereby enabling dimensionally
accurate and constant finishing of the end outer diameter of pilot portion 13, that
is, the inside dimension of annular groove 15.
[0007] When the piercing and pilot portion 13 enlarging process is completed for undercut
screw-hole 12, as shown in Fig. 14, cylindrical punch 38 first moves backward so as
to move away from die 31, and both fingers 39, 39 come to the front vicinity of die
31. Then, waste chip 12c created by piercing punch 33 is collected into the tube hole
of cylindrical punch 38 and removed. Subsequently, as shown in Fig. 15, piercing punch
33 moves forward and protrudes from die 31 and pushes up the nut blank 11 so that
it is held between both fingers 39, 39, then piercing punch 33 moves backward into
die 31, and the nut blank 11 held by both fingers 39, 39 is transferred to the front
of the die for the next process.
[0008] On the other hand, since the outer diameter d of tip portion 33a of piercing punch
33 is nearly same as that of undercut screw-hole 12 formed in nut blank 11, when piercing
punch 33 moves backward into die 31, the tip portion 33a thereof interferes with nut
blank 11, causing the generation of a stress that causes the nut blank 11 to be shifted
back into die 31. However, in the normal operation, there will be no hindrance because
of the high spring tension that activates both fingers 39, 39, but in the case of
long-time operation, the activating force generated by the springs of both fingers
39, 39 becomes weakened or a trouble such as roughening or cracking of piercing punch
33 takes place, and as a result, sometimes there arises a problem such that, when
piercing punch 33 moves backward, nut blank 11 is shifted back into die 31, and then
nut bank 11 cannot be transferred to the next process, causing the generation of serious
trouble such as stop of the operation.
[Summary of the Invention]
[0009] The present invention is intended to address the above-mentioned problem of the prior
art, and in the preferred embodiments of the invention a piercing nut manufacturing
apparatus is configured such that a nut blank finished with the piercing and pilot
portion enlarging process is pushed out by knockout pins, instead of by the piercing
punch. The pins are disposed around the piercing punch, and the nut blank can be securely
and reliably held between the fingers of the transfer mechanism, and there is no hindrance
to the transfer of the nut blank.
[0010] The present invention provides a piercing nut manufacturing apparatus as defined
in claim 1.
[0011] Preferred features of the present invention are defined in the dependent claims.
[0012] In the preferred embodiments, when a nut blank is formed by using a nut former, the
undercut screw-hole is pierced and the end surface of the pilot portion is widened
in the radial direction, and the four diagonal corner end surfaces of the nut blank
finished with the forming process of slanting to enlarge the peripheral side wall
surface of the pilot portion for defining an annual groove are pushed out by four
knockout pins and are pushed in between a pair of fingers of a transfer mechanism
located in the vicinity of the end surface of a die. Because of this configuration,
the nut blank is reliably and smoothly pushed out from the die and then held by both
of the fingers, and there is no fear of causing hindrance to the transfer to the next
process. Accordingly, it is possible to efficiently mass-produce high-quality high-stress
type square pierce nuts which are high in dimensional accuracy and capable of obtaining
reliable clinching forces.
[Brief Description of the Drawings]
[0013]
Fig. 1 is a front view showing a main portion of a nut former of the present invention.
Fig. 2 is an explanatory diagram showing the machining processes of a nut blank formed
by the nut former.
Fig. 3 is a plan view showing the outline of a transfer mechanism for transferring
a nut blank machined in each forming process of the nut former to the next process.
Fig. 4 is a front view showing a state of operation of the transfer mechanism which
has moved from the position shown in Fig. 1.
Fig. 5 is a cross-sectional plan view of a main portion of a forming die/punch showing
a state of being pushed out from the forming die after finishing each forming process
of a nut blank formed by the nut former.
Fig. 6 is a cross-sectional plan view of a main portion of the forming die/punch,
showing a state of being transferred to the next process of each nut blank finished
with main forming process by the nut former.
Fig. 7 is a cross-sectional plan view of a main portion of the forming die/punch,
showing a state of being transferred to the front of the forming die for the next
process of a nut blank finished with main forming process by the nut former.
Fig. 8 is a cross-sectional plan view of the forming die/punch, showing a state of
being transferred to the next process, pressed and formed by a punch of each nut blank
finished with main forming process by the nut former.
Fig. 9 is a cross-sectional plan view of the forming die/punch, showing a state of
completion of forming operation by the forming die and punch in the next process with
respect to each nut blank finished with main forming process by the nut former.
Fig. 10 is a cross-sectional view of a main portion of the forming die/punch, showing
a state of the punch for each forming process moving backward away from the forming
die after finishing forming operation by the forming die and punch for the next process
shown in Fig. 9.
Fig. 11 is an enlarged plan view of a main portion of a piercing and pilot portion
enlarging forming die of the nut former.
Fig. 12 is an explanatory diagram showing a state of being pushed out by four knockout
pins of a nut blank finished with the undercut screw-hole piercing and pilot portion
enlarging process by the piercing and pilot portion enlarging forming die/punch of
the nut former.
Fig. 13 is a perspective view of a square piercing nut completed by threading a nut
blank manufactured by the apparatus of the present invention.
Fig. 14 is an explanatory diagram showing a state of preparation for pushing out a
nut blank finished with the piercing and pilot portion enlarging process shown in
Fig. 2 of JPH8 - 29392.
Fig. 15 is an explanatory diagram showing a state of a nut blank shown in Fig. 14
in a state of being held by a pair of fingers opposing each other of the transfer
mechanism after being push out from the forming die.
[Description of the Preferred Embodiments]
[0014] The preferred embodiments of the present invention will be described in the following
with reference to the drawings.
[0015] Fig. 1 shows a main portion of a 4-stage nut former of an embodiment of the present
invention. The die block 50 comprises a die for each forming process to form nut blanks,
that is, pre-forming die 51, nut blank forming die 52, piercing and pilot portion
enlarging forming die 53, and side wall slanting forming die 54 are laterally installed
at equally spaced intervals in a parallel fashion. In the pre-process of pre-forming
die 51, the technical means for cutting materials with a constant size out of a coil
material, correcting and feeding them to pre-forming die 51 is a technical means customarily
employed in an existing nut former as standard technology, and therefore, the description
is omitted.
[0016] Also, transfer mechanism 55 which moves laterally along the front vicinity of die
block 50 is disposed. Regarding the transfer mechanism 55 it is also a technical means
customarily employed in an existing nut former as standard technology, and therefore,
the detailed description is omitted, but as shown in Fig. 1 and Fig. 3, three spindles
57 vertically extending are installed at same spaced intervals as for each forming
die 51 to 54 around the axial line in a rotatable fashion on connecting plate 56 laterally
reciprocating along the front vicinity of die block 50, and a pair of opposing fingers
58, 58 are installed on each spindle 57 in a laterally movable fashion and are activated
by plate springs 59, 59 so as to approach each other. And, only both fingers 58, 58
arranged in front of pre-forming die 51 in Fig. 1 are reversed by 180 degrees as shown
in Fig. 4 when pre-formed blank 10 is moved to the front of forming die 52, and the
remaining two fingers 58, 58 horizontally move in a parallel fashion.
[0017] Fig. 5 shows a state of nut blank 11a, 11b, 11c formed by the nut former in each
forming process, which are in a state of being pushed out from each forming die 52,
53, 54 respectively and transferred to the next process.
[0018] Nut blank forming die 52 is disposed in such manner as to be able to axially move
forward and backward in concave (cavity) 61 into which blank 10 (see Fig. 2) preliminarily
swaged by pre-forming die 51 is inserted, and it is provided with knockout pin 62
activated by (biased by) spring 63 in the retreating position, and the knockout pin
62 is pushed out by main pin 64 disposed at the back thereof coping with (acting against)
spring 63. Also, annular protrusion 66 is disposed externally of (around) knockout
pin 62 at the end of first cylindrical insert 65 fixedly arranged in the back of (bottom
of) concave 61. On the other hand, the front end of punch 67 disposed opposite to
forming die 52 is provided with protrusion 68 serving to form a preliminary hole for
undercut screw-hole. And, blank 10 inserted into concave 61 is held and pressed by
punch 67 and knockout pin 62 in order to form preliminary holes 12a, 12b for under
cut screw-hole that is not yet a through-hole. Also, annular protrusion 66 is pressed
into blank 10, and cylindrical pilot portion 13 of which the end portion thereof serves
as a punch to punch out a metal plate is formed at the central portion of the nut
body including preliminary hole 12a. Further, side wall 14 protrudes in parallel to
the axial line (central axis of the nut body) so as to surround pilot portion 13 along
the outer periphery of the nut body. And also, nut blank 11a is formed with annular
groove 15 being formed between pilot portion 13 and side wall 14 (see Fig. 2). Nut
blank 11a is formed this way is, as shown in Fig. 5, pushed out by knockout pin 62
from the forming die 52 after punch 67 first moves backward away from the forming
die 52. The nut blank 11a is pushed towards and held between a pair of opposing fingers
58, 58.
[0019] Piercing and pilot portion enlarging forming die 53 is configured in that piercing
punch 72 and second cylindrical insert 73 disposed externally of (around) the piercing
punch 72 are securely held via holder 74 in concave (cavity) 71 into which nut blank
11a is inserted. Taper wall 75 widening outwardly is disposed at the base portion
of piercing punch 72, and annular protrusion 76 inserted into annular groove 15 of
nut blank 11a is disposed at the end surface of second cylindrical insert 73. On the
other hand, there are provided four slender knockout pins 77 in such manner as to
surround piercing punch 72. The knockout pins 77 are arranged spaced apart by 90 degrees
around piercing punch 72 (see Fig. 11) and disposed in such manner as to be able to
axially move forward and backward through second cylindrical insert 73 and holder
74. The knockout pins 77 are biased by springs 78 in the retreating position (in the
retraction direction), and when in the retreating position, the front end surfaces
thereof are flush with the end surface of second cylindrical insert 73 or a little
lower than the end surface thereof (see Figs. 7 to 10). Four knockout pins 77 are
pushed out forward by main pin 79 disposed at the back thereof coping with (acting
against) springs 78. On the other hand, there is provided cylindrical punch 80 opposing
to the forming die 53. And, when nut blank 11a is inserted and pressed by cylindrical
punch 80 into concave 71, as shown in Fig. 8 and Fig. 9, due to the cooperative action
of cylindrical punch 80 and piercing punch 72, preliminary holes 12a, 12b are punched
out to form undercut screw-hole 12, and at the same time, the end surface of pilot
portion 13 is radially widened by taper wall 75 of piercing punch 72, and the peripheral
side wall surface of pilot portion 13 for defining the annular groove 15 is slanted
against the axial line (central axis of the nut blank) so that the cross-section of
annular groove 15 has a dovetail shape widening in the depth direction of the annular
groove 15. Also, the end surface outer periphery of pilot portion 13 is abutted in
a restraining fashion on the inner side surface of annular protrusion 76 and thus
restrained from the occurrence of excessive slanting deformation, and thereby, it
is possible to form nut blank 11b which is dimensionally accurate and constant with
respect to the end surface outer diameter of pilot portion 13, that is, the inner
dimensions of annular groove 15. In this case, waste chip 12c punched out by piercing
punch 72 is collected into the cylindrical hole of cylindrical punch 80 and discharged.
As to nut blank 11b formed this way, as shown in Fig. 10, cylindrical punch 80 first
moves backward away from forming die 53, and a pair of fingers 58, 58 of transfer
mechanism 55 comes to the front vicinity of forming die 53. Subsequently, as shown
in Fig. 5, four knockout pins 77 are pushed out by main pin 79 coping with (acting
against) springs 78 and then abutted on the four diagonal corner end surfaces of nut
blank 11b to push the nut blank 11b out of concave 71 of forming die 53. Thus, when
nut blank 11b is pushed out by four knockout pins 77, the nut blank 11b is correctly
pushed out along the axial line, and therefore, it is smoothly and reliably pushed
out from concave 71 without interfering with piercing punch 72, and is pushed in and
held between the pair of opposing fingers 58, 58.
[0020] Side wall slanting forming die 54 is disposed in concave (cavity) 81 into which nut
blank 11b finished with undercut screw-hole 12 piercing and pilot portion 13 enlarging
process is inserted in a state of being able to axially move forward and backward.
The concave 81 is provided with knockout pin 82 biased by spring 83 in the retreating
position (in the retraction direction), and the knockout pin 82 is pushed out by main
pin 84 disposed at the back thereof coping with (acting against) spring 83. Also,
there is provided taper wall 85 for slanting the side wall 14 of nut blank 11b toward
the axial line (central axis of the nut blank) deep in (at the bottom of) concave
81. Further, annular protrusion 87 to be inserted into annular groove 15 of nut blank
11b is disposed on the end surface of third cylindrical insert 86 fixedly installed
deep in (at the bottom of) the concave 81 externally of (around) knockout pin 82,
opposing to taper wall 85 and at constant intervals. On the other hand, there is provided
punch 88 opposing to forming die 54. And, when nut blank 11b inserted in concave 81
of forming die 54 is pressed by punch 88 (see Fig. 8 to 9), as shown in Fig. 9, in
a state with annular protrusion 87 of third cylindrical insert 86 inserted into annular
groove 15, side wall 14 is slanted by taper wall 85 toward the axial line (central
axis of the nut blank), and inner side wall surface 17 for defining annular groove
15 is slanted against the axial line, then the cross-section of annular groove 15
is formed into a dovetail shape widening in the depth direction of the annular groove
15. At the same time, the inner side end edge of slanted side wall 14 is abutted in
a restraining fashion on the outer side surface of annular protrusion 87 and is restrained
from the occurrence of excessive slanting deformation. As a result, the outside dimensions
of annular groove 15 are accurately finished in constant size. As to the nut blank
11b thus formed by side wall slanting forming die 54, as shown in Fig. 10, after punch
88 moves backward away from forming die 54, as shown in Fig. 5, it is pushed out by
knockout pin 82 from concave 81 of forming die 54 and freely dropped to be transferred
to the threading process (not shown).
[0021] Fig. 13 shows high-stress type square piercing nut 1 completed by threading female
screw 2 in undercut screw-hole 12 of nut blank 11c formed as described above.
[0022] [Description of the Reference Numerals and Signs]
- 1
- Square pierce nut
- 2
- Screw hole
- 10
- Blank
- 11
- Nut blank
- 11a, 11b, 11c
- Nut blank
- 12
- Undercut screw-hole
- 13
- Pilot portion
- 14
- Side wall
- 15
- Annular groove
- 50
- Die block
- 51
- Pre-forming die
- 52
- Nut blank forming die
- 53
- Piercing and pilot portion enlarging die
- 54
- Side wall slanting forming die
- 55
- Transfer mechanism
- 58, 58
- A pair of fingers
- 59, 59
- Plate spring
- 61
- Concave (forming die 52)
- 62
- Knockout pin
- 65
- First cylindrical insert
- 66
- Annular protrusion
- 67
- Punch
- 71
- Concave (forming die 53)
- 72
- Piercing punch
- 73
- Second cylindrical insert
- 74
- Holder
- 75
- Taper wall
- 76
- Annular protrusion
- 77
- Knockout pin
- 80
- Cylindrical punch
- 81
- Concave (forming die 54)
- 82
- Knockout pin
- 85
- Taper wall (concave 81)
- 86
- Third cylindrical insert
- 87
- Annular protrusion
- 88
- Punch
1. A piercing nut manufacturing apparatus comprising a nut former for forming a nut blank
(11) for a piercing nut (1), wherein the piercing nut (1) is configured such that
a cylindrical pilot punch portion (13) is disposed at a central portion of a square
nut body, and includes an undercut screw-hole (12), and a protruding side wall (14)
is disposed so as to surround the pilot portion (13) along the outer periphery of
the nut body, and an annular groove (15) is formed between the pilot portion (13)
and the side wall (14), and a peripheral side wall of the pilot portion (13) and the
side wall (14) defining the annular groove (15) are slanted relative to a central
axis of the nut body so that the annular groove (15) is formed to have a dovetail
shape widening in the depth direction of the annular groove (15),
wherein the nut former includes a transfer mechanism (55) and a die (53) characterized in that the die (53) has first to fourth knockout pins (77) and the manufacturing apparatus
is arranged such that, after the undercut screw-hole (12) is pierced and an end surface
of the pilot portion (13) is radially widened, first to fourth diagonal corner end
surfaces of the nut blank (11b) finished with a forming process of slanting and enlarging
a peripheral side wall surface of the pilot portion (13) for defining the annular
groove (15) are pushed out of the die (53) by the first to fourth knockout pins (77)
and pushed in between first and second fingers (58, 58) of the transfer mechanism
(55) located adjacent to the die (53).
2. A piercing nut manufacturing apparatus according to claim 1, wherein:
the die (53) is a second die (53) in a sequence of dies (52, 53, 54) and is preceded
by a first die (52) and is followed by a third die (54);
the nut former is configured such that a knockout pin (62) is disposed in such manner
as to be able to axially move forward and backward in a cavity (61) of the first die
(52), into which a pre-formed blank (10) is insertable, and is biased by a spring
(63) in the retraction direction, and an annular protrusion (66) is disposed at the
end of a first cylindrical insert (65) fixedly arranged at the bottom of the cavity
(61) around the knockout pin (62), and a protrusion (68) for forming a preliminary
hole (12b) for the undercut screw-hole (12) is provided at the front end of a punch
(67) opposing the first die (52), and the blank (11a) when inserted into the cavity
(61) is held and pressed between the punch (67) and the knockout pin (62) in order
to form preliminary holes (12a, 12b), whilst the annular protrusion (66) forms the
cylindrical pilot portion (13) and the side wall (14);
a taper wall (75) widening outwardly is disposed at the base portion of a piercing
punch (72) arranged in a cavity (71) of the second die (53) into which the nut blank
(11a) is insertable, and an annular protrusion (76) to be inserted into the annular
groove (15) is disposed at the end of a second cylindrical insert (73) disposed around
the piercing punch (72), and when the nut blank (11a) is inserted and pressed in the
cavity (71) of the second die (53), due to the cooperative action of a cylindrical
punch (80) and the piercing punch (72), the preliminary holes (11a, 11b) are pierced
to form the undercut screw-hole (12), and an end portion of the pilot portion (13)
is radially widened by the taper wall (75), the peripheral side wall surface of the
pilot portion (13) for defining the annular groove (15) is slanted to form the annular
groove (15) into a dovetail groove widening in the depth direction of the annular
groove (15), and an outer end periphery of the pilot portion (13) is abutted in a
restraining fashion on an inner side surface of the annular protrusion (76);
a knockout pin (82) is biased by a spring (83) in the retraction direction and is
disposed in such a manner as to be able to axially move forward and backward in a
cavity (81) of the third die (54) into which the nut blank (11b) is insertable, and
a taper wall (85) for slanting the side wall (14) of the nut blank (11b) toward the
central axis of the nut blank (11b) is disposed at the bottom of the cavity (81),
and an annular protrusion (87) to be inserted into the annular groove (15) is disposed
at the end of a third cylindrical insert (86) arranged at the bottom of the cavity
(81) of the third die (54), and, when the nut blank (11b) is inserted and pressed
in the cavity (81) of the third die (54) by means of a punch (88) opposing the third
die (54), the side wall (14) is slanted by the taper wall (85) toward the central
axis of the nut blank (11b) in order to form the annular groove (15) into a dovetail
groove widening in the depth direction of the annular groove (15), and an inner end
periphery of the side wall (14) slanted toward the central axis of the nut blank (11b)
is abutted in a restraining fashion on an outer side surface of the annular protrusion
(87); and
the piercing punch (72) and the second cylindrical insert (73) are securely held in
the cavity (71) of the second die (53), and the first to fourth knockout pins (77)
are provided around the piercing punch (72), and after the nut blank (11a) has been
pressed in the cavity (71) of the second die (53), due to the cooperative action of
the cylindrical punch (80) and the piercing punch (72), the first to fourth diagonal
corner end surfaces of the nut blank (11b) are arranged to be pushed out of the second
die (53) by the knockout pins (77) and pushed in between the fingers (58, 58) of the
transfer mechanism (55).
3. The piercing nut manufacturing apparatus of claim 2, wherein the piercing punch (72)
and the second cylindrical insert (73) are securely held via a holder (74) in the
cavity (71) of the second die (53), and the knockout pins (77) are disposed in such
a manner as to be able to axially move forward and backward in the holder (74) at
positions spaced 90 degrees apart around the piercing punch (72), and are biased by
springs (78) in the retraction direction so that, when retracted, the front end surfaces
of the knockout pins (77) are flush with the front end surface of the second cylindrical
insert (73), and, when moving forwards, the pins (77) are abutted on the first to
fourth diagonal corner end surfaces of the nut blank (11b), such that the nut blank
(11b) is pushed out and pushed in between the fingers (58, 58).
1. Stanzmutter-Herstellungsvorrichtung, umfassend ein Mutterformwerkzeug zum Formen eines
Mutterrohlings (11) für eine Stanzmutter (1), wobei die Stanzmutter (1) derart konfiguriert
ist, dass ein zylinderförmiger Pilotstanzabschnitt (13) an einem zentralen Abschnitt
eines quadratischen Mutterkörpers angeordnet ist und ein hinterschnittenes Schraubenloch
(12) aufweist, und eine hervorstehende Seitenwand (14) derart angeordnet ist, dass
sie den Pilotabschnitt (13) entlang des äußeren Umfangs des Mutterkörpers umgibt,
und eine Ringnut (15) zwischen dem Pilotabschnitt (13) und der Seitenwand (14) ausgebildet
ist, und eine Umfangsseitenwand des Pilotabschnitts (13) und die Seitenwand (14),
welche die Ringnut (15) definiert, in Bezug auf eine Mittelachse des Mutterkörpers
abgeschrägt sind, sodass die Ringnut (15) derart geformt ist, dass sie eine Schwalbenschwanzform
aufweist, die sich in der Tiefenrichtung der Ringnut (15) aufweitet,
wobei das Mutterformwerkzeug einen Übertragungsmechanismus (55) und eine Matrize (53)
aufweist, dadurch gekennzeichnet, dass die Matrize (53) erste bis vierte Auswerfstifte (77) aufweist und die Herstellungsvorrichtung
derart angeordnet ist, dass nach dem Stanzen des hinterschnittenen Schraubenlochs
(12) und nach dem radialen Aufweiten einer Endoberfläche des Pilotabschnitts (13)
erste bis vierte diagonale Eckendoberflächen des Mutterrohlings (11b), die mit einem
Formverfahren des Abschrägens und Vergrößerns einer peripheren Seitenwandoberfläche
des Pilotabschnitts (13) zum Definieren der Ringnut (15) endbearbeitet werden, von
den ersten bis vierten Auswerfstiften (77) aus der Matrize (53) geschoben werden und
zwischen erste und zweite Greifer (58, 58) des Übertragungsmechanismus (55) geschoben
werden, der sich benachbart zu der Matrize (53) befindet.
2. Stanzmutter-Herstellungsvorrichtung nach Anspruch 1, wobei:
die Matrize (53) eine zweite Matrize (53) in einer Abfolge von Matrizen (52, 53, 54)
ist und ihr eine erste Matrize (52) vorausgeht und ihr eine dritte Matrize (54) folgt;
wobei das Mutterformwerkzeug derart konfiguriert ist, dass ein Auswerfstift (62) derart
angeordnet ist, dass er sich in einem Hohlraum (61) der ersten Matrize (52), in die
ein vorgeformter Rohling (10) einfügbar ist, axial vor- und zurückbewegen kann, und
von einer Feder (63) in der Retraktionsrichtung vorgespannt ist, wobei ein ringförmiger
Vorsprung (66) an dem Ende eines ersten zylinderförmigen Einsatzes (65) angeordnet
ist, der fest an dem Boden des Hohlraums (61) um den Auswerfstift (62) angeordnet
ist, und ein Vorsprung (68) zum Formen eines Vorlochs (12b) für das hinterschnittene
Schraubenloch (12) an dem vorderen Ende eines Stempels (67) bereitgestellt ist, welcher
der ersten Matrize (52) gegenüberliegt, und der Rohling (11a) beim Einfügen in den
Hohlraum (61) zwischen dem Stempel (67) und dem Auswerfstift (62) gehalten und gepresst
wird, um Vorlöcher (12a, 12b) zu formen, während der ringförmige Vorsprung (66) den
zylinderförmigen Pilotabschnitt (13) und die Seitenwand (14) formt;
eine sich verjüngende Wand (75), die sich nach außen aufweitet, an dem Basisabschnitt
eines Stanzstempels (72) angeordnet ist, der in einem Hohlraum (71) der zweiten Matrize
(53) angeordnet ist, in die der Mutterrohling (11a) einfügbar ist, und ein ringförmiger
Vorsprung (76), der in die Ringnut (15) eingefügt werden soll, an dem Ende eines zweiten
zylinderförmigen Einsatzes (73) angeordnet ist, der um den Stanzstempel (72) angeordnet
ist, und wenn der Mutterrohling (11a) in den Hohlraum (71) der zweiten Matrize (53)
eingefügt und gepresst wird, die Vorlöcher (11a, 11b) aufgrund des Zusammenwirkens
eines zylinderförmigen Stempels (80) und des Stanzstempels (72) gestanzt werden, um
das hinterschnittene Schraubenloch (12) zu formen, und ein Endabschnitt des Pilotabschnitts
(13) von der sich verjüngenden Wand (75) radial aufgeweitet ist, wobei die periphere
Seitenwandoberfläche des Pilotabschnitts (13) zum Definieren der Ringnut (15) abgeschrägt
ist, um die Ringnut (15) zu einer Schwalbenschwanznut zu formen, die sich in der Tiefenrichtung
der Ringnut (15) aufweitet, und ein äußerer Endumfang des Pilotabschnitts (13) in
arretierender Weise an einer inneren Seitenoberfläche des ringförmigen Vorsprungs
(76) abgestützt ist;
ein Auswerfstift (82) von einer Feder (83) in der Retraktionsrichtung vorgespannt
ist und derart angeordnet ist, dass er sich in einem Hohlraum (81) der dritten Matrize
(54), in die der Mutterrohling (11b) einfügbar ist, axial vor- und zurückbewegen kann,
und eine sich verjüngende Wand (85) zum Abschrägen der Seitenwand (14) des Mutterrohlings
(11b) zu der Mittelachse des Mutterrohlings (11b) an dem Boden des Hohlraums (81)
angeordnet ist und ein ringförmiger Vorsprung (87), der in die Ringnut (15) eingefügt
werden soll, am Ende eines dritten zylinderförmigen Einsatzes (86) angeordnet ist,
der am Boden des Hohlraums (81) der dritten Matrize (54) angeordnet ist, und wenn
der Mutterrohling (11b) in den Hohlraum (81) der dritten Matrize (54) mittels eines
Stempels (88), welcher der dritten Matrize (54) gegenüberliegt, eingefügt und gepresst
wird, die Seitenwand (14) von der sich verjüngenden Wand (85) zu der Mittelachse des
Mutterrohlings (11b) abgeschrägt wird, um die Ringnut (15) zu einer Schwalbenschwanznut
zu formen, die sich in der Tiefenrichtung der Ringnut (15) aufweitet, und ein innerer
Endumfang der Seitenwand (14), der zu der Mittelachse des Mutterrohlings (11b) abgeschrägt
ist, in einer arretierenden Weise an einer äußeren Seitenoberfläche des ringförmigen
Vorsprungs (87) abgestützt ist; und
der Stanzstempel (72) und der zweite zylinderförmige Einsatz (73) in dem Hohlraum
(71) der zweiten Matrize (53) arretiert sind und die ersten bis vierten Auswerfstifte
(77) um den Stanzstempel (72) bereitgestellt sind, und nachdem der Mutterrohling (11a)
in den Hohlraum (71) der zweiten Matrize (53) gepresst wurde, die ersten bis vierten
diagonalen Eckendoberflächen des Mutterrohlings (11b) aufgrund des Zusammenwirkens
des zylinderförmigen Stempels (80) und des Stanzstempels (72) derart angeordnet sind,
dass sie von den Auswerfstiften (77) aus der zweiten Matrize (53) geschoben werden
und zwischen die Greifer (58, 58) des Übertragungsmechanismus (55) geschoben werden.
3. Stanzmutter-Herstellungsvorrichtung nach Anspruch 2, wobei der Stanzstempel (72) und
der zweite zylinderförmige Einsatz (73) durch einen Halter (74) in dem Hohlraum (71)
der zweiten Matrize (53) arretiert sind und die Auswerfstifte (77) derart angeordnet
sind, dass sie sich in dem Halter (74) an Positionen, die um 90 Grad um den Stanzstempel
(72) beabstandet sind, axial vor- und zurückbewegen können und in der Retraktionsrichtung
von Federn (78) vorgespannt sind, sodass, wenn sie zurückgezogen sind, die vorderen
Endoberflächen der Auswerfstifte (77) mit der vorderen Endoberfläche des zweiten zylinderförmigen
Einsatzes (73) bündig sind und, wenn sie sich vorwärts bewegen, die Stifte (77) auf
den ersten bis vierten diagonalen Eckendoberflächen des Mutterrohlings (11b) abgestützt
sind, sodass der Mutterrohling (11b) herausgeschoben und zwischen die Greifer (58,
58) geschoben wird.
1. Appareil de fabrication d'écrou de perçage comprenant un formeur d'écrou pour former
une ébauche d'écrou (11) pour un écrou de perçage (1), l'écrou de perçage (1) étant
configuré de telle sorte qu'une portion de poinçon pilote cylindrique (13) soit disposée
au niveau d'une portion centrale d'un corps d'écrou carré et comportant un trou de
vissage en contre-dépouille (12), et une paroi latérale saillante (14) étant disposée
de manière à entourer la portion pilote (13) le long de la périphérie extérieure du
corps d'écrou, et une gorge annulaire (15) étant formée entre la portion pilote (13)
et la paroi latérale (14), et une paroi latérale périphérique de la portion pilote
(13) et la paroi latérale (14) définissant la gorge annulaire (15) étant inclinées
par rapport à un axe central du corps d'écrou de telle sorte que la gorge annulaire
(15) soit formée de manière à avoir une forme en queue d'aronde s'élargissant dans
la direction de la profondeur de la gorge annulaire (15),
le formeur d'écrou comportant un mécanisme de transfert (55) et une matrice (53),
caractérisé en ce que la matrice (53) présente des première à quatrième broches d'écrasement (77) et l'appareil
de fabrication est prévu de telle sorte qu'après le perçage du trou de vissage en
contre-dépouille (12) et l'élargissement radial d'une surface d'extrémité de la portion
pilote (13), des première à quatrième surfaces diagonales d'extrémités de coin de
l'ébauche d'écrou (11b), finies par un processus de formage consistant à incliner
et élargir une surface de paroi latérale périphérique de la portion pilote (13) pour
définir la gorge annulaire (15), soient poussées hors de la matrice (53) par les première
à quatrième broches d'écrasement (77) et soient poussées à l'intérieur entre des premier
et deuxième doigts (58, 58) du mécanisme de transfert (55) situé à côté de la matrice
(53).
2. Appareil de fabrication d'écrou de perçage selon la revendication 1, dans lequel :
la matrice (53) est une deuxième matrice (53) dans une série de matrices (52, 53,
54) et est précédée d'une première matrice (52) et est suivie d'une troisième matrice
(54) ;
le formeur d'écrou est configuré de telle sorte qu'une broche d'écrasement (62) soit
disposée de telle sorte qu'elle puisse se déplacer axialement vers l'avant et vers
l'arrière dans une cavité (61) de la première matrice (52), dans laquelle une ébauche
préformée (10) peut être insérée, et soit sollicitée par un ressort (63) dans la direction
de rétraction, et une saillie annulaire (66) est disposée à l'extrémité d'un premier
insert cylindrique (65) disposé fixement au fond de la cavité (61) autour de la broche
d'écrasement (62), et une saillie (68) pour former un trou préliminaire (12b) pour
le trou de vissage en contre-dépouille (12) est prévue au niveau de l'extrémité avant
d'un poinçon (67) opposé à la première matrice (52), et l'ébauche (11a), lorsqu'elle
est insérée dans la cavité (61), est retenue et pressée entre le poinçon (67) et la
broche d'écrasement (62) afin de former des trous préliminaires (12a, 12b), tandis
que la saillie annulaire (66) forme la portion pilote cylindrique (13) et la paroi
latérale (14) ;
une paroi en biseau (75) s'élargissant vers l'extérieur est disposée au niveau de
la portion de base d'un poinçon de perçage (72) disposé dans une cavité (71) de la
deuxième matrice (53) dans laquelle l'ébauche d'écrou (11a) peut être insérée, et
une saillie annulaire (76) devant être insérée dans la gorge annulaire (15) est disposée
à l'extrémité d'un deuxième insert cylindrique (73) disposé autour du poinçon de perçage
(72), et lorsque l'ébauche d'écrou (11a) est insérée et pressée dans la cavité (71)
de la deuxième matrice (53), en raison de l'action de coopération d'un poinçon cylindrique
(80) et du poinçon de perçage (72), les trous préliminaires (11a, 11b) sont percés
pour former le trou de vissage en contre-dépouille (12), et une portion d'extrémité
de la portion pilote (13) est élargie radialement par la paroi en biseau (75), la
surface de paroi latérale périphérique de la portion pilote (13), pour définir la
gorge annulaire (15), est inclinée de manière à former la gorge annulaire (15) en
forme de gorge en queue d'aronde s'élargissant dans la direction de la profondeur
de la gorge annulaire (15), et une périphérie d'extrémité extérieure de la portion
pilote (13) est amenée en butée de manière à la retenir contre une surface latérale
interne de la saillie annulaire (76) ;
une broche d'écrasement (82) est précontrainte par un ressort (83) dans la direction
de rétraction et est disposée de manière à pouvoir se déplacer axialement vers l'avant
et vers l'arrière dans une cavité (81) de la troisième matrice (54) dans laquelle
l'ébauche d'écrou (11b) peut être insérée, et une paroi en biseau (85) pour incliner
la paroi latérale (14) de l'ébauche d'écrou (11b) vers l'axe central de l'ébauche
d'écrou (11b) est disposée au fond de la cavité (81), et une saillie annulaire (87)
devant être insérée dans la gorge annulaire (15) est disposée à l'extrémité d'un troisième
insert cylindrique (86) agencé au fond de la cavité (81) de la troisième matrice (54),
et, lorsque l'ébauche d'écrou (11b) est insérée et pressée dans la cavité (81) de
la troisième matrice (54) au moyen d'un poinçon (88) opposé à la troisième matrice
(54), la paroi latérale (14) est inclinée par la paroi en biseau (85) vers l'axe central
de l'ébauche d'écrou (11b) afin de former la gorge annulaire (15) en forme de gorge
en queue d'aronde s'élargissant dans la direction de la profondeur de la gorge annulaire
(15), et une périphérie d'extrémité interne de la paroi latérale (14) inclinée vers
l'axe central de l'ébauche d'écrou (11b) est mise en butée de manière à la retenir
contre une surface latérale externe de la saillie annulaire (87) ; et
le poinçon de perçage (72) et le deuxième insert cylindrique (73) sont retenus fixement
dans la cavité (71) de la deuxième matrice (53), et les première à quatrième broches
d'écrasement (77) sont prévues autour du poinçon de perçage (72), et après que l'ébauche
d'écrou (11a) a été pressée dans la cavité (71) de la deuxième matrice (53), en raison
de l'action de coopération du poinçon cylindrique (80) et du poinçon de perçage (72),
les première à quatrième surfaces diagonales d'extrémités de coin de l'ébauche d'écrou
(11b) sont disposées de manière à être poussées hors de la deuxième matrice (53) par
les broches d'écrasement (77) et à être poussées vers l'intérieur entre les doigts
(58, 58) du mécanisme de transfert (55).
3. Appareil de fabrication d'écrou de perçage selon la revendication 2, dans lequel le
poinçon de perçage (72) et le deuxième insert cylindrique (73) sont retenus fixement
par le biais d'un dispositif de fixation (74) dans la cavité (71) de la deuxième matrice
(53), et les broches d'écrasement (77) sont disposées de manière à pouvoir se déplacer
axialement vers l'avant et vers l'arrière dans le dispositif de fixation (74) en des
positions espacées de 90° autour du poinçon de perçage (72), et sont précontraintes
par des ressorts (78) dans la direction de rétraction de telle sorte que lorsqu'elles
sont rétractées, les surfaces d'extrémité avant des broches d'écrasement (77) sont
en affleurement avec la surface d'extrémité avant du deuxième insert cylindrique (73),
et lorsqu'elles se déplacent vers l'avant, les broches (77) sont mises en butée contre
les première à quatrième surfaces diagonales d'extrémités de coin de l'ébauche d'écrou
(11b) de telle sorte que l'ébauche d'écrou (11b) soit poussée vers l'extérieur et
soit poussée vers l'intérieur entre les doigts (58, 58).