FIELD OF INVENTION
[0001] The invention relates to compositions of polypropylene and polyamide for use in,
for example, molded articles for automotive applications.
BACKGROUND OF INVENTION
[0002] The grafting of polyolefins consisting largely of polypropylene with polar chemical
modifiers, such as maleic anhydride (MAH) and acrylic acid is known. The grafting
reaction can be performed in solution, in gas phase, or by surface modification. However,
the most common grafting process is performed during melt processing, for example
in single or multiple screw extruders, rubber masticators, Banbury mixers, Brabender
mixers, roll-mills. Such procedures are well-known and described in the technical
literature. The grafting of polypropylene with unsaturated monomers including maleic
anhydride is described, for example, in
S.B Brown, Reactive Extrusion, Chapter 4, published by Polymer Processing Institute
(1992).
U.S. Patent No. 5,439,974 addresses adhesive blends suitable for adhesion to one or more polypropylene substrates
consisting essentially of a mixture of an impact copolymer and a graft reaction product
of a propylene polymer and a carboxylic acid or a derivative thereof. The polymeric
backbone, which is grafted, is an impact copolymer, defined as a mixture of polypropylene
and ethylene/propylene copolymer.
[0003] WO02/36651 describes methods for grafting propylenic elastomers, also referred to herein as
propylene-ethylene copolymers.
WO02/36651 discloses grafting of propylene ethylene copolymers having a low ethylene content
(between 8 and 32 mole %), and with predominantly isotactic polypropylene segments
(>80% mm triad by
13C NMR), giving polypropylene type crystallinity, with MAH. These polymers, comprising
low levels of ethylene content, permit higher levels of grafting.
[0004] Polyolefins, which have polar groups due to such grafting reactions, are used in
blends with engineering thermoplastics. These may have a polyamide (PA) matrix and
a dispersed phase formed by the grafted polyolefin, which acts as the impact modifier
(IM) so as to reduce brittle failure. The IM may also include a non-grafted EP rubber
(EP) or a low-density amorphous or semi-crystalline polyolefin (VLDPE). Certain publications
suggest the use of an ungrafted propylenic elastomer as impact modifier. See, for
example,
WO99/65982 and
WO2000/01766. In such a case, the grafted polyolefin acts to compatibilize the PA and the ungrafted
IM. A three-component blend of PA, ungrafted polyolefin and MAH-grafted ethylene propylene
rubber results.
[0005] Impact modification is also used where the matrix polymer is polypropylene having
a high degree of crystallinity as generally indicated by melting point of over 100°C.
The polypropylene matrix polymer has different properties from the polyamide matrix
polymer, which is reflected in the heat resistance and strength and reduced moisture
sensitivity. Blends of polypropylene and polyamide have hence been employed with an
additional impact modifier to obtain a desirable overall balance of cost and performance.
Stiffness can be improved by incorporating the polyamide as a dispersed phase in a
polypropylene matrix continuous phase. The cost of the composition can be reduced
at marginal loss of performance by incorporating polypropylene as a dispersed phase
in a PA matrix continuous phase.
[0006] The manner in which the different phases are intermingled has influence on the overall
cost performance balance. MAH grafted polypropylene has been used to improve performance
of polypropylene-polyamide alloys.
EP-658640 discloses a three-component blend of polypropylene, PA and MAH-grafted polypropylene.
[0007] WO02/36651, beginning on page 12 line 8, discusses blends of the grafted propylene based elastomers
with other alpha-olefin polymers and copolymers, e.g., polypropylene for fabrication
into objects used in a variety of applications. Beginning on page 26 line 1,
WO02/36651 discusses use as compatibilizers of polyamide-polypropylene blends to increase the
percent of elongation at break point. A composition comprising polypropylene, a polyamide,
and a MAH-grafted propylene based elastomer would result.
[0008] U.S. Patent No. 4,795,782 discloses three component blends of PA, MAH-grafted polypropylene and MAH-grafted
styrene-butadiene-styrene tri-block copolymers.
Polymer Vol. 36 pages 4587-4603, 1995 discloses three-component blends of PA, polypropylene and MAH-grafted EP rubber.
Run 12 in Table 1 of
GB2226035 discloses blends of PA, polypropylene, EP copolymer and MAH-grafted propylene based
Impact Copolymer.
JP-03252436 discloses the use of compositions of polypropylene, PA, EP copolymer and MAH-grafted
polypropylene.
US5006601 discloses impact resistant blends of thermoplastic polyamides, polyolefins and elastomers.
[0009] Embodiments of the present invention may have one or more advantages over previously
known materials, such as providing compositions containing both PA and polypropylene
with improved cost performance balance and improved balance of impact strength and
stiffness. In some embodiments, the impact strength may be significantly improved
without substantive reduction of stiffness, particularly for compositions having a
relatively low stiffness.
SUMMARY OF INVENTION
[0010] In one embodiment, the invention provides a thermoplastic composition comprising
isotactic polypropylene with a melting point of at least 110°C, a polyamide, a grafted
functionalized propylene-based elastomer having isotactic crystallinity, and optionally
an ungrafted polyolefin having a melting point of less than 100°C according to claims
1 to 19. The grafted functionalized propylene-based elastomer contains at least 0.25%
by weight, based on the total weight of the elastomer, of MAH-derived units. The combined
weight percent of the isotactic polypropylene and the polyamide is at least 70%, based
on the total polymer weight of the composition. The combined weight percent of the
grafted functionalized propylene-based elastomer and optional ungrafted polyolefin
is at least 8%, based on the total polymer weight of the composition.
[0011] In another embodiment, the polypropylene provides the matrix into which the other
components are dispersed, with the polypropylene comprising at least 60 wt% and the
polyamide comprising at least 10 wt%. In a particular aspect of this embodiment, the
composition may have a Flexural modulus within the range having a lower limit of 800
or 900 MPa and an upper limit of 1200 or 1600 MPa. In another particular aspect of
this embodiment, the composition may have an improved impact resistance. For example,
the composition may have a ratio [Izod Impact J/m
2] / [Flexural Modulus in MPa] conforming to the relationship:
12 < [Izod Impact J/m2] / [Flexural Modulus in MPa] x 1000 < 50; or
15 < [Izod Impact J/m2] / [Flexural Modulus in MPa] x 1000 < 45.
[0012] In another embodiment, the polyamide forms the matrix or continuous phase, with the
polyamide comprising at least 60 wt% and the polypropylene comprising at least 10
wt%. In a particular aspect of this embodiment, the composition may have a Flexural
modulus within the range having a lower limit of 1200 or 1400 MPa and an upper limit
of 1800 or 2000 MPa. In another particular aspect of this embodiment, the composition
may have a ratio [Izod Impact J/m
2] / [Flexural Modulus in MPa] conforming to the relationship:

or

[0013] In another embodiment, substantially equivalent amounts of propylene and polyamide
can be used.
[0014] In another embodiment, the dispersed phases can be arranged to have a small size,
which may provide improved impact performance and PA derived reinforcement.
[0015] In another embodiment, the present invention provides a molded or extruded article
made from any of the inventive compositions described herein.
[0016] In a particular aspect of any of the embodiments described herein, the composition
has one or more of the following characteristics, in any combination:
- a. the composition comprises at least 2% or 4% by weight of the propylene-based elastomer,
based on the total polymer weight of the composition;
- b. the combined weight percent of the propylene-based elastomer and optional ungrafted
polyolefin is less than 30%, based on the total polymer weight of the composition;
- c. the propylene-based elastomer has crystallinity derived from stereoregularly arranged
propylene units;
- d. the propylene-based elastomer has crystallinity derived from isotactically arranged
propylene units;
- e. the propylene-based elastomer contains MAH-derived units in an amount within the
range having a lower limit of 0.3%, or 0.5% by weight and an upper limit of 1.5%,
or 2% by weight, based on the total weight of the elastomer;
- f. the propylene-based elastomer contains ethylene-derived units in an amount within
the range having a lower limit of 5 mol%, or 12.5 mol% and an upper limit of 25 mol%,
or 40 mol%;
- g. the propylene-based elastomer has a heat of fusion of from 5 to 30 J/g, which reflects
the elastomeric nature of the polymer;
- h. the ungrafted polyolefin is an ethylene alpha-olefin copolymer;
- i. the ungrafted polyolefin is an ethylene propylene copolymer;
- j. the ungrafted polyolefin has a density of from 0.85 to 0.89g/cc;
- k. the ungrafted polyolefin has an ethylene content of from 45 to 65wt %;
- l. the ungrafted polyolefin is used in an amount of from 60% to 20% by weight, based
on the total combined weight of the propylene-based elastomer and the ungrafted polyolefin;
- m. the ungrafted polyolefin is also a propylene-based elastomer having isotactic crystallinity
and containing a comonomer in an amount within 10 mol% of the amount of comonomer
present in the grafted functionalized propylene-based elastomer;
- n. the comonomer of the ungrafted polyolefin is ethylene;
- o. the comonomer of the grafted functionalized propylene-based elastomer is ethylene;
- p. the isotactic polypropylene is selected from the group consisting of a polypropylene
homopolymer and a polypropylene random copolymer containing less than 10wt% of crystallinity-disrupting
comonomer; and
- q. the polyamide is selected from the group consisting of nylon 6, nylon 12, and nylon
6,6.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Figures 1 and 2 are graphs of the Izod impact strength and Flexural modulus of comparative
and inventive compositions according to an embodiment of the invention.
DETAILED DESCRIPTION
Grafted propylene-based elastomer
[0018] The propylene-based semi-crystalline elastomers used in the compositions of the invention
can be prepared by polymerizing propylene optionally with ethylene or higher alpha-olefins
in the presence of a transition metal catalyst with an activator and optional scavenger.
The crystallinity of the propylene-based elastomer arises predominantly from crystallizable
stereoregular propylene sequences. Comonomers or propylene insertion errors separate
these sequences. While syndiotactic configuration of the propylene is possible, polymers
with isotactic configurations are preferred.
[0019] The transition metal catalyst may be a metallocene or a non-metallocene as disclosed
in
WO03/040201. The comonomer used with propylene may be linear or branched. Linear alpha-olefins
include, but are not limited to ethylene, and C
4 to C
20 a-olefins such as 1-butene, 1-hexene, and 1-octene. Branched alpha-olefins include,
but are not limited to 4-methyl-1-pentene, 3-methyl-1-pentene, and 3,5,5-trimethyl-1-hexene.
The use of a chiral transition metal catalyst ensures that the methyl groups of the
propylene residues have predominantly the same tacticity. For the polymers of the
present invention the low levels of crystallinity in the propylene-based elastomers
are derived from isotactic polypropylene obtained by incorporating alpha-olefin comonomers
as described above. The propylene-based elastomer of the invention has a heat of fusion
within the range having an upper limit of 40, or 30, or 25, or 20, or 15 J/g and a
lower limit of 0.5, or 1, or 5 J/g.
[0020] The crystallinity of the propylene-based elastomer can also be expressed in terms
of crystallinity percentage. The thermal energy for the highest order of polypropylene
is estimated at 189 J/g. That is, 100% crystallinity is equal to 189 J/g. Therefore,
according to the aforementioned heat of fusion values, the propylene-based elastomer
of the invention can have a polypropylene crystallinity within the range having an
upper limit of 15%, or 13%, or 11% and a lower limit of 0.25%, or 0.5%. The propylene-based
elastomer preferably has a single broad melting transition. Typically a sample of
the polymer will show secondary melting peaks adjacent to the principal peak, which
may be considered together as a single melting point. The highest of these peaks is
considered the melting point (T max). The propylene-based elastomer of the invention
can have a melting point within the range having an upper limit of 75°C, or 65°C,
or 60°C and a lower limit of 25°C, or 30°C. The weight average molecular weight of
the propylene based elastomer can be within the range having an upper limit of 5,000,000
daltons, or 500,000 daltons and a lower limit of 10,000 daltons, or 80,000, with a
MWD (Mw/Mn) within the range having an upper limit of 40.0, or 5, or 3 and a lower
limit of 1.5, or 1.8. In some embodiments, the propylene-based elastomer can have
a Mooney viscosity ML (1+4)@125°C less than 100, or less than 75 or less than 60,
or less than 30.
[0021] In one embodiment, the propylene-based elastomer of the invention comprises a random
crystallizable copolymer having a narrow compositional distribution. The intermolecular
composition distribution of the polymer is determined by thermal fractionation in
a solvent. A typical solvent is a saturated hydrocarbon such as hexane or heptane.
This thermal fractionation procedure is described in
WO02/083753. Typically, approximately 75% or 85% by weight of the polymer is isolated as one
or two adjacent, soluble fraction with the balance of the polymer in immediately preceding
or succeeding fractions. Each of these fractions has a composition (wt. % ethylene
content) with a difference of no greater than 20% (relative) and more preferably 10%
(relative) of the average weight % ethylene content of the polypropylene copolymer.
The propylene-based elastomer has a narrow compositional distribution if it meets
the fractionation test criteria outlined above.
[0022] In one embodiment, the length and distribution of stereoregular propylene sequences
in the propylene-based elastomers of the invention is consistent with substantially
random statistical copolymerization. It is well known that sequence length and distribution
are related to the copolymerization reactivity ratios. By substantially random, we
mean copolymer for which the product of the reactivity ratios is generally 2 or less.
In stereo-block structures, the average length of polypropylene sequences is greater
than that of substantially random copolymers with a similar composition.
[0023] Prior art polymers with stereo-block structure have a distribution of polypropylene
sequences consistent with these blocky structures rather than a random substantially
statistical distribution. The reactivity ratios and sequence distribution of the polymer
may be determined by
13C NMR, as is discussed in detail below, which locates the ethylene residues in relation
to the neighboring propylene residues. To produce a crystallizable copolymer with
the required randomness and narrow composition distribution, it is desirable to use
(1) a single sited catalyst and (2) a well-mixed, continuous flow stirred tank polymerization
reactor, which allows only a single polymerization environment for substantially all
of the polymer chains of the polypropylene copolymer.
The grafting options
[0024] The propylene-based elastomer may be grafted with grafting monomer, such as, but
not limited to MAH, and ethylenically unsaturated carboxylic acid or acid derivative,
such as an acid anhydride, ester, salt, amide, imide. Such monomers include, but are
not limited to the following: acrylic acid, methacrylic acid, maleic acid, fumaric
acid, itaconic acid, citraconic acid, mesaconic acid, crotonic acid, maleic anhydride,
4-methyl cyclohex4-ene-1,2-dicarboxylic acid anhydride, bicyclo(2.2.2)oct-5-ene-2,3-dicarboxylic
acid anhydride, 1,2,3,4,5,&g, lo-octahydronaphthalene-2,3-dicarboxylic acid anhydride,
2-oxa-1,3-diketospiro(4.4)non-7-ene, bicyclo(2.2.1)hept- 5-ene-2,3-dicarboxylic acid
anhydride, maleopimaric acid, tetrahydrophtalic anhydride, norbom-5-ene-2,3-dicarboxylic
acid anhydride, nadic anhydride, methyl nadic anhydride, himic anhydride, methyl himic
anhydride, and x-methyl-bicyclo(2.2.1)hept-5-ene-2,3- dicarboxylic acid anhydride
(XMNA). As used herein, the term "grafting" denotes covalent bonding of the grafting
monomer to a polymer chain of the polymeric composition.
[0025] Generally the compatibilizing effect is influenced by the level of grafting. The
propylene-based elastomer containing ethylene derived units may be grafted to a higher
degree. The grafting level can be within the range having an upper limit of 2.0wt%,
or 1.5wt% and a lower limit of 0.1wt% or 0.3 wt%.
The ungrafted polyolefin
[0026] The ungrafted polyolefin of the invention can be any polymer used as impact modifier
in the past and includes lower density materials often referred to as "plastomers"
and materials referred to as "elastomers." For example, in one embodiment, the ungrafted
polyolefin may be an impact modifier containing ethylene alpha-olefin copolymers.
In a particular aspect of this embodiment, known types of ethylene alpha-olefin copolymers
having a density of from 0.85 to 0.89 g/cc may be used, including, but not limited
to ethylene butene, ethylene hexene, ethylene octene, and ethylene propylene copolymers.
The ethylene propylene copolymers may have an ethylene content of, for example, 45
to 65 weight percent. The ethylene octene copolymers may have an ethylene content
of, for example, 60 to 70 weight percent. In another particular aspect of this embodiment,
the grafted propylene-based elastomer contains ethylene-derived units as discussed
above, and the ungrafted polyolefin is an impact modifier containing ethylene and/or
propylene derived units. The ungrafted polyolefin can also be a propylene based semi-crystalline
polymer which may or may not employ the same comonomer type or the same level of the
comonomer as the grafted propylene-based elastomer. The ungrafted polyolefin elastomers
are generally used in an amount of from 60 to 20 wt% based on the total weight of
(C) and (D) combined weight of the propylene-based elastomer and the ungrafted polyolefin.
Details of the matrix components
[0027] The isotactic polypropylene is generally selected from a polypropylene homopolymer,
a polypropylene random copolymer containing less than 10 wt % of crystallinity disrupting
comonomer, and an impact copolymer containing segments which are largely formed by
propylene derived units and a more amorphous ethylene containing segment. Such polymers
are well known and available commercially. The impact of the selection on the general
properties of the composition as a whole can be predicted from the known physical
properties of the polypropylene.
[0028] The polyamide is generally selected from any of the types described in Nylon Plastics
Handbook, edited by Melvin I. Kohan, Hanser Publishers ISBN 1-56990-189-9. The polyamide
may be, for example, nylon 6, nylon 12 or nylon 6,6.
Blending
[0029] The compositions of the invention can be prepared on apparatus and by methods well
known in the manufacture of thermoplastic elastomers in general and polyolefins in
particular. For example, batch methods can be used, as well as continuous mixing procedures.
Extruders, such as twin screw extruders, are a non-limiting example of a continuous
mixer. In a particular embodiment, a co-rotating twin screw extruder is used.
EXAMPLES
[0030] In the Examples below, the following ungrafted components were used:
PP is a propylene homopolymer sold by ExxonMobil Chemical as Escorene™ (Registered
Trade Mark PP4352 which has an MFR at 230°C, 2.16 kg of 3 g/min.
NPP1 and NPP2 are propylene-based elastomers in the form of propylene ethylene copolymers.
PA-6 is Ultramid B3, a nylon 6 grade sold by BASF with an MVR (at 275°C, 5 kg) of
130 ml/10 min determined according to DIN1133.
EP is a narrow molecular weight distribution ethylene-propylene copolymer sold as
Vistalon 785 by ExxonMobil Chemical having a Mooney (ML(1+4), 125°C of 30 and an ethylene
content of 49 wt%.
[0031] The grafted components were as follows:
Table 1
|
MFR (230°C,352g) |
MAH wt% |
C2 Content |
Crystallinity/ Heat of Fusion |
MAH grafted PP1 |
22 |
0.6 |
0 |
105 J/g |
MAH grafted ICP |
1.6 |
1.04 |
9 |
88 J/g |
MAH grafted NPP1 |
9 |
0.95 |
10.6 |
19 J/g |
MAH grafted NPP2 |
7 |
0.96 |
15.2 |
4 J/g |
MAH grafted EP |
3* |
0.7 |
50 |
0 J/g |
[0032] The feedstock included: PP1 a polypropylene homopolymer; ICP a heterophasic impact
copolymer made in series reactor with a fraction of predominantly propylene homopolymer
and ethylene propylene copolymer as are available commercially; NPP1 and NPP2 propylene
based elastomers in the form of propylene ethylene copolymers; and EP is an ethylene
propylene elastomer.
[0033] The MAH-grafted polymers were prepared by reacting appropriate concentrations of
MAH with the different polymeric feedstock. The polymers were melt functionalized
on a non-intermeshing counter-rotating twin screw extruder under the following conditions:
97.5 weight % of the feedstock, 2.5 weight % of Crystalman MA, 0.4 wt% of a 10 % solution
of Luperox 130 under conditions similar to those in W98/07769, the disclosure of which
is hereby incorporated herein by reference.
[0034] The various components mentioned in the Tables including the maleic anhydride material
where appropriate were then blended with the PP and PA-6 (Ultramid B3 etc) in different
proportions and combinations. The blending equipment is an intermeshing co-rotating
twin screw extruder (34mm, L/D=36) according to conditions similar to those in
W98/07769. The blends were then tested as indicated in the Tables.
[0035] Some ungrafted materials used are given in Table 2.
Table 2
|
MI Melt Index measured at 190°C, 2.16Kg (ASTM 1238) |
Density (g/cc) |
EO1 |
1 |
0.882 |
EO2 |
1 |
0.87 |
EO3 |
0.5 |
0.868 |
EO4 |
0.5 |
0.863 |
EO5 |
1 |
0.857 |
EO6 |
10 |
0.882 |
EO7 |
30 |
0.87 |
EO8 |
13 |
0.864 |
EO9 |
30 |
0.882 |
[0036] All were ethylene octene copolymers made in a solution process using a metallocene
based catalyst and NCA activator made by processes similar to those described in
WO00/24792 and
WO00/24793, the disclosures of which are hereby incorporated herein by reference.
[0037] The proportions and results were as set out in Tables 3, 4 and 5. In the Tables below,
"F(max)" is the Force at maximum load in a stress strain curve which does not have
a yield point, and "E-Mod." is the modulus of elasticity measured in a stress strain
test and corresponds to the ratio of stress per unit of cross-sectional area to the
corresponding strain for a strain from 0.005% to 0.25%.
Table 3
|
PP forms the matrix phase. |
|
|
|
|
|
PA-6 forms the matrix phase. |
|
3 Component. |
|
|
|
|
|
3 Components. |
|
5 wt% Impact Modifier: |
|
|
|
|
|
5 wt% Impact |
Example # |
1 Comp |
2 Comp |
3 Comp |
4 Inv |
5 Inv |
6 Comp |
7 Comp |
8 Comp |
9 Inv |
10 Inv |
11 Comp |
12 Comp |
13 Comp |
14 Inv |
15 Inv |
PP (wt%) |
75 |
71.25 |
71.25 |
71.25 |
71.25 |
50 |
47.5 |
47.5 |
47.5 |
47.5 |
25 |
24 |
24 |
24 |
24 |
PA-6 (wt%) |
25 |
23.75 |
23.75 |
23.75 |
23.75 |
50 |
47.5 |
47.5 |
47.5 |
47.5 |
75 |
71 |
71 |
71 |
71 |
MAH-PP1 (wt%) |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
MAH-ICP (wt%) |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
MAH-NPP1 (wt%) |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
MAH-NPP2 (wt%) |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
5 |
Tg.Flex.Mod.cond. (MPa) ISO 178 |
1743 |
1836 |
1816 |
1428 |
1259 |
1975 |
2093 |
2072 |
1788 |
1663 |
2179 |
2171 |
2065 |
1885 |
1779 |
E-Mod.cond.(MPa) ISO 527 |
1976 |
2077 |
1986 |
1686 |
1428 |
2007 |
2340 |
2300 |
2084 |
1859 |
2321 |
2322 |
2276 |
2103 |
2014 |
Stress at yield cond. (MPa) ISO 527 |
- |
38.3 |
38 |
31.1 |
- |
- |
48.7 |
48.1 |
41.6 |
- |
47.5 |
52.7 |
51.4 |
- |
- |
Elongation cond.(%) ISO 527 |
7 |
35 |
22 |
125 |
138 |
8 |
74 |
71 |
131 |
194 |
19 |
76 |
128 |
104 |
144 |
F(max) (MPa) |
31.5 |
- |
- |
- |
28.8 |
33.4 |
- |
- |
- |
39.6 |
- |
- |
- |
47.9 |
46.6 |
Izod notched (KJ/m2) cond. ISO 180/4A |
4 |
6 |
6 |
11 |
11 |
6 |
8 |
9 |
12 |
11 |
7 |
11 |
16 |
21 |
24 |
Charpy notched (KJ/m2) cond. ISO 179/2 at Room Temperature |
4 |
3 |
4 |
10 |
11 |
8 |
10 |
11 |
12 |
11 |
11 |
16 |
20 |
23 |
23 |
MFR(235°C/5Kg) CD |
44 |
13 |
12 |
9 |
9 |
105 |
18 |
17 |
9 |
9 |
104 |
28 |
17 |
19 |
16 |
Table 4
|
3 Component. |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 wt% Impact Modifier. |
|
|
|
|
|
|
|
|
|
|
|
|
Example # |
16 Inv |
17 Inv |
18 Inv |
19 Inv |
20 Inv |
21 Inv |
22 Inv |
23 Inv |
24 Inv |
25 Inv |
26 Comp |
27 Comp |
28 Comp |
29 Comp |
30 Comp |
31 Comp |
32 Comp |
33 Comp |
PP (wt%) |
67.5 |
22.5 |
22.5 |
67.5 |
22.5 |
45 |
67.5 |
22.5 |
45 |
67.5 |
67.5 |
22.5 |
67.5 |
22.5 |
22.5 |
67.5 |
22.5 |
45 |
PA-6 (wt%) |
22.5 |
67.5 |
67.5 |
22.5 |
67.5 |
45 |
22.5 |
67.5 |
45 |
22.5 |
22.5 |
67.5 |
22.5 |
67.5 |
67.5 |
22.5 |
67.5 |
45 |
MAH-NPP-1 (wt%) |
0 |
10 |
0 |
10 |
10 |
10 |
5 |
5 |
5 |
5 |
0 |
0 |
0 |
0 |
0 |
3 |
3 |
3 |
MAH-NPP2 (wt%) |
10 |
0 |
10 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
NPP (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
5 |
5 |
0 |
0 |
0 |
0 |
0 |
5 |
7 |
7 |
7 |
MAH-g-EP (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
MAH-g-PP (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
5 |
5 |
5 |
0 |
0 |
0 |
0 |
EP (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
5 |
5 |
5 |
0 |
0 |
0 |
Tg.Flex.Mod.cond.(MPa ) ISO 178 |
966 |
1719 |
1501 |
940 |
1563 |
969 |
991 |
1545 |
1366 |
1007 |
1393 |
1791 |
1567 |
1883 |
1704 |
1154 |
1562 |
1421 |
E-Mod.cond.(MPa) ISO 527 |
1043 |
1942 |
1723 |
940 |
1676 |
1012 |
963 |
1619 |
1468 |
1058 |
1529 |
1920 |
1706 |
2000 |
1835 |
1271 |
1692 |
1582 |
Stress at yield cond. (MPa) ISO 527 |
- |
45.5 |
- |
27.3 |
43.5 |
29.7 |
27.4 |
41.2 |
36.7 |
26 |
32.1 |
47.8 |
33 |
47.6 |
41.9 |
29.4 |
40.2 |
38.5 |
Elongation cond.(%) ISO 527 |
113 |
150 |
196 |
93 |
126 |
152 |
131 |
138 |
120 |
194 |
64 |
72 |
70/5 |
71 |
16 |
123 |
94 |
100 |
F(max) (MPa) |
26.9 |
- |
42.6 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
Izod notched (KJ/m2) cond. ISO 180/4A at Room Temperature |
20 |
26 |
75 |
20 |
75 |
12 |
21 |
57 |
17 |
33 |
14 |
24 |
14 |
12 |
7 |
16 |
21 |
18.5 |
Charpy notched (KJ/m2) cond. ISO 179/2 at Room Temperature |
16 |
23 |
42 |
17 |
41 |
15 |
22 |
40 |
18 |
30 |
13 |
20 |
10 |
15 |
8 |
18 |
25 |
19 |
MFR(235°C/5Kg) |
10 |
10 |
8 |
10 |
10 |
4 |
8 |
16 |
8 |
9 |
10 |
13 |
13 |
25 |
84 |
13 |
22 |
15 |
Table 5
Example # |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
PP (wt%) |
67.5 |
67.5 |
67.5 |
67.5 |
67.5 |
22.5 |
22.5 |
22.5 |
22.5 |
PA-6 (wt%) |
22.5 |
22.5 |
22.5 |
22.5 |
22.5 |
67.5 |
67.5 |
67.5 |
67.5 |
MA-NPP2 (wt%) |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
EO1 (wt%) |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
EO2 (wt%) |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
EO3 (wt%) |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
EO4 (wt%) |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
EO5 (wt%) |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
EO6 (wt%) |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
EO7 (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
EO8 (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
EO9 (wt%) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
|
|
|
|
|
|
|
|
|
|
Tg.Flex.Mod.cond.(MPa) ISO 178 |
1101 |
974 |
969 |
985 |
966 |
1468 |
1451 |
1464 |
1468 |
E-Mod.cond.(MPa) ISO 527 |
1117 |
1045 |
1031 |
1015 |
992 |
1710 |
1698 |
1634 |
1664 |
Stress at yield cond. (MPa) ISO 527 |
28 |
27 |
27 |
27 |
27 |
42 |
41 |
42 |
42 |
Elongation cond.(%) ISO 527 |
192 |
183 |
187 |
176 |
204 |
106 |
87 |
99 |
101 |
Izod notched (KJ/m2) cond. ISO 180/4A |
19 |
26 |
25 |
28 |
32 |
36 |
36 |
38 |
32 |
MFR(275°C/2.16Kg), g/10min |
|
|
|
|
|
4 |
4 |
4 |
4 |
MFR(235°C/2.16Kg), g/10min |
1.5 |
1.4 |
1.4 |
1.4 |
1.4 |
|
|
|
|
[0038] The results in terms of the Izod impact strength and Flexural Modulus for Table 3
and Table 4 are plotted in Figure 1 and 2. These illustrate that, at equivalent modifier
level (10%), this new composition increases impact strength by 60% versus a 50/50
blend of maleic anhydride grafted alpha olefin propylene copolymer and an ungrafted
alpha olefin propylene copolymer or versus a 10% maleic anhydride grafted alpha-olefin
propylene copolymer while keeping flexural modulus unchanged. Use of EP and EO copolymer
as auxiliary impact modifier and more amorphous types to propylene based elastomer
appear to be more effective.
[0039] Various tradenames used herein are indicated by a ™ symbol, indicating that the names
may be protected by certain trademark rights. Some such names may also be registered
trademarks in various jurisdictions.
1. A thermoplastic composition comprising:
(A) isotactic polypropylene, optionally containing comonomer, with a melting point
of at least 110°C and (B) a polyamide; (A) and (B) constituting at least 70wt%;
(C) at least 2 wt% of a grafted functionalized propylene-based elastomer having isotactic
crystallinity, a heat of fusion of less than 40 J/g, and a melting point of less than
110°C; and containing at least 0.25 wt% of MAH-derived units based on the total weight
of (C); and optionally (D) an ungrafted polyolefin having a melting point of less
than 100°C, (C) and (D) combined being at least 8 wt%, the wt % of (A), (B), (C) and
(D) being calculated on the basis of the total polymer weight.
2. Composition according to Claim 1 in which (C) is at least 4 wt% and (C) and (D) combined
are less than 30 wt%.
3. Composition according to Claim 1 or Claim 2 in which the polypropylene comprises at
least 60 wt% and the polyamide comprises at least 10 wt%, the polypropylene forming
the matrix and said composition having a Flexural modulus of from 800 to 1600 MPa
as determined by ISO 178.
4. Composition according to Claim 3, in which said composition has a Flexural modulus
of from 900 to 1200 MPa.
5. Composition according to Claim 3 or Claim 4 in which the composition has a ratio [Izod
Impact J/m
2] / [Flexural Modulus in MPa]:

wherein the IZOD IMPACT is determined by ISO 180/4A.
6. Composition according to Claim 3 or Claim 4 in which the composition has a ratio [Izod
Impact J/m
2] / [Flexural Modulus in MPa]:
7. Composition according to Claim 1 or Claim 2 in which the polyamide comprises at least
60 wt% and the polypropylene comprises at least 10 wt%, the polyamide forming the
matrix and said composition having a Flexural modulus of from 1200 to 2000 MPa, as
determined by ISO 178.
8. Composition according to Claim 7 in which said composition has a Flexural modulus
of from 1400 to 1800 MPa.
9. Composition according to claim 7 or Claim 8 in which the composition has a ratio [Izod
Impact J/m
2] / [Flexural Modulus in MPa] :

wherein IZOD IMPACT is determined by ISO 180/4A.
10. Composition according to Claim 7 or Claim 8 in which the composition has a ratio [Izod
Impact J/m
2] / [Flexural Modulus in MPa] :
11. Composition according to any of the preceding claims in which the propylene-based
elastomer contains up to 2 wt %, of MAH-derived units.
12. Composition according to any of the preceding claims, in which the propylene-based
elastomer contains from 0.3 to 1.5 wt% of MAH-derived units.
13. Composition according to any of the preceding claims in which the propylene-based
elastomer contains from 5 to 40 mol % of ethylene-derived units and has a heat of
fusion of from 5 to 30 J/g.
14. Composition according to any of the preceding claims in which the ungrafted polyolefin
is an ethylene propylene rubber or a low density plastomer having a density of from
0.85 to 0.89 g/cc.
15. Composition according to any of Claims 1 to 13 in which the ungrafted polyolefin is
an EP copolymer having an ethylene content of from 45 to 65 percent.
16. Composition according to Claim 14 or Claim 15, wherein the ungrafted polyolefin is
used in an amount of from 60 to 20 wt % based on the total weight of (C) and (D).
17. Composition according to any of the preceding claims in which the ungrafted polyolefin
(D) is a propylene based elastomer having isotactic crystallinity.
18. Composition according to any of the preceding claims in which the polypropylene is
a polypropylene homopolymer, a polypropylene random copolymer containing less than
10 wt % of crystallinity disrupting comonomer.
19. Composition according to any of the preceding claims in which the polyamide is nylon
6, nylon 12 or nylon 6,6.
20. Molded or extruded article made from blend according to any of preceding claims.
1. Thermoplastische Zusammensetzung, umfassend:
(A) isotaktisches Polypropylen, das wahlweise Comonomer enthält, mit einem Schmelzpunkt
von mindestens 110°C und
(B) ein Polyamid, wobei (A) und (B) mindestens 70 Gew.-% ausmachen;
(C) mindestens 2 Gew.-% eines gepfropft-funktionaliserten, propylenbasierten Elastomers
mit isotaktischer Kristallinität, einer Schmelzwärme von weniger als 40 J/g und einem
Schmelzpunkt von weniger als 110°C, das mindestens 0,25 Gew.-% Einheiten enthält,
die von MAH abgeleitet sind, bezogen auf das Gesamtgewicht von (C); und wahlweise
(D) ein ungepfropftes Polyolefin mit einem Schmelzpunkt von weniger als 100°C,
wobei (C) und (D) zusammen weniger als 8 Gew.-% ausmachen, und wobei die Gew.-% von
(A), (B), (C) und (D) auf Basis des gesamten Polymergewichts berechnet werden.
2. Zusammensetzung nach Anspruch 1, wobei (C) mindestens 4 Gew.-% ausmacht und (C) und
(D) zusammen weniger als 30 Gew.-% ausmachen.
3. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei das Polypropylen mindestens
60 Gew.-% und das Polyamid mindestens 10 Gew.-% ausmacht, wobei das Polypropylen die
Matrix bildet und die Zusammensetzung ein mittels ISO 178 bestimmtes Elastizitätsmodul
von 800 bis 1600 MPa aufweist.
4. Zusammensetzung nach Anspruch 3, wobei die Zusammensetzung ein Elastizitätsmodul von
900 bis 1200 MPa aufweist.
5. Zusammensetzung nach Anspruch 3 oder Anspruch 4, wobei die Zusammensetzung folgendes
Verhältnis von Izod-Schlagzähigkeit (in J/m
2) zu Elastizitätsmodul (in MPa) aufweist:
12 < Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) x 1000 < 50, wobei die Izod-Schlagfähigkeit mittels
ISO 180/4A bestimmt wird.
6. Zusammensetzung nach Anspruch 3 oder Anspruch 4, wobei die Zusammensetzung folgendes
Verhältnis von Izod-Schlagzähigkeit (in J/m
2) zu Elastizitätsmodul (in MPa) aufweist:
7. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei das Polyamid mindestens 60
Gew.-% und das Polypropylen mindestens 10 Gew.-% ausmacht, wobei das Polyamid die
Matrix bildet und die Zusammensetzung ein mittels ISO 178 bestimmtes Elastizitätsmodul
von 1200 bis 2000 MPa aufweist.
8. Zusammensetzung nach Anspruch 7, wobei die Zusammensetzung ein Elastizitätsmodul von
1400 bis 1800 MPa aufweist.
9. Zusammensetzung nach Anspruch 7 oder Anspruch 8, wobei die Zusammensetzung folgendes
Verhältnis von Izod-Schlagzähigkeit (in J/m
2) zu Elastizitätsmodul (in MPa) aufweist:
14 < Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) x 1000 < 80, wobei die Izod-Schlagfähigkeit mittels
ISO 180/4A bestimmt wird.
10. Zusammensetzung nach Anspruch 7 oder Anspruch 8, wobei die Zusammensetzung folgendes
Verhältnis von Izod-Schlagzähigkeit (in J/m
2) zu Elastizitätsmodul (in MPa) aufweist:
11. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte
Elastomer bis zu 2 Gew.-% von MAH abgeleitete Einheiten enthält.
12. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte
Elastomer 0,3 bis 1,5 Gew.-% Einheiten enthält, die von MAH abgeleitet sind.
13. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte
Elastomer 5 bis 40 mol-% Einheiten enthält, die von Ethylen abgeleitet sind, und eine
Schmelzwärme von 5 bis 30 J/g aufweist.
14. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das ungepfropfte Polyolefin
ein Ethylen-Propylen-Kautschuk oder ein Plastomer mit niedriger Dichte ist, welches
eine Dichte von 0,85 bis 0,89 g/cm3 aufweist.
15. Zusammensetzung nach einem der Ansprüche 1 bis 13, wobei das ungepfropfte Polyolefin
ein EP-Copolymer mit einem Ethylengehalt von 45 bis 65 Prozent ist.
16. Zusammensetzung nach Anspruch 14 oder Anspruch 15, wobei das ungepfropfte Polyolefin
in einer Menge von 60 bis 20 Gew.-%, bezogen auf das Gesamtgewicht von (C) und (D),
verwendet wird.
17. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das ungepfropfte Polyolefin
(D) ein propylenbasiertes Elastomer mit isotaktischer Kristallinität ist.
18. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Polypropylen ein
Polypropylen-Homopolymer oder ein statistisches Polypropylen-Copolymer ist, das weniger
als 10 Gew.-% kristallinitätsstörendes Comonomer enthält.
19. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Polyamid Nylon
6, Nylon 12 oder Nylon 6,6 ist.
20. Gegossener oder gepresster Gegenstand hergestellt aus einem Gemisch gemäß einem der
vorhergehenden Ansprüche.
1. Composition thermoplastique comprenant :
(A) du polypropylène isotactique, contenant éventuellement un comonomère, avec un
point de fusion d'au moins 110 °C et (B) un polyamide ; (A) et (B) constituant au
moins 70 % en poids ;
(C) au moins 2 % en poids d'un élastomère à base de propylène fonctionnalisé greffé
ayant une cristallinité isotactique, une chaleur de fusion inférieure à 40 J/g, et
un point de fusion de moins de 110 °C ; et contenant au moins 0,25 % en poids de motifs
dérivés du MAH, rapporté au poids total de (C) ; et éventuellement (D) une polyoléfine
non greffée ayant un point de fusion de moins de 100 °C, (C) et (D) combinés représentant
au moins 8 % en poids, le % en poids de (A), (B), (C) et (D) étant calculé sur la
base du poids total de polymère.
2. Composition selon la revendication 1 dans laquelle (C) représente au moins 4 % en
poids et (C) et (D) combinés représentent moins de 30 % en poids.
3. Composition selon la revendication 1 ou la revendication 2 dans laquelle le polypropylène
constitue au moins 60 % en poids et le polyamide constitue au moins 10 % en poids,
le polypropylène formant la matrice et ladite composition ayant un module de flexion
de 800 à 1600 MPa tel que déterminé par l'ISO 178.
4. Composition selon la revendication 3, ladite composition ayant un module de flexion
de 900 à 1200 MPa.
5. Composition selon la revendication 3 ou la revendication 4, la composition ayant un
rapport [Résistance au choc Izod en J/m
2]/[Module de flexion en MPa] :

la résistance au choc Izod étant déterminée par l'ISO 180/4A.
6. Composition selon la revendication 3 ou la revendication 4, la composition ayant un
rapport [Résistance au choc Izod en J/m
2]/[Module de flexion en MPa] :
7. Composition selon la revendication 1 ou la revendication 2 dans laquelle le polyamide
constitue au moins 60 % en poids et le polypropylène constitue au moins 10 % en poids,
le polyamide formant la matrice et ladite composition ayant un module de flexion de
1200 à 2000 MPa, tel que déterminé par l'ISO 178.
8. Composition selon la revendication 7, ladite composition ayant un module de flexion
de 1400 à 1800 MPa.
9. Composition selon la revendication 7 ou la revendication 8, la composition ayant un
rapport [Résistance au choc Izod en J/m
2]/[Module de flexion en MPa] :

la résistance au choc Izod étant déterminée par l'ISO 180/4A.
10. Composition selon la revendication 7 ou la revendication 8, la composition ayant un
rapport [Résistance au choc Izod en J/m
2]/[Module de flexion en MPa] :
11. Composition selon l'une quelconque des revendications précédentes dans laquelle l'élastomère
à base de propylène contient jusqu'à 2 % en poids de motifs dérivés du MAH.
12. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'élastomère
à base de propylène contient de 0,3 à 1,5 % en poids de motifs dérivés du MAH.
13. Composition selon l'une quelconque des revendications précédentes dans laquelle l'élastomère
à base de propylène contient de 5 à 40 % en moles de motifs dérivés de l'éthylène
et a une chaleur de fusion de 5 à 30 J/g.
14. Composition selon l'une quelconque des revendications précédentes dans laquelle la
polyoléfine non greffée est un caoutchouc éthylène-propylène ou un plastomère à faible
masse volumique ayant une masse volumique de 0,85 à 0,89 g/cc.
15. Composition selon l'une quelconque des revendications 1 à 13 dans laquelle la polyoléfine
non greffée est un copolymère EP ayant une teneur en éthylène de 45 à 65 pour cent.
16. Composition selon la revendication 14 ou la revendication 15, dans laquelle la polyoléfine
non greffée est utilisée dans une quantité de 60 à 20 % en poids, rapporté au poids
total de (C) et (D).
17. Composition selon l'une quelconque des revendications précédentes dans laquelle la
polyoléfine non greffée (D) est un élastomère à base de propylène ayant une cristallinité
isotactique.
18. Composition selon l'une quelconque des revendications précédentes dans laquelle le
polypropylène est un homopolymère de polypropylène, ou un copolymère statistique de
polypropylène contenant moins de 10 % en poids de comonomère perturbant la cristallinité.
19. Composition selon l'une quelconque des revendications précédentes dans laquelle le
polyamide est le nylon 6, le nylon 12 ou le nylon 6,6.
20. Article moulé ou extrudé fabriqué à partir d'un mélange selon l'une quelconque des
revendications précédentes.