(19)
(11) EP 1 670 857 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.03.2015 Bulletin 2015/12

(21) Application number: 04794561.3

(22) Date of filing: 08.10.2004
(51) International Patent Classification (IPC): 
C08L 23/08(2006.01)
C08L 23/16(2006.01)
(86) International application number:
PCT/US2004/033245
(87) International publication number:
WO 2005/035648 (21.04.2005 Gazette 2005/16)

(54)

COMPOSTIONS OF POLYPROPYLENE AND POLYAMIDE

ZUSAMMENSETZUNGEN AUS POLYPROPYLEN UND POLYAMID

COMPOSITIONS DE POLYPROPYLENE ET DE POLYAMIDE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30) Priority: 10.10.2003 US 510666 P

(43) Date of publication of application:
21.06.2006 Bulletin 2006/25

(73) Proprietor: ExxonMobil Chemical Patents Inc.
Baytown, TX 77520 (US)

(72) Inventors:
  • SCHAUDER, Jean-Roch
    B-1300 Wavre (BE)
  • WOUTERS, Guy, Joseph
    B-1170 Brussels (BE)
  • DATTA, Sudhin
    Houston, TX 77007 (US)

(74) Representative: Mareschal, Anne et al
ExxonMobil Chemical Europe Inc. IP Law Europe Hermeslaan 2
1831 Machelen
1831 Machelen (BE)


(56) References cited: : 
WO-A-02/36651
US-A- 5 006 601
GB-A- 2 226 035
US-A- 5 874 176
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The invention relates to compositions of polypropylene and polyamide for use in, for example, molded articles for automotive applications.

    BACKGROUND OF INVENTION



    [0002] The grafting of polyolefins consisting largely of polypropylene with polar chemical modifiers, such as maleic anhydride (MAH) and acrylic acid is known. The grafting reaction can be performed in solution, in gas phase, or by surface modification. However, the most common grafting process is performed during melt processing, for example in single or multiple screw extruders, rubber masticators, Banbury mixers, Brabender mixers, roll-mills. Such procedures are well-known and described in the technical literature. The grafting of polypropylene with unsaturated monomers including maleic anhydride is described, for example, in S.B Brown, Reactive Extrusion, Chapter 4, published by Polymer Processing Institute (1992). U.S. Patent No. 5,439,974 addresses adhesive blends suitable for adhesion to one or more polypropylene substrates consisting essentially of a mixture of an impact copolymer and a graft reaction product of a propylene polymer and a carboxylic acid or a derivative thereof. The polymeric backbone, which is grafted, is an impact copolymer, defined as a mixture of polypropylene and ethylene/propylene copolymer.

    [0003] WO02/36651 describes methods for grafting propylenic elastomers, also referred to herein as propylene-ethylene copolymers. WO02/36651 discloses grafting of propylene ethylene copolymers having a low ethylene content (between 8 and 32 mole %), and with predominantly isotactic polypropylene segments (>80% mm triad by 13C NMR), giving polypropylene type crystallinity, with MAH. These polymers, comprising low levels of ethylene content, permit higher levels of grafting.

    [0004] Polyolefins, which have polar groups due to such grafting reactions, are used in blends with engineering thermoplastics. These may have a polyamide (PA) matrix and a dispersed phase formed by the grafted polyolefin, which acts as the impact modifier (IM) so as to reduce brittle failure. The IM may also include a non-grafted EP rubber (EP) or a low-density amorphous or semi-crystalline polyolefin (VLDPE). Certain publications suggest the use of an ungrafted propylenic elastomer as impact modifier. See, for example, WO99/65982 and WO2000/01766. In such a case, the grafted polyolefin acts to compatibilize the PA and the ungrafted IM. A three-component blend of PA, ungrafted polyolefin and MAH-grafted ethylene propylene rubber results.

    [0005] Impact modification is also used where the matrix polymer is polypropylene having a high degree of crystallinity as generally indicated by melting point of over 100°C. The polypropylene matrix polymer has different properties from the polyamide matrix polymer, which is reflected in the heat resistance and strength and reduced moisture sensitivity. Blends of polypropylene and polyamide have hence been employed with an additional impact modifier to obtain a desirable overall balance of cost and performance. Stiffness can be improved by incorporating the polyamide as a dispersed phase in a polypropylene matrix continuous phase. The cost of the composition can be reduced at marginal loss of performance by incorporating polypropylene as a dispersed phase in a PA matrix continuous phase.

    [0006] The manner in which the different phases are intermingled has influence on the overall cost performance balance. MAH grafted polypropylene has been used to improve performance of polypropylene-polyamide alloys. EP-658640 discloses a three-component blend of polypropylene, PA and MAH-grafted polypropylene.

    [0007] WO02/36651, beginning on page 12 line 8, discusses blends of the grafted propylene based elastomers with other alpha-olefin polymers and copolymers, e.g., polypropylene for fabrication into objects used in a variety of applications. Beginning on page 26 line 1, WO02/36651 discusses use as compatibilizers of polyamide-polypropylene blends to increase the percent of elongation at break point. A composition comprising polypropylene, a polyamide, and a MAH-grafted propylene based elastomer would result.

    [0008] U.S. Patent No. 4,795,782 discloses three component blends of PA, MAH-grafted polypropylene and MAH-grafted styrene-butadiene-styrene tri-block copolymers. Polymer Vol. 36 pages 4587-4603, 1995 discloses three-component blends of PA, polypropylene and MAH-grafted EP rubber. Run 12 in Table 1 of GB2226035 discloses blends of PA, polypropylene, EP copolymer and MAH-grafted propylene based Impact Copolymer. JP-03252436 discloses the use of compositions of polypropylene, PA, EP copolymer and MAH-grafted polypropylene. US5006601 discloses impact resistant blends of thermoplastic polyamides, polyolefins and elastomers.

    [0009] Embodiments of the present invention may have one or more advantages over previously known materials, such as providing compositions containing both PA and polypropylene with improved cost performance balance and improved balance of impact strength and stiffness. In some embodiments, the impact strength may be significantly improved without substantive reduction of stiffness, particularly for compositions having a relatively low stiffness.

    SUMMARY OF INVENTION



    [0010] In one embodiment, the invention provides a thermoplastic composition comprising isotactic polypropylene with a melting point of at least 110°C, a polyamide, a grafted functionalized propylene-based elastomer having isotactic crystallinity, and optionally an ungrafted polyolefin having a melting point of less than 100°C according to claims 1 to 19. The grafted functionalized propylene-based elastomer contains at least 0.25% by weight, based on the total weight of the elastomer, of MAH-derived units. The combined weight percent of the isotactic polypropylene and the polyamide is at least 70%, based on the total polymer weight of the composition. The combined weight percent of the grafted functionalized propylene-based elastomer and optional ungrafted polyolefin is at least 8%, based on the total polymer weight of the composition.

    [0011] In another embodiment, the polypropylene provides the matrix into which the other components are dispersed, with the polypropylene comprising at least 60 wt% and the polyamide comprising at least 10 wt%. In a particular aspect of this embodiment, the composition may have a Flexural modulus within the range having a lower limit of 800 or 900 MPa and an upper limit of 1200 or 1600 MPa. In another particular aspect of this embodiment, the composition may have an improved impact resistance. For example, the composition may have a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa] conforming to the relationship:

    12 < [Izod Impact J/m2] / [Flexural Modulus in MPa] x 1000 < 50; or

    15 < [Izod Impact J/m2] / [Flexural Modulus in MPa] x 1000 < 45.



    [0012] In another embodiment, the polyamide forms the matrix or continuous phase, with the polyamide comprising at least 60 wt% and the polypropylene comprising at least 10 wt%. In a particular aspect of this embodiment, the composition may have a Flexural modulus within the range having a lower limit of 1200 or 1400 MPa and an upper limit of 1800 or 2000 MPa. In another particular aspect of this embodiment, the composition may have a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa] conforming to the relationship:


    or



    [0013] In another embodiment, substantially equivalent amounts of propylene and polyamide can be used.

    [0014] In another embodiment, the dispersed phases can be arranged to have a small size, which may provide improved impact performance and PA derived reinforcement.

    [0015] In another embodiment, the present invention provides a molded or extruded article made from any of the inventive compositions described herein.

    [0016] In a particular aspect of any of the embodiments described herein, the composition has one or more of the following characteristics, in any combination:
    1. a. the composition comprises at least 2% or 4% by weight of the propylene-based elastomer, based on the total polymer weight of the composition;
    2. b. the combined weight percent of the propylene-based elastomer and optional ungrafted polyolefin is less than 30%, based on the total polymer weight of the composition;
    3. c. the propylene-based elastomer has crystallinity derived from stereoregularly arranged propylene units;
    4. d. the propylene-based elastomer has crystallinity derived from isotactically arranged propylene units;
    5. e. the propylene-based elastomer contains MAH-derived units in an amount within the range having a lower limit of 0.3%, or 0.5% by weight and an upper limit of 1.5%, or 2% by weight, based on the total weight of the elastomer;
    6. f. the propylene-based elastomer contains ethylene-derived units in an amount within the range having a lower limit of 5 mol%, or 12.5 mol% and an upper limit of 25 mol%, or 40 mol%;
    7. g. the propylene-based elastomer has a heat of fusion of from 5 to 30 J/g, which reflects the elastomeric nature of the polymer;
    8. h. the ungrafted polyolefin is an ethylene alpha-olefin copolymer;
    9. i. the ungrafted polyolefin is an ethylene propylene copolymer;
    10. j. the ungrafted polyolefin has a density of from 0.85 to 0.89g/cc;
    11. k. the ungrafted polyolefin has an ethylene content of from 45 to 65wt %;
    12. l. the ungrafted polyolefin is used in an amount of from 60% to 20% by weight, based on the total combined weight of the propylene-based elastomer and the ungrafted polyolefin;
    13. m. the ungrafted polyolefin is also a propylene-based elastomer having isotactic crystallinity and containing a comonomer in an amount within 10 mol% of the amount of comonomer present in the grafted functionalized propylene-based elastomer;
    14. n. the comonomer of the ungrafted polyolefin is ethylene;
    15. o. the comonomer of the grafted functionalized propylene-based elastomer is ethylene;
    16. p. the isotactic polypropylene is selected from the group consisting of a polypropylene homopolymer and a polypropylene random copolymer containing less than 10wt% of crystallinity-disrupting comonomer; and
    17. q. the polyamide is selected from the group consisting of nylon 6, nylon 12, and nylon 6,6.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] Figures 1 and 2 are graphs of the Izod impact strength and Flexural modulus of comparative and inventive compositions according to an embodiment of the invention.

    DETAILED DESCRIPTION


    Grafted propylene-based elastomer



    [0018] The propylene-based semi-crystalline elastomers used in the compositions of the invention can be prepared by polymerizing propylene optionally with ethylene or higher alpha-olefins in the presence of a transition metal catalyst with an activator and optional scavenger. The crystallinity of the propylene-based elastomer arises predominantly from crystallizable stereoregular propylene sequences. Comonomers or propylene insertion errors separate these sequences. While syndiotactic configuration of the propylene is possible, polymers with isotactic configurations are preferred.

    [0019] The transition metal catalyst may be a metallocene or a non-metallocene as disclosed in WO03/040201. The comonomer used with propylene may be linear or branched. Linear alpha-olefins include, but are not limited to ethylene, and C4 to C20 a-olefins such as 1-butene, 1-hexene, and 1-octene. Branched alpha-olefins include, but are not limited to 4-methyl-1-pentene, 3-methyl-1-pentene, and 3,5,5-trimethyl-1-hexene. The use of a chiral transition metal catalyst ensures that the methyl groups of the propylene residues have predominantly the same tacticity. For the polymers of the present invention the low levels of crystallinity in the propylene-based elastomers are derived from isotactic polypropylene obtained by incorporating alpha-olefin comonomers as described above. The propylene-based elastomer of the invention has a heat of fusion within the range having an upper limit of 40, or 30, or 25, or 20, or 15 J/g and a lower limit of 0.5, or 1, or 5 J/g.

    [0020] The crystallinity of the propylene-based elastomer can also be expressed in terms of crystallinity percentage. The thermal energy for the highest order of polypropylene is estimated at 189 J/g. That is, 100% crystallinity is equal to 189 J/g. Therefore, according to the aforementioned heat of fusion values, the propylene-based elastomer of the invention can have a polypropylene crystallinity within the range having an upper limit of 15%, or 13%, or 11% and a lower limit of 0.25%, or 0.5%. The propylene-based elastomer preferably has a single broad melting transition. Typically a sample of the polymer will show secondary melting peaks adjacent to the principal peak, which may be considered together as a single melting point. The highest of these peaks is considered the melting point (T max). The propylene-based elastomer of the invention can have a melting point within the range having an upper limit of 75°C, or 65°C, or 60°C and a lower limit of 25°C, or 30°C. The weight average molecular weight of the propylene based elastomer can be within the range having an upper limit of 5,000,000 daltons, or 500,000 daltons and a lower limit of 10,000 daltons, or 80,000, with a MWD (Mw/Mn) within the range having an upper limit of 40.0, or 5, or 3 and a lower limit of 1.5, or 1.8. In some embodiments, the propylene-based elastomer can have a Mooney viscosity ML (1+4)@125°C less than 100, or less than 75 or less than 60, or less than 30.

    [0021] In one embodiment, the propylene-based elastomer of the invention comprises a random crystallizable copolymer having a narrow compositional distribution. The intermolecular composition distribution of the polymer is determined by thermal fractionation in a solvent. A typical solvent is a saturated hydrocarbon such as hexane or heptane. This thermal fractionation procedure is described in WO02/083753. Typically, approximately 75% or 85% by weight of the polymer is isolated as one or two adjacent, soluble fraction with the balance of the polymer in immediately preceding or succeeding fractions. Each of these fractions has a composition (wt. % ethylene content) with a difference of no greater than 20% (relative) and more preferably 10% (relative) of the average weight % ethylene content of the polypropylene copolymer. The propylene-based elastomer has a narrow compositional distribution if it meets the fractionation test criteria outlined above.

    [0022] In one embodiment, the length and distribution of stereoregular propylene sequences in the propylene-based elastomers of the invention is consistent with substantially random statistical copolymerization. It is well known that sequence length and distribution are related to the copolymerization reactivity ratios. By substantially random, we mean copolymer for which the product of the reactivity ratios is generally 2 or less. In stereo-block structures, the average length of polypropylene sequences is greater than that of substantially random copolymers with a similar composition.

    [0023] Prior art polymers with stereo-block structure have a distribution of polypropylene sequences consistent with these blocky structures rather than a random substantially statistical distribution. The reactivity ratios and sequence distribution of the polymer may be determined by 13C NMR, as is discussed in detail below, which locates the ethylene residues in relation to the neighboring propylene residues. To produce a crystallizable copolymer with the required randomness and narrow composition distribution, it is desirable to use (1) a single sited catalyst and (2) a well-mixed, continuous flow stirred tank polymerization reactor, which allows only a single polymerization environment for substantially all of the polymer chains of the polypropylene copolymer.

    The grafting options



    [0024] The propylene-based elastomer may be grafted with grafting monomer, such as, but not limited to MAH, and ethylenically unsaturated carboxylic acid or acid derivative, such as an acid anhydride, ester, salt, amide, imide. Such monomers include, but are not limited to the following: acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, crotonic acid, maleic anhydride, 4-methyl cyclohex4-ene-1,2-dicarboxylic acid anhydride, bicyclo(2.2.2)oct-5-ene-2,3-dicarboxylic acid anhydride, 1,2,3,4,5,&g, lo-octahydronaphthalene-2,3-dicarboxylic acid anhydride, 2-oxa-1,3-diketospiro(4.4)non-7-ene, bicyclo(2.2.1)hept- 5-ene-2,3-dicarboxylic acid anhydride, maleopimaric acid, tetrahydrophtalic anhydride, norbom-5-ene-2,3-dicarboxylic acid anhydride, nadic anhydride, methyl nadic anhydride, himic anhydride, methyl himic anhydride, and x-methyl-bicyclo(2.2.1)hept-5-ene-2,3- dicarboxylic acid anhydride (XMNA). As used herein, the term "grafting" denotes covalent bonding of the grafting monomer to a polymer chain of the polymeric composition.

    [0025] Generally the compatibilizing effect is influenced by the level of grafting. The propylene-based elastomer containing ethylene derived units may be grafted to a higher degree. The grafting level can be within the range having an upper limit of 2.0wt%, or 1.5wt% and a lower limit of 0.1wt% or 0.3 wt%.

    The ungrafted polyolefin



    [0026] The ungrafted polyolefin of the invention can be any polymer used as impact modifier in the past and includes lower density materials often referred to as "plastomers" and materials referred to as "elastomers." For example, in one embodiment, the ungrafted polyolefin may be an impact modifier containing ethylene alpha-olefin copolymers. In a particular aspect of this embodiment, known types of ethylene alpha-olefin copolymers having a density of from 0.85 to 0.89 g/cc may be used, including, but not limited to ethylene butene, ethylene hexene, ethylene octene, and ethylene propylene copolymers. The ethylene propylene copolymers may have an ethylene content of, for example, 45 to 65 weight percent. The ethylene octene copolymers may have an ethylene content of, for example, 60 to 70 weight percent. In another particular aspect of this embodiment, the grafted propylene-based elastomer contains ethylene-derived units as discussed above, and the ungrafted polyolefin is an impact modifier containing ethylene and/or propylene derived units. The ungrafted polyolefin can also be a propylene based semi-crystalline polymer which may or may not employ the same comonomer type or the same level of the comonomer as the grafted propylene-based elastomer. The ungrafted polyolefin elastomers are generally used in an amount of from 60 to 20 wt% based on the total weight of (C) and (D) combined weight of the propylene-based elastomer and the ungrafted polyolefin.

    Details of the matrix components



    [0027] The isotactic polypropylene is generally selected from a polypropylene homopolymer, a polypropylene random copolymer containing less than 10 wt % of crystallinity disrupting comonomer, and an impact copolymer containing segments which are largely formed by propylene derived units and a more amorphous ethylene containing segment. Such polymers are well known and available commercially. The impact of the selection on the general properties of the composition as a whole can be predicted from the known physical properties of the polypropylene.

    [0028] The polyamide is generally selected from any of the types described in Nylon Plastics Handbook, edited by Melvin I. Kohan, Hanser Publishers ISBN 1-56990-189-9. The polyamide may be, for example, nylon 6, nylon 12 or nylon 6,6.

    Blending



    [0029] The compositions of the invention can be prepared on apparatus and by methods well known in the manufacture of thermoplastic elastomers in general and polyolefins in particular. For example, batch methods can be used, as well as continuous mixing procedures. Extruders, such as twin screw extruders, are a non-limiting example of a continuous mixer. In a particular embodiment, a co-rotating twin screw extruder is used.

    EXAMPLES



    [0030] In the Examples below, the following ungrafted components were used:

    PP is a propylene homopolymer sold by ExxonMobil Chemical as Escorene™ (Registered Trade Mark PP4352 which has an MFR at 230°C, 2.16 kg of 3 g/min.

    NPP1 and NPP2 are propylene-based elastomers in the form of propylene ethylene copolymers.

    PA-6 is Ultramid B3, a nylon 6 grade sold by BASF with an MVR (at 275°C, 5 kg) of 130 ml/10 min determined according to DIN1133.

    EP is a narrow molecular weight distribution ethylene-propylene copolymer sold as Vistalon 785 by ExxonMobil Chemical having a Mooney (ML(1+4), 125°C of 30 and an ethylene content of 49 wt%.



    [0031] The grafted components were as follows:
    Table 1
      MFR (230°C,352g) MAH wt% C2 Content Crystallinity/ Heat of Fusion
    MAH grafted PP1 22 0.6 0 105 J/g
    MAH grafted ICP 1.6 1.04 9 88 J/g
    MAH grafted NPP1 9 0.95 10.6 19 J/g
    MAH grafted NPP2 7 0.96 15.2 4 J/g
    MAH grafted EP 3* 0.7 50 0 J/g
    * MFR at 2.16 kg.


    [0032] The feedstock included: PP1 a polypropylene homopolymer; ICP a heterophasic impact copolymer made in series reactor with a fraction of predominantly propylene homopolymer and ethylene propylene copolymer as are available commercially; NPP1 and NPP2 propylene based elastomers in the form of propylene ethylene copolymers; and EP is an ethylene propylene elastomer.

    [0033] The MAH-grafted polymers were prepared by reacting appropriate concentrations of MAH with the different polymeric feedstock. The polymers were melt functionalized on a non-intermeshing counter-rotating twin screw extruder under the following conditions: 97.5 weight % of the feedstock, 2.5 weight % of Crystalman MA, 0.4 wt% of a 10 % solution of Luperox 130 under conditions similar to those in W98/07769, the disclosure of which is hereby incorporated herein by reference.

    [0034] The various components mentioned in the Tables including the maleic anhydride material where appropriate were then blended with the PP and PA-6 (Ultramid B3 etc) in different proportions and combinations. The blending equipment is an intermeshing co-rotating twin screw extruder (34mm, L/D=36) according to conditions similar to those in W98/07769. The blends were then tested as indicated in the Tables.

    [0035] Some ungrafted materials used are given in Table 2.
    Table 2
      MI Melt Index measured at 190°C, 2.16Kg (ASTM 1238) Density (g/cc)
    EO1 1 0.882
    EO2 1 0.87
    EO3 0.5 0.868
    EO4 0.5 0.863
    EO5 1 0.857
    EO6 10 0.882
    EO7 30 0.87
    EO8 13 0.864
    EO9 30 0.882


    [0036] All were ethylene octene copolymers made in a solution process using a metallocene based catalyst and NCA activator made by processes similar to those described in WO00/24792 and WO00/24793, the disclosures of which are hereby incorporated herein by reference.

    [0037] The proportions and results were as set out in Tables 3, 4 and 5. In the Tables below, "F(max)" is the Force at maximum load in a stress strain curve which does not have a yield point, and "E-Mod." is the modulus of elasticity measured in a stress strain test and corresponds to the ratio of stress per unit of cross-sectional area to the corresponding strain for a strain from 0.005% to 0.25%.
    Table 3
      PP forms the matrix phase.           PA-6 forms the matrix phase.
      3 Component.           3 Components.
      5 wt% Impact Modifier:           5 wt% Impact
    Example # 1 Comp 2 Comp 3 Comp 4 Inv 5 Inv 6 Comp 7 Comp 8 Comp 9 Inv 10 Inv 11 Comp 12 Comp 13 Comp 14 Inv 15 Inv
    PP (wt%) 75 71.25 71.25 71.25 71.25 50 47.5 47.5 47.5 47.5 25 24 24 24 24
    PA-6 (wt%) 25 23.75 23.75 23.75 23.75 50 47.5 47.5 47.5 47.5 75 71 71 71 71
    MAH-PP1 (wt%) 0 5 0 0 0 0 5 0 0 0 0 5 0 0 0
    MAH-ICP (wt%) 0 0 5 0 0 0 0 5 0 0 0 0 5 0 0
    MAH-NPP1 (wt%) 0 0 0 5 0 0 0 0 5 0 0 0 0 5 0
    MAH-NPP2 (wt%) 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5
    Tg.Flex.Mod.cond. (MPa) ISO 178 1743 1836 1816 1428 1259 1975 2093 2072 1788 1663 2179 2171 2065 1885 1779
    E-Mod.cond.(MPa) ISO 527 1976 2077 1986 1686 1428 2007 2340 2300 2084 1859 2321 2322 2276 2103 2014
    Stress at yield cond. (MPa) ISO 527 - 38.3 38 31.1 - - 48.7 48.1 41.6 - 47.5 52.7 51.4 - -
    Elongation cond.(%) ISO 527 7 35 22 125 138 8 74 71 131 194 19 76 128 104 144
    F(max) (MPa) 31.5 - - - 28.8 33.4 - - - 39.6 - - - 47.9 46.6
    Izod notched (KJ/m2) cond. ISO 180/4A 4 6 6 11 11 6 8 9 12 11 7 11 16 21 24
    Charpy notched (KJ/m2) cond. ISO 179/2 at Room Temperature 4 3 4 10 11 8 10 11 12 11 11 16 20 23 23
    MFR(235°C/5Kg) CD 44 13 12 9 9 105 18 17 9 9 104 28 17 19 16
    Table 4
      3 Component.                        
      10 wt% Impact Modifier.                        
    Example # 16 Inv 17 Inv 18 Inv 19 Inv 20 Inv 21 Inv 22 Inv 23 Inv 24 Inv 25 Inv 26 Comp 27 Comp 28 Comp 29 Comp 30 Comp 31 Comp 32 Comp 33 Comp
    PP (wt%) 67.5 22.5 22.5 67.5 22.5 45 67.5 22.5 45 67.5 67.5 22.5 67.5 22.5 22.5 67.5 22.5 45
    PA-6 (wt%) 22.5 67.5 67.5 22.5 67.5 45 22.5 67.5 45 22.5 22.5 67.5 22.5 67.5 67.5 22.5 67.5 45
    MAH-NPP-1 (wt%) 0 10 0 10 10 10 5 5 5 5 0 0 0 0 0 3 3 3
    MAH-NPP2 (wt%) 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    NPP (wt%) 0 0 0 0 0 0 5 5 5 0 0 0 0 0 5 7 7 7
    MAH-g-EP (wt%) 0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0
    MAH-g-PP (wt%) 0 0 0 0 0 0 0 0 0 0 5 5 5 5 0 0 0 0
    EP (wt%) 0 0 0 0 0 0 0 0 0 5 0 0 5 5 5 0 0 0
    Tg.Flex.Mod.cond.(MPa ) ISO 178 966 1719 1501 940 1563 969 991 1545 1366 1007 1393 1791 1567 1883 1704 1154 1562 1421
    E-Mod.cond.(MPa) ISO 527 1043 1942 1723 940 1676 1012 963 1619 1468 1058 1529 1920 1706 2000 1835 1271 1692 1582
    Stress at yield cond. (MPa) ISO 527 - 45.5 - 27.3 43.5 29.7 27.4 41.2 36.7 26 32.1 47.8 33 47.6 41.9 29.4 40.2 38.5
    Elongation cond.(%) ISO 527 113 150 196 93 126 152 131 138 120 194 64 72 70/5 71 16 123 94 100
    F(max) (MPa) 26.9 - 42.6 - - - - - - - - - - - - - - -
    Izod notched (KJ/m2) cond. ISO 180/4A at Room Temperature 20 26 75 20 75 12 21 57 17 33 14 24 14 12 7 16 21 18.5
    Charpy notched (KJ/m2) cond. ISO 179/2 at Room Temperature 16 23 42 17 41 15 22 40 18 30 13 20 10 15 8 18 25 19
    MFR(235°C/5Kg) 10 10 8 10 10 4 8 16 8 9 10 13 13 25 84 13 22 15
    Table 5
    Example # 34 35 36 37 38 39 40 41 42
    PP (wt%) 67.5 67.5 67.5 67.5 67.5 22.5 22.5 22.5 22.5
    PA-6 (wt%) 22.5 22.5 22.5 22.5 22.5 67.5 67.5 67.5 67.5
    MA-NPP2 (wt%) 5 5 5 5 5 5 5 5 5
    EO1 (wt%) 5 0 0 0 0 0 0 0 0
    EO2 (wt%) 0 5 0 0 0 0 0 0 0
    EO3 (wt%) 0 0 5 0 0 0 0 0 0
    EO4 (wt%) 0 0 0 5 0 0 0 0 0
    EO5 (wt%) 0 0 0 0 5 0 0 0 0
    EO6 (wt%) 0 0 0 0 0 5 0 0 0
    EO7 (wt%) 0 0 0 0 0 0 5 0 0
    EO8 (wt%) 0 0 0 0 0 0 0 5 0
    EO9 (wt%) 0 0 0 0 0 0 0 0 5
                       
    Tg.Flex.Mod.cond.(MPa) ISO 178 1101 974 969 985 966 1468 1451 1464 1468
    E-Mod.cond.(MPa) ISO 527 1117 1045 1031 1015 992 1710 1698 1634 1664
    Stress at yield cond. (MPa) ISO 527 28 27 27 27 27 42 41 42 42
    Elongation cond.(%) ISO 527 192 183 187 176 204 106 87 99 101
    Izod notched (KJ/m2) cond. ISO 180/4A 19 26 25 28 32 36 36 38 32
    MFR(275°C/2.16Kg), g/10min           4 4 4 4
    MFR(235°C/2.16Kg), g/10min 1.5 1.4 1.4 1.4 1.4        


    [0038] The results in terms of the Izod impact strength and Flexural Modulus for Table 3 and Table 4 are plotted in Figure 1 and 2. These illustrate that, at equivalent modifier level (10%), this new composition increases impact strength by 60% versus a 50/50 blend of maleic anhydride grafted alpha olefin propylene copolymer and an ungrafted alpha olefin propylene copolymer or versus a 10% maleic anhydride grafted alpha-olefin propylene copolymer while keeping flexural modulus unchanged. Use of EP and EO copolymer as auxiliary impact modifier and more amorphous types to propylene based elastomer appear to be more effective.

    [0039] Various tradenames used herein are indicated by a ™ symbol, indicating that the names may be protected by certain trademark rights. Some such names may also be registered trademarks in various jurisdictions.


    Claims

    1. A thermoplastic composition comprising:

    (A) isotactic polypropylene, optionally containing comonomer, with a melting point of at least 110°C and (B) a polyamide; (A) and (B) constituting at least 70wt%;

    (C) at least 2 wt% of a grafted functionalized propylene-based elastomer having isotactic crystallinity, a heat of fusion of less than 40 J/g, and a melting point of less than 110°C; and containing at least 0.25 wt% of MAH-derived units based on the total weight of (C); and optionally (D) an ungrafted polyolefin having a melting point of less than 100°C, (C) and (D) combined being at least 8 wt%, the wt % of (A), (B), (C) and (D) being calculated on the basis of the total polymer weight.


     
    2. Composition according to Claim 1 in which (C) is at least 4 wt% and (C) and (D) combined are less than 30 wt%.
     
    3. Composition according to Claim 1 or Claim 2 in which the polypropylene comprises at least 60 wt% and the polyamide comprises at least 10 wt%, the polypropylene forming the matrix and said composition having a Flexural modulus of from 800 to 1600 MPa as determined by ISO 178.
     
    4. Composition according to Claim 3, in which said composition has a Flexural modulus of from 900 to 1200 MPa.
     
    5. Composition according to Claim 3 or Claim 4 in which the composition has a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa]:

    wherein the IZOD IMPACT is determined by ISO 180/4A.
     
    6. Composition according to Claim 3 or Claim 4 in which the composition has a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa]:


     
    7. Composition according to Claim 1 or Claim 2 in which the polyamide comprises at least 60 wt% and the polypropylene comprises at least 10 wt%, the polyamide forming the matrix and said composition having a Flexural modulus of from 1200 to 2000 MPa, as determined by ISO 178.
     
    8. Composition according to Claim 7 in which said composition has a Flexural modulus of from 1400 to 1800 MPa.
     
    9. Composition according to claim 7 or Claim 8 in which the composition has a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa] :


    wherein IZOD IMPACT is determined by ISO 180/4A.
     
    10. Composition according to Claim 7 or Claim 8 in which the composition has a ratio [Izod Impact J/m2] / [Flexural Modulus in MPa] :


     
    11. Composition according to any of the preceding claims in which the propylene-based elastomer contains up to 2 wt %, of MAH-derived units.
     
    12. Composition according to any of the preceding claims, in which the propylene-based elastomer contains from 0.3 to 1.5 wt% of MAH-derived units.
     
    13. Composition according to any of the preceding claims in which the propylene-based elastomer contains from 5 to 40 mol % of ethylene-derived units and has a heat of fusion of from 5 to 30 J/g.
     
    14. Composition according to any of the preceding claims in which the ungrafted polyolefin is an ethylene propylene rubber or a low density plastomer having a density of from 0.85 to 0.89 g/cc.
     
    15. Composition according to any of Claims 1 to 13 in which the ungrafted polyolefin is an EP copolymer having an ethylene content of from 45 to 65 percent.
     
    16. Composition according to Claim 14 or Claim 15, wherein the ungrafted polyolefin is used in an amount of from 60 to 20 wt % based on the total weight of (C) and (D).
     
    17. Composition according to any of the preceding claims in which the ungrafted polyolefin (D) is a propylene based elastomer having isotactic crystallinity.
     
    18. Composition according to any of the preceding claims in which the polypropylene is a polypropylene homopolymer, a polypropylene random copolymer containing less than 10 wt % of crystallinity disrupting comonomer.
     
    19. Composition according to any of the preceding claims in which the polyamide is nylon 6, nylon 12 or nylon 6,6.
     
    20. Molded or extruded article made from blend according to any of preceding claims.
     


    Ansprüche

    1. Thermoplastische Zusammensetzung, umfassend:

    (A) isotaktisches Polypropylen, das wahlweise Comonomer enthält, mit einem Schmelzpunkt von mindestens 110°C und

    (B) ein Polyamid, wobei (A) und (B) mindestens 70 Gew.-% ausmachen;

    (C) mindestens 2 Gew.-% eines gepfropft-funktionaliserten, propylenbasierten Elastomers mit isotaktischer Kristallinität, einer Schmelzwärme von weniger als 40 J/g und einem Schmelzpunkt von weniger als 110°C, das mindestens 0,25 Gew.-% Einheiten enthält, die von MAH abgeleitet sind, bezogen auf das Gesamtgewicht von (C); und wahlweise

    (D) ein ungepfropftes Polyolefin mit einem Schmelzpunkt von weniger als 100°C,

    wobei (C) und (D) zusammen weniger als 8 Gew.-% ausmachen, und wobei die Gew.-% von (A), (B), (C) und (D) auf Basis des gesamten Polymergewichts berechnet werden.
     
    2. Zusammensetzung nach Anspruch 1, wobei (C) mindestens 4 Gew.-% ausmacht und (C) und (D) zusammen weniger als 30 Gew.-% ausmachen.
     
    3. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei das Polypropylen mindestens 60 Gew.-% und das Polyamid mindestens 10 Gew.-% ausmacht, wobei das Polypropylen die Matrix bildet und die Zusammensetzung ein mittels ISO 178 bestimmtes Elastizitätsmodul von 800 bis 1600 MPa aufweist.
     
    4. Zusammensetzung nach Anspruch 3, wobei die Zusammensetzung ein Elastizitätsmodul von 900 bis 1200 MPa aufweist.
     
    5. Zusammensetzung nach Anspruch 3 oder Anspruch 4, wobei die Zusammensetzung folgendes Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) aufweist:

    12 < Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) x 1000 < 50, wobei die Izod-Schlagfähigkeit mittels ISO 180/4A bestimmt wird.


     
    6. Zusammensetzung nach Anspruch 3 oder Anspruch 4, wobei die Zusammensetzung folgendes Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) aufweist:


     
    7. Zusammensetzung nach Anspruch 1 oder Anspruch 2, wobei das Polyamid mindestens 60 Gew.-% und das Polypropylen mindestens 10 Gew.-% ausmacht, wobei das Polyamid die Matrix bildet und die Zusammensetzung ein mittels ISO 178 bestimmtes Elastizitätsmodul von 1200 bis 2000 MPa aufweist.
     
    8. Zusammensetzung nach Anspruch 7, wobei die Zusammensetzung ein Elastizitätsmodul von 1400 bis 1800 MPa aufweist.
     
    9. Zusammensetzung nach Anspruch 7 oder Anspruch 8, wobei die Zusammensetzung folgendes Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) aufweist:

    14 < Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) x 1000 < 80, wobei die Izod-Schlagfähigkeit mittels ISO 180/4A bestimmt wird.


     
    10. Zusammensetzung nach Anspruch 7 oder Anspruch 8, wobei die Zusammensetzung folgendes Verhältnis von Izod-Schlagzähigkeit (in J/m2) zu Elastizitätsmodul (in MPa) aufweist:


     
    11. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte Elastomer bis zu 2 Gew.-% von MAH abgeleitete Einheiten enthält.
     
    12. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte Elastomer 0,3 bis 1,5 Gew.-% Einheiten enthält, die von MAH abgeleitet sind.
     
    13. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das propylenbasierte Elastomer 5 bis 40 mol-% Einheiten enthält, die von Ethylen abgeleitet sind, und eine Schmelzwärme von 5 bis 30 J/g aufweist.
     
    14. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das ungepfropfte Polyolefin ein Ethylen-Propylen-Kautschuk oder ein Plastomer mit niedriger Dichte ist, welches eine Dichte von 0,85 bis 0,89 g/cm3 aufweist.
     
    15. Zusammensetzung nach einem der Ansprüche 1 bis 13, wobei das ungepfropfte Polyolefin ein EP-Copolymer mit einem Ethylengehalt von 45 bis 65 Prozent ist.
     
    16. Zusammensetzung nach Anspruch 14 oder Anspruch 15, wobei das ungepfropfte Polyolefin in einer Menge von 60 bis 20 Gew.-%, bezogen auf das Gesamtgewicht von (C) und (D), verwendet wird.
     
    17. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das ungepfropfte Polyolefin (D) ein propylenbasiertes Elastomer mit isotaktischer Kristallinität ist.
     
    18. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Polypropylen ein Polypropylen-Homopolymer oder ein statistisches Polypropylen-Copolymer ist, das weniger als 10 Gew.-% kristallinitätsstörendes Comonomer enthält.
     
    19. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Polyamid Nylon 6, Nylon 12 oder Nylon 6,6 ist.
     
    20. Gegossener oder gepresster Gegenstand hergestellt aus einem Gemisch gemäß einem der vorhergehenden Ansprüche.
     


    Revendications

    1. Composition thermoplastique comprenant :

    (A) du polypropylène isotactique, contenant éventuellement un comonomère, avec un point de fusion d'au moins 110 °C et (B) un polyamide ; (A) et (B) constituant au moins 70 % en poids ;

    (C) au moins 2 % en poids d'un élastomère à base de propylène fonctionnalisé greffé ayant une cristallinité isotactique, une chaleur de fusion inférieure à 40 J/g, et un point de fusion de moins de 110 °C ; et contenant au moins 0,25 % en poids de motifs dérivés du MAH, rapporté au poids total de (C) ; et éventuellement (D) une polyoléfine non greffée ayant un point de fusion de moins de 100 °C, (C) et (D) combinés représentant au moins 8 % en poids, le % en poids de (A), (B), (C) et (D) étant calculé sur la base du poids total de polymère.


     
    2. Composition selon la revendication 1 dans laquelle (C) représente au moins 4 % en poids et (C) et (D) combinés représentent moins de 30 % en poids.
     
    3. Composition selon la revendication 1 ou la revendication 2 dans laquelle le polypropylène constitue au moins 60 % en poids et le polyamide constitue au moins 10 % en poids, le polypropylène formant la matrice et ladite composition ayant un module de flexion de 800 à 1600 MPa tel que déterminé par l'ISO 178.
     
    4. Composition selon la revendication 3, ladite composition ayant un module de flexion de 900 à 1200 MPa.
     
    5. Composition selon la revendication 3 ou la revendication 4, la composition ayant un rapport [Résistance au choc Izod en J/m2]/[Module de flexion en MPa] :


    la résistance au choc Izod étant déterminée par l'ISO 180/4A.
     
    6. Composition selon la revendication 3 ou la revendication 4, la composition ayant un rapport [Résistance au choc Izod en J/m2]/[Module de flexion en MPa] :


     
    7. Composition selon la revendication 1 ou la revendication 2 dans laquelle le polyamide constitue au moins 60 % en poids et le polypropylène constitue au moins 10 % en poids, le polyamide formant la matrice et ladite composition ayant un module de flexion de 1200 à 2000 MPa, tel que déterminé par l'ISO 178.
     
    8. Composition selon la revendication 7, ladite composition ayant un module de flexion de 1400 à 1800 MPa.
     
    9. Composition selon la revendication 7 ou la revendication 8, la composition ayant un rapport [Résistance au choc Izod en J/m2]/[Module de flexion en MPa] :


    la résistance au choc Izod étant déterminée par l'ISO 180/4A.
     
    10. Composition selon la revendication 7 ou la revendication 8, la composition ayant un rapport [Résistance au choc Izod en J/m2]/[Module de flexion en MPa] :


     
    11. Composition selon l'une quelconque des revendications précédentes dans laquelle l'élastomère à base de propylène contient jusqu'à 2 % en poids de motifs dérivés du MAH.
     
    12. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'élastomère à base de propylène contient de 0,3 à 1,5 % en poids de motifs dérivés du MAH.
     
    13. Composition selon l'une quelconque des revendications précédentes dans laquelle l'élastomère à base de propylène contient de 5 à 40 % en moles de motifs dérivés de l'éthylène et a une chaleur de fusion de 5 à 30 J/g.
     
    14. Composition selon l'une quelconque des revendications précédentes dans laquelle la polyoléfine non greffée est un caoutchouc éthylène-propylène ou un plastomère à faible masse volumique ayant une masse volumique de 0,85 à 0,89 g/cc.
     
    15. Composition selon l'une quelconque des revendications 1 à 13 dans laquelle la polyoléfine non greffée est un copolymère EP ayant une teneur en éthylène de 45 à 65 pour cent.
     
    16. Composition selon la revendication 14 ou la revendication 15, dans laquelle la polyoléfine non greffée est utilisée dans une quantité de 60 à 20 % en poids, rapporté au poids total de (C) et (D).
     
    17. Composition selon l'une quelconque des revendications précédentes dans laquelle la polyoléfine non greffée (D) est un élastomère à base de propylène ayant une cristallinité isotactique.
     
    18. Composition selon l'une quelconque des revendications précédentes dans laquelle le polypropylène est un homopolymère de polypropylène, ou un copolymère statistique de polypropylène contenant moins de 10 % en poids de comonomère perturbant la cristallinité.
     
    19. Composition selon l'une quelconque des revendications précédentes dans laquelle le polyamide est le nylon 6, le nylon 12 ou le nylon 6,6.
     
    20. Article moulé ou extrudé fabriqué à partir d'un mélange selon l'une quelconque des revendications précédentes.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description