(19)
(11) EP 2 597 409 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
14.01.2015 Bulletin 2015/03

(21) Application number: 11306552.8

(22) Date of filing: 24.11.2011
(51) International Patent Classification (IPC): 
F25J 3/04(2006.01)

(54)

Process and apparatus for the separation of air by cryogenic distillation

Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation

Procédé et installation pour la séparation de l'air par distillation cryogénique


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
29.05.2013 Bulletin 2013/22

(73) Proprietor: L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
75007 Paris (FR)

(72) Inventors:
  • Ha, Bao
    San Ramon, CA 94582 (US)
  • Brugerolle, Jean-Renaud
    2000 Neuchatel (CH)

(74) Representative: Mercey, Fiona Susan et al
L'Air Liquide SA Direction de la Propriété Intellectuelle 75, Quai d'Orsay
75321 Paris Cedex 07
75321 Paris Cedex 07 (FR)


(56) References cited: : 
EP-A1- 1 055 891
DE-A1- 10 061 908
EP-A2- 0 828 123
   
  • ANONYMOUS: "Intermediate pressure column in air separation", RESEARCH DISCLOSURE, MASON PUBLICATIONS, HAMPSHIRE, GB, vol. 425, no. 44, 1 September 1999 (1999-09-01), XP007124790, ISSN: 0374-4353
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a process and apparatus for the separation of air by cryogenic distillation.

[0002] Most oxygen plants are based on the LOX pumped cycle wherein liquid oxygen is pressurized by pump and vaporized by condensing pressurized air and then warmed to form the pressurized gaseous oxygen product. Usually about 25 to 35% of the feed air is liquefied by vaporizing the oxygen product. The liquid pumped cycle is not only applied for liquid oxygen but some liquid nitrogen can also be vaporized as well based on the same concept. When both liquid oxygen and liquid oxygen are pumped and vaporized by condensing air to form pressurized oxygen and nitrogen, an important quantity of air as high as 50% of total feed air must be liquefied.

[0003] By producing gaseous oxygen and nitrogen products by pumping liquid, costly product compressors can be avoided resulting in significant cost reduction. However, by liquefying important quantity of feed air, the high pressure column of the double column process is deprived of gaseous feed air such that its ability to provide the liquid reflux for the low pressure column is adversely affected. Reduction of feed air also reduces the condensing gas at the top of the high pressure column and this translates into less reboiler duty for the low pressure column. The distillation performance will suffer when both liquid oxygen and liquid nitrogen in significant quantities are pumped by condensing air. A loss of oxygen recovery will therefore occur. When all liquid oxygen and about the same molar flow of liquid nitrogen are vaporized, as much as 7-10% loss oxygen recovery can be expected. More power and more feed air, i.e. larger plant size, are needed to produce the same quantity of oxygen.

[0004] In cryogenic air separation technology, an intermediate pressure column can be added to the double column process to improve the distillation performance. The main function of the intermediate pressure column is to distil the rich liquid bottom of the high pressure column to yield additional nitrogen rich liquid reflux for the low pressure column. The intermediate pressure column is usually bottom heated or reboiled by condensing the nitrogen rich gas from the top of the high pressure column. Double column process could have a side-arm column for argon extraction. Sometimes, the reboil of the intermediate pressure column can be provided by feed gas to the argon side-arm column or by some gases derived from the argon column itself. The intermediate pressure column operates at a pressure in between the pressures of the low pressure column and the high pressure column.

[0005] The argon and intermediate pressure columns can be used with the double column process, for example, to produce argon and to maximize the high pressure nitrogen extraction from the high pressure column. Good process efficiency can be achieved. In those processes, oxygen enriched liquid at the bottom of the high pressure column is fed to the intermediate pressure column and the resulting liquid extracted from the bottom of the intermediate pressure column is then partially vaporized in the top condensers of the intermediate and argon columns to provide the needed refluxes.

[0006] However, in situations where both liquid oxygen and liquid nitrogen are vaporized, and sometimes with a liquid production requirement, too much liquid air is formed such that the quantity of rich liquid at the bottom of the high pressure column is sharply reduced. Because of this effect, the use of intermediate pressure column with argon column becomes less effective or not practical for the simple reason that there is not sufficient liquid rich to drive the argon and intermediate pressure columns. In some cases, in order to assure a positive temperature difference in the condenser of the intermediate pressure column, some liquid air or liquid rich in nitrogen must be injected or mixed with the bottom liquid to lower its boiling temperature. This mixing can introduce irreversibility in the distillation system and cause a loss of efficiency. The new process addresses the above shortcomings by providing an alternative technique to process the additional liquid air efficiently.

[0007] The process of EP-A-0828123 utilizes the intermediate pressure column to improve the argon recovery when both liquid oxygen and liquid nitrogen are pumped and vaporized. In order to remedy the issue of lack of oxygen enriched liquid, some liquid air is fed to the intermediate pressure column to produce additional bottom liquid of the intermediate pressure column. Intermediate liquid with composition similar to air is mixed with intermediate pressure column's bottom liquid to provide cooling of the top condenser of the intermediate pressure column. The top condenser of the argon column is also cooled by vaporizing bottom liquid of the intermediate pressure column.

[0008] In Technical Disclosure IPCOM000019394D, Figure 2 discloses the use of the intermediate pressure column to enhance argon recovery. The process is similar to that of EP-A-0828123 but more or almost all liquid air extracted from the high pressure column is sent to the intermediate pressure column to yield additional liquid nitrogen reflux. The bottom stream of the intermediate pressure column is partially vaporized in its top condenser for cooling. The liquid fraction is fed to the top condenser of the argon column and vaporized to supply the needed cooling. In this arrangement, the two top condensers of the intermediate and argon columns are in series in terms of receiving vaporizing liquid from the bottom of the intermediate pressure column.

[0009] According to an object of the invention, there is provided a process for the separation of air by cryogenic distillation in a column system including a high pressure column, a low pressure column, the bottom of the low pressure column being thermally coupled with the top of the high pressure column, an intermediate pressure column, operating a pressure between that of the high pressure column and that of the low pressure column, and an argon column wherein:
  1. i) purified compressed air is cooled in a heat exchanger and sent at least in part to the high pressure column,
  2. ii) nitrogen enriched liquid is sent from the top of the high pressure column to the top of the low pressure column,
  3. iii) oxygen rich liquid is removed from the low pressure column, pressurized and vaporized in the heat exchanger or another heat exchanger,
  4. iv) nitrogen rich liquid is removed from the column system, pressurized and vaporized in the heat exchanger or another heat exchanger,
  5. v) argon enriched gas is sent from the low pressure column to the argon column, said argon column having a top condenser, and argon rich fluid is removed from the top of the argon column,
  6. vi) oxygen enriched liquid from the bottom of the high pressure column is partially vaporized in the top condenser of the argon column and the gas thereby formed is sent to the low pressure column,
  7. vii) an intermediate stream is removed at an intermediate point of the high pressure column and sent at least in part to a top condenser of the intermediate pressure column where it is partially vaporized to form a vapor and a liquid,
  8. viii) the vapor formed in the top condenser of the intermediate pressure column is sent to the low pressure column,
  9. ix) the liquid from the top condenser of the intermediate pressure column is sent to the intermediate pressure column to be separated,
  10. x) a liquid from the bottom of the intermediate pressure column is sent to the low pressure column, and
  11. xi) a liquid from the top of the intermediate pressure column is sent to the top of the low pressure column.


[0010] Preferably:
  • the intermediate pressure column has a bottom reboiler and wherein argon enriched gas from the low pressure column is condensed in the bottom reboiler.
  • the liquid sent from the top condenser of the intermediate pressure column is the only feed to the intermediate pressure column.
  • all the oxygen enriched liquid from the high pressure column is sent to argon column top condenser or to the low pressure column and the argon column top condenser, without passing through the intermediate pressure column top condenser.
  • all the bottom liquid of the intermediate pressure column is sent to the low pressure column without passing through the intermediate pressure column top condenser.
  • part of the liquid from the intermediate pressure column top condenser is sent to the low pressure column.
  • the liquid from the top condenser is sent to the intermediate pressure column between 2 and 5 theoretical trays above the bottom of the intermediate pressure column.
  • at least part of the air is cooled to an intermediate temperature of the heat exchanger, compressed in a compressor, further cooled in the heat exchanger and sent to at least the high pressure column.
  • the bottom liquid of the intermediate pressure column contains at least 70% mol. oxygen.
  • at least one of the bottom reboiler and the top condenser of the intermediate pressure column is a falling film reboiler.
  • at least one part of the feed air is compressed from a first pressure to a second pressure in a warm booster, fed to the heat exchanger at the second pressure, cooled, expanded in a first turboexpander and sent to the high pressure column and at least another part of the feed air is sent to the heat exchanger at the first pressure, divided into three portions, the first portion being compressed from the first pressure to a third pressure in a cold booster, cooled, expanded and sent to the high pressure column, the second portion being expanded in a second turboexpander and sent to the high pressure column and the third portion being cooled to the cold end of the heat exchanger and sent to the high pressure column.


[0011] According to another object of the invention, there is provided an apparatus for the separation of air by cryogenic distillation comprising a column system including a high pressure column, a low pressure column, the bottom of the low pressure column being thermally coupled with the top of the high pressure column, an intermediate pressure column, operating a pressure between that of the high pressure column and that of the low pressure column, and an argon column a heat exchanger, means for sending purified compressed air to be cooled in the heat exchanger, means for sending cooled purified compressed air from the heat exchanger at least in part to the high pressure column, a conduit for sending nitrogen enriched liquid from the top of the high pressure column to the top of the low pressure column, a conduit for removing oxygen rich liquid from the low pressure column, said conduit being connected to first pressurization means, a conduit for sending pressurized oxygen rich liquid from the first pressurization means to the heat exchanger or another heat exchanger, a conduit for removing nitrogen rich liquid from the column system connected to second pressurization means, a conduit connecting the second pressurization means to the heat exchanger or another heat exchanger, a conduit for sending argon enriched gas from the low pressure column to the argon column, said argon column having a top condenser, a conduit for removing argon rich fluid from the top of the argon column, a conduit for sending oxygen enriched liquid from the bottom of the high pressure column to the top condenser of the argon column to be partially vaporized, a conduit for sending the gas thereby formed to the low pressure column, a conduit for sending an intermediate stream removed at an intermediate point of the high pressure column at least in part to a top condenser of the intermediate pressure column where it is partially vaporized to form a vapor and a liquid, a conduit for sending the vapor formed in the top condenser of the intermediate pressure column to the low pressure column, a conduit for sending the liquid from the top condenser of the intermediate pressure column to the intermediate pressure column to be separated, a conduit for sending a liquid from the bottom of the intermediate pressure column to the low pressure column and a conduit for sending a liquid from the top of the intermediate pressure column to the top of the low pressure column.

[0012] Preferably:
  • the intermediate pressure column has a bottom reboiler and the apparatus comprises a conduit for sending argon enriched gas from the low pressure column to be condensed in the bottom reboiler.
  • the liquid from the top condenser of the intermediate pressure column is sent to the intermediate pressure column between 2 and 5 theoretical trays above the bottom of the intermediate pressure column.
  • the apparatus comprises a compressor, a conduit for sending at least part of the air cooled to an intermediate temperature of the heat exchanger to the compressor, a conduit for sending air from the compressor to be further cooled in the heat exchanger and a conduit for sending the air from the compressor via the heat exchanger to at least the high pressure column.
  • the apparatus comprises a third pressurization means for pressurizing the liquid removed from the top condenser of the intermediate pressure column , before sending it to be separated in the intermediate pressure column.


[0013] Purified air has been treated to remove the water and carbon dioxide which it contains.

[0014] Oxygen rich liquid contains at least 70% mol. oxygen, preferably at least 85% mol. oxygen. It contains less than 100% mol. oxygen.

[0015] Nitrogen rich liquid contains at least 85% mol. nitrogen, preferably at least 90% mol nitrogen. It contains less than 100% moll nitrogen.

[0016] Oxygen enriched liquid contains at least 25% mol oxygen, or at least 30% mol oxygen.

[0017] For the present invention, the high pressure column operates at between 4 and 8 bar, the intermediate pressure column at between 2 and 3 bar, the argon column at between 1 and 2 bar, the low pressure column at between 1 and 2 bar.

[0018] All pressures mentioned are absolute pressures

[0019] The gaseous oxygen produced by pumping and vaporizing can be as low as 2 bar and as high as 80 bar or even 100 bars. The upper limit of the high pressure of pumped oxygen is usually dictated by the maximum allowable working pressure of the brazed heat exchanger.

[0020] The intermediate stream withdrawn from the high pressure column and sent to the intermediate pressure column top condenser contains between 18 and 25 mol% oxygen.

[0021] To illustrate the invention, Figure 1 shows the column portion of a process operating according to the invention and Figures 2 and 3 show two alternative corresponding heat exchanger portions, to be used for oxygen pressures above 15 bars abs.

[0022] In Figure 1, gaseous air 2 and liquid air 4 are fed to high pressure column 100. Oxygen enriched liquid 10 formed at the bottom of the high pressure column 100 is divided in two. One portion 12 is expanded and sent to an intermediate level of the low pressure column 101. Another portion 11 is expanded and sent to top condenser 105 of the argon column where it vaporizes to form stream 13 which is sent to the low pressure column 101. Alternatively all the oxygen enriched liquid 10 can be sent to the condenser 105 and partially condensed. In this case, stream 12 is absent and liquid from condenser 105 is sent to the low pressure column 101.The top of the high pressure column 100 is thermally coupled to the bottom of the low pressure column 101 via a condenser-reboiler 104. Nitrogen enriched liquid 40 from the top of the high pressure column 100 is divided in two, one portion 41 being sent to the top of the low pressure column 101 as reflux. Nitrogen enriched gas is removed from the top of the low pressure column 101.

[0023] A side liquid stream 20 with composition similar to air, containing between 18 and 25% mol. oxygen is extracted from column 100. Alternatively the side liquid stream could be replaced or supplemented by a part of liquid air stream 4 or another liquid air stream. A portion 22 of stream 20 (or stream 4, not illustrated) is partially vaporized in the top condenser 107 of intermediate pressure column 103. Condenser 107 could be a falling film vaporizer. The vapor 123 containing around 10% mol. oxygen) is sent to the low pressure column 101. A portion 24 of the liquid fraction 26 of the partially vaporization is then fed to column 103. Column 103 operates at about 2 bar and its condenser 107 at 1.4 bar. Gravity feed or a pump 110 can be used to transfer this liquid from condenser 107 to a position between 2 and 5 theoretical trays above the bottom of intermediate pressure column 103. Oxygen enriched liquid 60 from the bottom of column 103 containing preferably between 70 and 75 mol% oxygen is expanded and sent to the low pressure column. It is useful to note that a liquid air stream formed from the condensation of air for vaporizing liquid oxygen and liquid nitrogen products in the main heat exchanger can be sent to the top condenser of the intermediate column instead of using a part of the liquid stream 20 extracted from the high pressure column.

[0024] Preferably the average temperature difference for condensers 106, 107 should be between 0.8 and 0.9°C. Column 103 produces additional reflux liquid 23 for the top of the low pressure column 101. Column 102 is a typical side-arm argon column for a double column process. A portion 54 of argon enriched feed gas from the low pressure column 101 is separated in the argon column 102 to form argon product 80 in liquid form as shown or in gaseous form. The bottom liquid 52 from the argon column is sent back to the low pressure column 101. A portion 51 of argon enriched feed gas 50 from the low pressure column 101 is condensed in the bottom reboiler 106, preferably of the falling film type, of column 103 to yield liquid 53 which is then fed to column 102 or 101 to be separated. The argon column 102 is equipped with a top condenser 105 which vaporizes a portion 11 of oxygen enriched liquid 10 produced at the bottom of the high pressure column 100.

[0025] Another portion 45 of stream 40 is pumped by pump 121 to high pressure, vaporized and warmed to yield high pressure nitrogen product. Liquid oxygen 30 produced at the bottom of column 101 is pumped by pump 120 to high pressure, vaporized and warmed to yield high pressure oxygen product.

[0026] The embodiment shown in Figure 2 can be used to vaporize efficiently the liquid products 31, 42. The liquid products are vaporized in pumps 120,121, the oxygen being pressurized to a pressure between 15 and 80 bars abs. The cold compression technique is utilized and is described as follows:

[0027] Feed air compressed by compressor 201 to an elevated pressure of about between 15 and 25 bar is dried and its CO2 content is removed in the front end purification unit 208. The resulting dried and CO2 free stream 80 is divided into several portions. Portion 83 is cooled in heat exchanger 200 to an intermediate temperature thereof, a portion 91 of portion 83 is expanded in turboexpander 204 into the high pressure column 100. Second portion 84 of portion 83 is cold compressed, at a inlet temperature which is an intermediate temperature of the heat exchanger, in cold booster 202 to higher pressure to yield stream 85. Stream 85 is next cooled in exchanger 200 and liquefied to form liquid air stream 4. Another portion 79 of the cooled stream 83 is further cooled and liquefied to yield a second liquid air stream 6. Streams 4 and 6 are fed at least in part to the high pressure column 100 as feeds. A third portion 82 of feed air is further compressed in warm booster 207, cooled in exchanger 200 to yield cooled compressed stream 88 which is then expanded in turboexpander 203 into the high pressure column 100. The power generated by turboexpanders 203 and 204 can be used to drive boosters 202 and 207. Depending upon the pressure levels and the quantities of oxygen and nitrogen to be vaporized in the heat exchanger 200, it is sometime beneficial to also extract a portion of cooled compressed stream 88 and liquefy it in exchanger 200 in a similar fashion as stream 79. The resulting liquid stream (not shown) is then fed to the column system. By generating those auxiliary liquid streams, less liquid, i.e. lower flow, needs to be compressed by the cold compressor to satisfy the refrigeration balance at the cold end of the exchanger. More efficient system can be achieved by reducing the required cold compression flow.

[0028] The embodiment shown in Figure 3 can be used to reduce the plant power consumption. A multi stage booster compressor comprising several stages 209, 210 and 211 is added to further compress the fraction 82 feeding compressor 207. Multiple pressurized streams 95 and 96 can be generated by the booster compressor to vaporize efficiently the liquid products to form liquid air streams 97 and 99.

[0029] For lower oxygen pressures, more conventional vaporization processes such may be used. For very low pressures, the oxygen vaporizes in a dedicated vaporizer like a bath type vaporizer.

[0030] A cold booster has an inlet temperature of below -20°C.


Claims

1. Process for the separation of air by cryogenic distillation in a column system including a high pressure column (100), a low pressure column (101), the bottom of the low pressure column being thermally coupled with the top of the high pressure column, an intermediate pressure column (103), operating a pressure between that of the high pressure column and that of the low pressure column, and an argon column (102) wherein:

i) purified compressed air is cooled in a heat exchanger (200) and sent at least in part to the high pressure column,

ii) nitrogen enriched liquid (40, 41) is sent from the top of the high pressure column to the top of the low pressure column,

iii) oxygen rich liquid (30) is removed from the low pressure column, pressurized and vaporized in the heat exchanger or another heat exchanger,

iv) nitrogen rich liquid (42) is removed from the column system, pressurized and vaporized in the heat exchanger or another heat exchanger,

v) argon enriched gas is sent from the low pressure column to the argon column, said argon column having a top condenser (105), and argon rich fluid (80) is removed from the top of the argon column,

vi) oxygen enriched liquid (11) from the bottom of the high pressure column is partially vaporized in the top condenser of the argon column and the gas (13) thereby formed is sent to the low pressure column,

vii) a liquid air stream (4) or a stream (20, 22) containing between 18 and 25 mol.% oxygen withdrawn from an intermediate point of the high pressure column is sent at least in part to a top condenser (107) of the intermediate pressure column where it is partially vaporized to form a vapor and a liquid,

viii) the vapor (123) formed in the top condenser of the intermediate pressure column is sent to the low pressure column,

ix) the liquid (24) from the top condenser of the intermediate pressure column is sent to the intermediate pressure column to be separated,

x) a liquid (60) from the bottom of the intermediate pressure column is sent to the low pressure column, and

xi) a liquid from the top of the intermediate pressure column (23) is sent to the top of the low pressure column.


 
2. Process according to Claim 1 wherein the intermediate pressure column has a bottom reboiler (106) and wherein argon enriched gas (51) from the low pressure column is condensed in the bottom reboiler.
 
3. Process according to Claim 1 or 2 wherein the liquid (24) sent from the top condenser of the intermediate pressure column is the only feed separated in the intermediate pressure column.
 
4. Process according to any preceding claim wherein all the oxygen enriched liquid (10, 11, 12) from the high pressure column is sent to the argon column top condenser (105) or to the low pressure column and the argon column top condenser, without passing through the intermediate pressure column top condenser.
 
5. Process according to any preceding claim wherein all the bottom liquid (60) of the intermediate pressure column is sent to the low pressure column without passing through the intermediate pressure column top condenser.
 
6. Process according to any preceding claim wherein part (25) of the liquid from the intermediate pressure column top condenser (107) is sent to the low pressure column.
 
7. Process according to any preceding claim wherein the liquid (24) from the top condenser is sent to the intermediate pressure column (103) between 2 and 5 theoretical trays above the bottom of the intermediate pressure column.
 
8. Process according to any preceding claim wherein at least part of the air is cooled to an intermediate temperature of the heat exchanger (200), compressed in a compressor (202), further cooled in the heat exchanger and sent to at least the high pressure column (100).
 
9. Process according to any preceding claim wherein the bottom liquid (60) of the intermediate pressure column (103) contains at least 70% mol. oxygen.
 
10. Process according to any preceding claim wherein at least one of the bottom reboiler (106) and the top condenser (107) of the intermediate pressure column (103) is a falling film reboiler.
 
11. Process according to any preceding claim wherein at least one part of the feed air is compressed from a first pressure to a second pressure in a warm booster (207), fed to the heat exchanger at the second pressure, cooled, expanded in a first turboexpander (203) and sent to the high pressure column and at least another part of the feed air is sent to the heat exchanger at the first pressure, divided into three portions, the first portion being compressed from the first pressure to a third pressure in a cold booster (202), cooled, expanded and sent to the high pressure column, the second portion being expanded in a second turboexpander (204) and sent to the high pressure column and the third portion being cooled to the cold end of the heat exchanger and sent to the high pressure column.
 
12. Apparatus for the separation of air by cryogenic distillation comprising a column system including a high pressure column (100), a low pressure column (101), the bottom of the low pressure column being thermally coupled with the top of the high pressure column, an intermediate pressure column (103), operating a pressure between that of the high pressure column and that of the low pressure column, and an argon column (102), a heat exchanger (200), a conduit for sending purified compressed air to be cooled in the heat exchanger, a conduit for sending cooled purified compressed air from the heat exchanger at least in part to the high pressure column, a conduit for sending nitrogen enriched liquid (40,41) from the top of the high pressure column to the top of the low pressure column, a conduit for removing oxygen rich liquid (30) from the low pressure column, said conduit being connected to first pressurization means (120), a conduit for sending pressurized oxygen rich liquid from the first pressurization means to the heat exchanger or another heat exchanger, a conduit for removing nitrogen rich liquid (40) from the column system connected to second pressurization means (121), a conduit connecting the second pressurization means to the heat exchanger or another heat exchanger, a conduit for sending argon enriched gas (50,54) from the low pressure column to the argon column, said argon column having a top condenser (105), a conduit for removing argon rich fluid (80) from the top of the argon column, a conduit for sending oxygen enriched liquid (10, 11) from the bottom of the high pressure column to the top condenser of the argon column to be partially vaporized, a conduit for sending the gas (13) thereby formed to the low pressure column, a conduit for sending a liquid air stream (4) or a liquid stream (20, 22) containing between 18 and 25% oxygen removed at an intermediate point of the high pressure column at least in part to a top condenser (107) of the intermediate pressure column where it is partially vaporized to form a vapor and a liquid, a conduit for sending the vapor (123) formed in the top condenser of the intermediate pressure column to the low pressure column, a conduit for sending the liquid (24) from the top condenser of the intermediate pressure column to the intermediate pressure column to be separated, a conduit for sending a liquid (60) from the bottom of the intermediate pressure column to the low pressure column and a conduit for sending a liquid (23) from the top of the intermediate pressure column to the top of the low pressure column.
 
13. Apparatus according to Claim 12 wherein the intermediate pressure column (103) has a bottom reboiler (106) and comprising a conduit for sending argon enriched gas (51) from the low pressure column to be condensed in the bottom reboiler.
 
14. Apparatus according to Claim 12 or 13 wherein the liquid (24) from the top condenser is sent to the intermediate pressure column (103) between 2 and 5 theoretical trays above the bottom of the intermediate pressure column.
 
15. Apparatus according to any of Claims 12 to 14 comprising a compressor, a conduit for sending at least part of the air cooled to an intermediate temperature of the heat exchanger to the compressor (202), a conduit for sending air from the compressor to be further cooled in the heat exchanger and a conduit for sending the air from the compressor via the heat exchanger to at least the high pressure column.
 


Ansprüche

1. Verfahren zur Luftzerlegung durch Tieftemperaturdestillation in einem Kolonnensystem, umfassend eine Hochdruckkolonne (100), eine Niederdruckkolonne (101), wobei das untere Ende der Niederdruckkolonne thermisch mit dem oberen Ende der Hochdruckkolonne gekoppelt ist, eine Zwischendruckkolonne (103), die bei einem Druck betrieben wird, der zwischen dem der Hochdruckkolonne und dem der Niederdruckkolonne liegt, sowie eine Argonkolonne (102), wobei:

i) gereinigte Druckluft in einem Wärmetauscher (200) abgekühlt und wenigstens zum Teil in die Hochdruckkolonne geleitet wird,

ii) mit Stickstoff angereicherte Flüssigkeit (40, 41) aus dem oberen Ende der Hochdruckkolonne zum oberen Ende der Niederdruckkolonne geleitet wird,

iii) sauerstoffreiche Flüssigkeit (30) aus der Niederdruckkolonne entnommen, mit Druck beaufschlagt und im Wärmetauscher oder in einem anderen Wärmetauscher verdampft wird,

iv) stickstoffreiche Flüssigkeit (42) aus dem Kolonnensystem entnommen, mit Druck beaufschlagt und im Wärmetauscher oder in einem anderen Wärmetauscher verdampft wird,

v) mit Argon angereichertes Gas aus der Niederdruckkolonne in die Argonkolonne geleitet wird, wobei die Argonkolonne einen oben angeordneten Kondensator (105) aufweist und argonreiches Fluid (80) aus dem oberen Ende der Argonkolonne entnommen wird,

vi) mit Sauerstoff angereicherte Flüssigkeit (11) aus dem unteren Ende der Hochdruckkolonne im oben angeordneten Kondensator der Argonkolonne teilweise verdampft wird und das dabei gebildete Gas (13) in die Niederdruckkolonne geleitet wird,

vii) ein Strom (4) aus flüssiger Luft oder ein Strom (20, 22) mit zwischen 18 und 25 Mol-% Sauerstoff, der an einem Punkt der Hochdruckkolonne entnommen wird, wenigstens zum Teil in einen oben angeordneten Kondensator (107) der Zwischendruckkolonne geleitet wird, wo er teilweise verdampft wird, um einen Dampf und eine Flüssigkeit zu erzeugen,

viii) der im oben angeordneten Kondensator der Zwischendruckkolonne erzeugte Dampf (123) in die Niederdruckkolonne geleitet wird,

ix) die im oben angeordneten Kondensator der Zwischendruckkolonne erzeugte Flüssigkeit (24) zum Trennen in die Zwischendruckkolonne geleitet wird,

x) eine Flüssigkeit (60) aus dem unteren Ende der Zwischendruckkolonne in die Niederdruckkolonne geleitet wird, und

xi) eine Flüssigkeit aus dem oberen Ende der Zwischendruckkolonne (23) zum oberen Ende der Niederdruckkolonne geleitet wird.


 
2. Vorgang nach Anspruch 1, wobei die Zwischendruckkolonne einen unten angeordneten Verdampfer (106) aufweist und wobei mit Argon angereichertes Gas (51) aus der Niederdruckkolonne im unten angeordneten Verdampfer kondensiert wird.
 
3. Vorgang nach Anspruch 1 oder 2, wobei die aus dem oben angeordneten Kondensator der Zwischendruckkolonne weitergeleitete Flüssigkeit (24) den einzigen in der Zwischendruckkolonne abgeschiedenen Strom ausmacht.
 
4. Vorgang nach einem der vorhergehenden Ansprüche, wobei die gesamte mit Sauerstoff angereichte Flüssigkeit (10, 11, 12) aus der Hochdruckkolonne in den oben angeordneten Kondensator (105) der Argonkolonne oder in die Niederdruckkolonne und den oben angeordneten Kondensator der Argonkolonne geleitet wird, ohne den oben angeordneten Kondensator der Zwischendruckkolonne zu passieren.
 
5. Vorgang nach einem der vorhergehenden Ansprüche, wobei die gesamte Flüssigkeit (60) aus dem unteren Ende der Zwischendruckkolonne in die Niederdruckkolonne geleitet wird, ohne den oben angeordneten Kondensator der Zwischendruckkolonne zu passieren.
 
6. Vorgang nach einem der vorhergehenden Ansprüche, wobei ein Teil (25) der Flüssigkeit vom oben angeordneten Kondensator (107) der Zwischendruckkolonne in die Niederdruckkolonne geleitet wird.
 
7. Vorgang nach einem der vorhergehenden Ansprüche, wobei die Flüssigkeit (24) aus dem oben angeordneten Kondensator in die Zwischendruckkolonne (103) an einem Punkt eingeleitet wird, der zwischen 2 und 5 gedachte Kolonnenböden über dem unteren Ende der Zwischendruckkolonne liegt.
 
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei wenigstens ein Teil der Luft auf eine Zwischentemperatur des Wärmetauschers (200) abgekühlt, in einem Kompressor (202) komprimiert, im Wärmetauscher weiter abgekühlt und wenigstens zur Hochdruckkolonne (100) geleitet wird.
 
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Flüssigkeit (60) aus dem unteren Ende der Zwischendruckkolonne (103) wenigstens 70 Mol-% Sauerstoff enthält.
 
10. Vorgang nach einem der vorhergehenden Ansprüche, wobei der unten angeordnete Verdampfer (106) und/oder der oben angeordnete Kondensator (107) der Zwischendruckkolonne (103) ein Fallfilmverdampfer ist.
 
11. Vorgang nach einem der vorhergehenden Ansprüche, wobei wenigstens ein Teil der Speiseluft in einem warmen Booster (207) von einem ersten Druck auf einen zweiten Druck komprimiert, bei dem zweiten Druck in den Wärmetauscher geleitet, abgekühlt, in einem ersten Turboexpander (203) expandiert und in die Hochdruckkolonne geleitet wird, und wenigstens ein weiterer Teil der Speiseluft beim ersten Druck in den Wärmetauscher geleitet und in drei Teile geteilt wird, wobei der erste Teil in einem kalten Booster (202) vom ersten Druck auf einen dritten Druck komprimiert, abgekühlt, expandiert und in die Hochdruckkolonne geleitet wird, der zweite Teil in einem zweiten Turboexpander (204) expandiert und in die Hochdruckkolonne geleitet wird, und der dritte Teil auf die Temperatur am kalten Ende des Wärmetauschers abgekühlt und in die Hochdruckkolonne geleitet wird.
 
12. Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation, welche Folgendes umfasst: ein Kolonnensystem mit einer Hochdruckkolonne (100), einer Niederdruckkolonne (101), wobei das untere Ende der Niederdruckkolonne thermisch mit dem oberen Ende der Hochdruckkolonne gekoppelt ist, einer Zwischendruckkolonne (103), die bei einem Druck zwischen dem der Hochdruckkolonne und dem der Niederdruckkolonne betrieben wird, und einer Argonkolonne (102), einen Wärmetauscher (200), eine Leitung zum Leiten von gereinigter Druckluft zum Abkühlen in den Wärmetauscher, eine Leitung zum Leiten von abgekühlter gereinigter Druckluft aus dem Wärmetauscher wenigstens zum Teil in die Hochdruckkolonne, eine Leitung zum Leiten von mit Stickstoff angereicherter Flüssigkeit (40, 41) aus dem oberen Ende der Hochdruckkolonne zum oberen Ende der Niederdruckkolonne, eine Leitung zum Entnehmen von sauerstoffreicher Flüssigkeit (30) aus der Niederdruckkolonne, wobei die Leitung mit ersten Druckbeaufschlagungsmitteln (120) verbunden ist, eine Leitung zum Leiten von druckbeaufschlagter sauerstoffreicher Flüssigkeit aus den ersten Druckbeaufschlagungsmitteln zum Wärmetauscher oder zu einem anderen Wärmetauscher, eine Leitung zum Entnehmen von stickstoffreicher Flüssigkeit (40) aus dem Kolonnensystem, verbunden mit zweiten Druckbeaufschlagungsmitteln (121), eine Leitung zum Verbinden der zweiten Druckbeaufschlagungsmittel mit dem Wärmetauscher oder mit einem anderen Wärmetauscher, eine Leitung zum Leiten von mit Argon angereichertem Gas (50, 54) aus der Niederdruckkolonne zur Argonkolonne, wobei die Argonkolonne einen oben angeordneten Kondensator (105) aufweist, eine Leitung zum Entnehmen von argonreicher Flüssigkeit (80) aus dem oberen Ende der Argonkolonne, eine Leitung zum Leiten von mit Sauerstoff angereicherter Flüssigkeit (10, 11) aus dem unteren Ende der Hochdruckkolonne zum oben angeordneten Kondensator der Argonkolonne, um dort teilweise verdampft zu werden, eine Leitung, um das dabei erzeugte Gas (13) in die Niederdruckkolonne zu leiten, eine Leitung, um einen Strom (4) aus flüssiger Luft oder einen flüssigen Strom (20, 22) mit zwischen 18 und 25 % Sauerstoff, der an einem Punkt der Hochdruckkolonne entnommen wird, wenigstens zum Teil in einen oben angeordneten Kondensator (107) der Zwischendruckkolonne zu leiten, wo er teilweise verdampft wird, um einen Dampf und eine Flüssigkeit zu erzeugen, eine Leitung, um den im oben angeordneten Kondensator der Zwischendruckkolonne erzeugten Dampf (123) in die Niederdruckkolonne zu leiten, eine Leitung, um die Flüssigkeit (24) aus dem oben angeordneten Kondensator der Zwischendruckkolonne zum Trennen in die Zwischendruckkolonne zu leiten, eine Leitung, um eine Flüssigkeit (60) aus dem unteren Ende der Zwischendruckkolonne zur Niederdruckkolonne zu leiten, und eine Leitung, um eine Flüssigkeit (23) aus dem oberen Ende der Zwischendruckkolonne zum oberen Ende der Niederdruckkolonne zu leiten.
 
13. Vorrichtung nach Anspruch 12, wobei die Zwischendruckkolonne (103) einen unten angeordneten Verdampfer (106) aufweist und eine Leitung umfasst, um mit Argon angereichertes Gas (51) aus der Niederdruckkolonne im unten angeordneten Verdampfer zu kondensieren.
 
14. Vorrichtung nach Anspruch 12 oder 13, wobei die Flüssigkeit (24) aus dem oben angeordneten Kondensator in die Zwischendruckkolonne (103) an einem Punkt eingeleitet wird, der zwischen 2 und 5 gedachte Kolonnenböden über dem unteren Ende der Zwischendruckkolonne liegt.
 
15. Vorrichtung nach einem der Ansprüche 12 bis 14, welche Folgendes umfasst: einen Kompressor, eine Leitung, um wenigstens einen Teil der auf eine Zwischentemperatur des Wärmetauschers abgekühlte Luft zum Kompressor (202) zu leiten, eine Leitung, um Luft aus dem Kompressor zu zum weiteren Abkühlen im Wärmetauscher leiten, und eine Leitung, um Luft aus dem Kompressor über den Wärmetauscher wenigstens zur Hochdruckkolonne zu leiten.
 


Revendications

1. Procédé de séparation d'air par distillation cryogénique dans un système de colonne incluant une colonne haute pression (100), une colonne basse pression (101), le fond de la colonne basse pression étant couplé thermiquement au sommet de la colonne haute pression, une colonne pression intermédiaire (103), fonctionnant à une pression entre celle de la colonne haute pression et celle de la colonne basse pression, et une colonne d'argon (102), dans lequel :

i) de l'air comprimé purifié est refroidi dans un échangeur de chaleur (200) et envoyé au moins en partie à la colonne haute pression,

ii) un liquide enrichi en azote (40, 41) est envoyé du sommet de la colonne haute pression au sommet de la colonne basse pression,

iii) un liquide riche en oxygène (30) est retiré de la colonne basse pression, pressurisé et vaporisé dans l'échangeur de chaleur ou un autre échangeur de chaleur,

iv) un liquide riche en azote (42) est retiré du système de colonne, pressurisé et vaporisé dans l'échangeur de chaleur ou un autre échangeur de chaleur,

v) un gaz enrichi en argon est envoyé de la colonne basse pression à la colonne d'argon, ladite colonne d'argon ayant un condenseur de sommet (105), et un fluide riche en argon (80) est retiré du sommet de la colonne d'argon,

vi) un liquide enrichi en oxygène (11) provenant du fond de la colonne haute pression est partiellement vaporisé dans le condenseur de sommet de la colonne d'argon et le gaz (13) ainsi formé est envoyé à la colonne basse pression,

vii) un courant d'air liquide (4) ou un courant (20, 22) contenant entre 18 et 25 % en mole d'oxygène retiré d'un point intermédiaire de la colonne haute pression est envoyé en partie à un condenseur de sommet (107) de la colonne pression intermédiaire où il est partiellement vaporisé pour former une vapeur et un liquide,

viii) la vapeur (123) formée dans le condenseur de sommet de la colonne pression intermédiaire est envoyée à la colonne basse pression,

ix) le liquide (24) provenant du condenseur de sommet de la colonne pression intermédiaire est envoyé à la colonne pression intermédiaire pour être séparé,

x) un liquide (60) provenant du fond de la colonne pression intermédiaire est envoyé à la colonne basse pression, et

xi) un liquide provenant du sommet de la colonne pression intermédiaire (23) est envoyé au sommet de la colonne basse pression.


 
2. Procédé selon la revendication 1, dans lequel la colonne pression intermédiaire comporte un rebouilleur de fond (106) et dans lequel du gaz enrichi en argon (51) provenant de la colonne basse pression est condensé dans le rebouilleur de fond.
 
3. Procédé selon la revendication 1 ou 2, dans lequel le liquide (24) envoyé du condenseur de sommet de la colonne pression intermédiaire est la seule alimentation séparée dans la colonne pression intermédiaire.
 
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel tout le liquide enrichi en oxygène (10, 11, 12) provenant de la colonne haute pression est envoyé au condenseur de sommet de colonne d'argon (105) ou à la colonne basse pression et au condenseur de sommet de colonne d'argon, sans passer par le condenseur de sommet de colonne pression intermédiaire.
 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel tout le liquide de fond (60) de la colonne pression intermédiaire est envoyé à la colonne basse pression sans passer par le condenseur de sommet de colonne pression intermédiaire.
 
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel une partie (25) du liquide provenant du condenseur de sommet de colonne pression intermédiaire (107) est envoyée à la colonne basse pression.
 
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le liquide (24) provenant du condenseur de sommet est envoyé à la colonne pression intermédiaire (103) entre 2 et 5 plateaux théoriques au-dessus du fond de la colonne pression intermédiaire.
 
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une partie de l'air est refroidie à une température intermédiaire de l'échangeur de chaleur (200), comprimée dans un compresseur (202), davantage refroidie dans l'échangeur de chaleur et envoyée à au moins la colonne haute pression (100).
 
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le liquide de fond (60) de la colonne pression intermédiaire (103) contient au moins 70 % en mole d'oxygène.
 
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins l'un du rebouilleur de fond (106) et du condenseur de sommet (107) de la colonne pression intermédiaire (103) est un rebouilleur à flot tombant.
 
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une partie de l'air d'alimentation est comprimée d'une première pression à une deuxième pression dans un surpresseur chaud (207), délivrée à l'échangeur de chaleur à la deuxième pression, refroidie, détendue dans un premier turbodétendeur (203) et envoyée à la colonne haute pression et au moins une autre partie de l'air d'alimentation est envoyée à l'échangeur de chaleur à la première pression, divisée en trois portions, la première portion étant comprimée de la première pression à une troisième pression dans un surpresseur froid (202), refroidie, détendue et envoyée à la colonne haute pression, la deuxième portion étant détendue dans un second turbodétendeur (204) et envoyée à la colonne haute pression et la troisième portion étant refroidie à l'extrémité froide de l'échangeur de chaleur et envoyée à la colonne haute pression.
 
12. Appareil de séparation de l'air par distillation cryogénique comprenant un système de colonne incluant une colonne haute pression (100), une colonne basse pression (101), le fond de la colonne basse pression étant couplé thermiquement au sommet de la colonne haute pression, une colonne pression intermédiaire (103), fonctionnant à une pression entre celle de la colonne haute pression et celle de la colonne basse pression, et une colonne d'argon (102), un échangeur de chaleur (200), un conduit destiné à envoyer de l'air comprimé purifié à refroidir dans l'échangeur de chaleur, un conduit destiné à envoyer de l'air comprimé purifié refroidi depuis l'échangeur de chaleur au moins en partie à la colonne haute pression, un conduit destiné à envoyer un liquide enrichi en azote (40, 41) du sommet de la colonne haute pression au sommet de la colonne basse pression, un conduit destiné à retirer un liquide riche en oxygène (30) de la colonne basse pression, ledit conduit étant relié à un premier moyen de pressurisation (120), un conduit destiné à envoyer le liquide riche en oxygène pressurisé du premier moyen de pressurisation à l'échangeur de chaleur ou à un autre échangeur de chaleur, un conduit destiné à retirer un liquide riche en azote (40) du système de colonne relié à un second moyen de pressurisation (121), un conduit reliant le second moyen de pressurisation à l'échangeur de chaleur ou un autre échangeur de chaleur, un conduit destiné à envoyer du gaz enrichi en argon (50, 54) de la colonne basse pression à la colonne d'argon, ladite colonne d'argon ayant un condenseur de sommet (105), un conduit destiné à retirer un fluide riche en argon (80) du sommet de la colonne d'argon, un conduit destiné à envoyer un liquide enrichi en oxygène (10, 11) du fond de la colonne haute pression au condenseur de sommet de la colonne d'argon pour être partiellement vaporisé, un conduit destiné à envoyer le gaz (13) ainsi formé à la colonne basse pression, un conduit destiné à envoyer un courant d'air liquide (4) ou un courant de liquide (20, 22) contenant entre 18 et 25 % d'oxygène retiré au niveau d'un point intermédiaire de la colonne haute pression au moins en partie à un condenseur de sommet (107) de la colonne pression intermédiaire où il est partiellement vaporisé pour former une vapeur et un liquide, un conduit destiné à envoyer la vapeur (123) formée dans le condenseur de sommet de la colonne pression intermédiaire à la colonne basse pression, un conduit destiné à envoyer le liquide (24) du condenseur de sommet de la colonne pression intermédiaire à la colonne pression intermédiaire pour être séparé, un conduit destiné à envoyer un liquide (60) du fond de la colonne pression intermédiaire à la colonne basse pression, et un conduit destiné à envoyer un liquide (23) du sommet de la colonne pression intermédiaire au sommet de la colonne basse pression.
 
13. Appareil selon la revendication 12, dans lequel la colonne pression intermédiaire (103) comporte un rebouilleur de fond (106) et comprenant un conduit destiné à envoyer du gaz enrichi en argon (51) de la colonne basse pression pour être condensé dans le rebouilleur de fond.
 
14. Appareil selon la revendication 12 ou 13, dans lequel le liquide (24) provenant du condenseur de sommet est envoyé à la colonne pression intermédiaire (103) entre 2 et 5 plateaux théoriques au-dessus du fond de la colonne pression intermédiaire.
 
15. Appareil selon l'une quelconque des revendications 12 à 14, comprenant un compresseur, un conduit destiné à envoyer au moins une partie de l'air refroidi à une température intermédiaire de l'échangeur de chaleur au compresseur (202), un conduit destiné à envoyer de l'air du compresseur pour être davantage refroidi dans l'échangeur de chaleur et un conduit destiné à envoyer l'air provenant du compresseur via l'échangeur de chaleur à au moins la colonne haute pression.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description