TECHNICAL FIELD
[0001] The present disclosure relates to a loading device, and in particular to a loading
device exerting a predetermined force on a test piece.
BACKGROUND
[0002] The traditional internal combustion engine relies on connecting rods for transmitting
combustion power from a piston main body to a crankshaft of the engine, thereby converting
the linear motion of the piston main body to rotational motion at the crankshaft.
The connecting rod includes a crankshaft or big end surrounding the crankshaft, and
a piston pin or small end that receives a piston or wrist pin. For ease of assembly
to the crankshaft, the crankshaft end of the connecting rod may be sectioned into
two portions. The first portion is part of the main body of the connecting rod, while
the second portion is a separate cap that is secured to the first portion. The first
portion may be secured to the cap by fasteners extending through bores in the cap
to engage threaded bores in the first portion.
[0003] During operation of the engine, the fasteners securing the cap to the crankshaft
end of the connecting rod sometimes become loose or separate from the bores. In particular,
fastener separation depends on factors such as fastener pre-load, thread geometry
and coating. Other factors may also include engine parameters such as revolutions
per minute (RPM), resonance frequency, and transverse loads exerted on the connecting
rod caused by crankpin and/or crank throw bending and crankpin to cylinder misalignment.
Therefore, the connecting rod typically undergoes testing where the connecting rod
is operated within an engine, e.g., simulating adverse operating conditions, in an
effort to ensure that the fasteners remain secured within the bores during the normal
operating life of the engine. During testing, the engine may be operated for at least
several hundred hours to ensure that the fasteners remain secured to the first portion
of the crankshaft end of the connecting rod. However, operating an engine for extended
periods of time to perform this type of testing may become time-consuming and costly,
as operating an engine for an extended period of time typically requires a substantial
amount of fuel to power the engine. The complexity of engine assemblies may also lead
to difficulties in repeating test results, as test engines may not accurately re-create
identical operating conditions for the connecting rods. Moreover, many engine components
or even the entire engine might need to be replaced after testing. Additionally, contaminants
may be generated that could be minimized using a different mechanism.
[0004] Several devices for simulating loading conditions of objects have been disclosed
in the prior art.
GB 2324876 A describes a bending apparatus which allows for periodically reversing a bending moment
applied to a test piece for analyzing its fatigue characteristics. An asymmetric stress
distribution in the test piece caused by different responses of the material to tension
and compression is taken into account by the load reversal.
[0005] JP 2007178351 A discloses test device for evaluating the strength of a test piece against plastic
bending deformations. A bending moment is applied to the test piece by repeatedly
raising and lowering two frames fixed to the test piece in relation to each other.
[0006] JP 2000097833 A describes a test device for evaluating a three-dimensional deformation of a semiconductor
device soldered to a circuit board in response to an external load which is applied
to simulate the effect of a thermal load the semiconductor device may be exposed to
during operation.
[0007] Therefore, there exists a need to provide a device and a corresponding loading method
that simulate the loading conditions that may occur at the crankshaft end of a connecting
rod during operation of a reciprocating engine. Said demand is met by the loading
device and the corresponding loading method with the features according to the independent
claims 1 and 12, respectively. Preferred embodiments are subject of the dependent
claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
FIG. 1 is a perspective view of a loading assembly including a test piece;
FIG. 2 is a partially exploded view of the loading assembly and the test piece, the
loading assembly including a first member, a second member, a first clamping member
and a second clamping member;
FIG. 3A is a partial cutaway plan view of the test piece clamped between the first
member and the second member of the loading device;
FIG. 3B is a partial cutaway plan view of the test piece clamped between the first
clamping member and the second clamping member of the loading device;
FIG. 4 is a partially exploded view of an exemplary test piece; and
FIG. 5 is a process flow diagram of an exemplary process for exerting a force on the
test piece by the loading device.
DETAILED DESCRIPTION
[0009] Referring now to the discussion that follows and also to the drawings, illustrative
approaches to the disclosed systems and methods are shown in detail. Although the
drawings represent some possible approaches, the drawings are not necessarily to scale
and certain features may be exaggerated, removed, or partially sectioned to better
illustrate and explain the present disclosure. Further, the descriptions set forth
herein are not intended to be exhaustive or otherwise limit or restrict the claims
to the precise forms and configurations shown in the drawings and disclosed in the
following detailed description.
[0010] Moreover, a number of constants may be introduced in the discussion that follows.
In some cases illustrative values of the constants are provided. In other cases, no
specific values are given. The values of the constants will depend on characteristics
of the associated hardware and the interrelationship of such characteristics with
one another as well as environmental conditions and the operational conditions associated
with the disclosed system.
[0011] FIG. 1 illustrates an exemplary loading device 20 clamping a test piece 30. The test
piece 30 is illustrated as a connecting rod and includes a first side 28 and a second
side 32, where the first side 28 generally opposes the second side 32. The loading
device 20 includes a first member 34, a second member 36, and an actuator 38 in mechanical
communication with the second member 36. The first and second members 34 and 36 may
be fixtures clamping the test piece 30 in place within the loading device 20. Referring
generally to FIGs. 1 and 2, the loading device 20 also includes two pairs of clamps,
a pair of first clamping members or clamps 72 and a pair of second clamping members
or clamps 74. The first pair of clamps 72 may be connected to the first member 34
by first fasteners 78, and the second pair of clamps 74 may be fixedly secured to
the second member 36 by second fasteners 80. Additionally, spacers 90 are provided
that define a predetermined spacing between the clamps 74 and second member 36. Accordingly,
the first and second fasteners 78, 80 and spacers 90 may generally allow adjustment
of a relative position of the clamps 72, 74 and the members 34, 36, respectively,
e.g., to accommodate test pieces or connecting rods of different sizes.
[0012] Referring to FIG. 1, the first member 34 is generally fixed to a frame having a stationary
beam 70 via a load cell 68. The actuator 38 drives the second member 36 in a first
direction 50 that is oriented away from the first member 34, and a second direction
52 that is oriented towards the first member 34. In particular, the actuator 38 may
be in mechanical communication with the second member 36, where the actuator 38 exerts
a predetermined force on the second member 36 as the second member 36 is driven in
the first and second directions 50 and 52. Turning to FIG. 2, which is an exploded
view of the loading device 20, the first member 34 includes a first surface 60 that
contacts the first side 28 of the test piece 30 in the assembled loading device 20.
As best seen in FIG. 2, the first surface 60 may be elongated, defining a first longitudinal
axis A1-A1 that is longitudinal with respect to the first surface 60. The second member
36 includes a second surface 62 that may also be elongated such that it defines a
second longitudinal axis A2-A2 extending longitudinally with respect to the second
surface 62. The second surface 62 may be positioned generally perpendicular to the
first surface 60, and contacts the second side 32 of the test piece 30 in the assembled
loading device 20. That is, the first surface 60 may be positioned such that the first
longitudinal axis A1-A1 is generally perpendicular to the second longitudinal axis
A2-A2 of the second surface 62. The first and second surfaces 60, 62 may thus be configured
to apply respective edge loads to the test piece 30 that are generally orthogonal
to each other, as will be explained further below. The first pair of clamps 72 includes
a first clamp surface 82, and the second pair of clamps 74 includes a second clamp
surface 84. The first pair of clamps 72 may cooperate to define a longitudinal axis
A3-A3, while the second pair of clamps cooperate to define a longitudinal axis A4-A4,
where each of the axes A3-A3, A4-A4 are generally perpendicular to each other. When
assembled to the loading device 20, the first clamp surface 82 contacts the second
side 32 of the test piece 30 and the second clamp surfaces 84 contact the first side
28 of the test piece 30.
[0013] Referring to FIG. 1, the second clamp surface 84 may be generally aligned with the
second surface 62 of the second member 36, and the second member 36 may be fixedly
secured to the second pair of clamps 74 when the loading device 20 is assembled. Accordingly,
the axes A2-A2, A4-A4 may be generally aligned parallel to each other. The first clamping
surface 82 contacts the second side 32 of the test piece 30 and may be positioned
generally perpendicular to the second clamping surface 84. When the second member
36 is driven away from the first member 34, i.e., in the first direction 50 shown
in FIG. 1, the second pair of clamps 74 exert the predetermined force on the test
piece 30. When the second member 36 is driven in the second direction 52 toward the
first member, the second member 36 exerts the predetermined force on the test piece
30. The second pair of clamps 74 and the second member 36 exert the predetermined
force on the test piece 30 to create bending moments in the test piece 30. These bending
moments may thus be predetermined, as will be described further below. The predetermined
force may be communicated from the actuator 38 to the second member 36 at a predetermined
frequency rate.
[0014] In one illustration of the loading device 20, the predetermined frequency may be
adjustable in value and correlate generally with a rotational speed, e.g., RPM, of
an associated reciprocating engine. More specifically, the predetermined frequency
substantially simulates about the same frequency that a connecting rod would experience
while operating in an exemplary reciprocating engine at a specific RPM. The predetermined
frequency value can be adjusted to represent different RPM values. The reciprocating
engine may be selected from any type of engine including one or more reciprocating
pistons, such as, for example, an internal combustion engine.
[0015] The predetermined force and resulting bending moment may also be adjustable in value
and correlate generally with a transverse load exerted on a connecting rod of a reciprocating
engine. More specifically, the predetermined force substantially simulates the load
that a crankshaft end of a connecting rod may experience while operating in a reciprocating
engine. The transverse load is typically caused by crankpin bending and crankpin to
cylinder misalignment that occurs in some reciprocating engines. This is because reciprocating
engines usually have some degree of bending in the crankpin and/or crank throw as
well as some degree of crank throw to cylinder misalignment.
[0016] The transverse load may be defined as a load exerted on a crankshaft end of a connecting
rod that is generally perpendicular to an axis of a corresponding cylinder in operation
with the connecting rod. The transverse load may also be generally parallel with respect
to a longitudinal axis of a crankshaft in communication with the crankshaft end of
the connecting rod. The predetermined force exerted by the actuator 38 and onto the
test piece 30 corresponds to the transverse load exerted on the crankshaft end of
the connecting rod. Therefore, the test piece 30 may be placed on the loading device
20 with the predetermined force exerted on the test piece 30 at the predetermined
frequency in an effort to simulate about the same loads exerted on a crankshaft end
of a connecting rod operated within a reciprocating engine at specified operating
conditions. The predetermined force may be adjusted independently of the predetermined
frequency value, however, the predetermined force may also be adjusted in relation
to the predetermined frequency value as well.
[0017] In one exemplary illustration of the loading device 20, the predetermined force is
between about 2 kN and about 30 kN, and the predetermined frequency value is between
about 10 Hz and about 100 Hz. The predetermined loading frequency represents the engine
reciprocating speed in rotations per minute (RPM) divided by 120, where the engine
RPM is first divided by the value 60 to convert the RPM value into cycles per second
(Hertz). Then the value is divided by the value 2, because there is one power cycle
for every two crank revolutions in a four stroke engine. For two-stroke engine applications
the final step of dividing by 2 is not necessary as there is a power cycle in each
revolution of the engine. As one specific example, in one illustration the engine
speed may be about 4000 RPM, which corresponds to about 33 Hz.
[0018] Continuing to refer to FIG. 1, the loading device 20 is illustrated in the clamped
position, where the first and second surfaces 60 and 62 contact the first and second
sides 28 and 32 of the test piece 30, respectively. It should be noted that while
FIG. 1 illustrates the first member 34 positioned above the second member 36, the
loading device 20 may also be arranged in the opposite direction, i.e., with the second
member 36 positioned above the first member 34, laterally, or any other arrangement
that is convenient.
[0019] Turning to FIG. 2, the first and second surfaces 60 and 62 may be generally longitudinally
oriented surfaces with a generally narrow width W, where the width W of the surfaces
60 and 62 are sized to create an edge load on the test piece 30. In one exemplary
illustration, the first and second surfaces 60 and 62 may include a width W of about
between 2 mm and 3 mm. The first clamp surface 82 and the second clamp surface 84
are also similar, with generally longitudinally oriented surfaces with a width W'
sized for creating an edge load as well. In one exemplary illustration, the first
and second clamp surfaces 82 and 84 may also include a width of about between 2 mm
and 3 mm.
[0020] FIG. 1 illustrates the first member 34 positioned generally perpendicular to the
second member 36. The actuator 38 may be any type of actuator that exerts a predetermined
force at a specified frequency, such as, for example, a pneumatically or hydraulically
powered actuator. FIG. 1 also illustrates the actuator 38 in communication with the
second member 36 by a shaft 66, however the actuator 38 may also be in communication
with the second member 36 through a series of linkages as well. Alternatively, the
actuator 38 may also be in direct communication with the second member 36 as well,
and the shaft 66 may be omitted.
[0021] The first member 34 may be in a generally fixed position adjacent a load cell 68,
with the load cell 68 positioned against a stationary beam 70. The load cell 68 measures
tension and compression forces that are exerted by the actuator 38 to the first and
second members 34 and 36. The load cell 68 may be in electrical communication with
a data acquisition system (not shown), where the load cell 68 communicates the tension
and compression force data to the data acquisition system. The stationary beam 70
provides support to and allows for the first member 34 to remain generally stationary
even as the actuator 38 exerts the predetermined force in the first direction 50,
forcing any deflection caused by the loading of the actuator to be generally confined
to the test piece 32.
[0022] The first pair of clamps 72 is each assembled to the first member 34, and the second
pair of clamps 74 are each assembled to the second member 36. The first pair of clamps
72 may thus be selectively fixed to the first member 34, and the second pairs of clamps
74 may each be selectively fixed to the second member 36. The first clamp surface
82 contacts the second side 32 of the test piece 30, and the second clamp surface
84 contacts the first side 28 of the test piece 30. The first fasteners 78 may be
connected to the first member 34 by a threaded engagement, where the first fasteners
78 engage within first apertures 88 of the first member 34 and with first apertures
89 of the first pair of clamps 72 (FIGs. 1 and 2). The second fasteners 80 may also
be fixedly connected to the second member 36 by a threaded engagement, where the second
fasteners 80 engage within second apertures 85 of the second member 36 and apertures
87 of the second clamping members 74 (FIGS. 1 and 2).
[0023] The second fasteners 80 include spacers 90, where the spacers fixedly connect the
second pair of clamps 74 to the second member 36. That is, the spacers fixedly connect
the second pair of clamps 74 to the second member 36, such that the second pair of
clamps 74 is positioned at a predetermined distance D from the second member 36. The
predetermined distance D generally remains constant as the actuator 38 drives the
second member in the first direction 50 and the second direction 52. The spacers may
also allow for the second pair of clamps 74 to clamp the test piece 30 securely to
the second member 36. In contrast, the first fasteners 78 may be threaded bolts that
allow the first pair of clamps 72 to be adjusted in relation with the first member
34, e.g., to fit test pieces having a different thicknesses.
[0024] FIG. 3A is a partially sectioned view of the test piece 30 loaded between the first
member 34 and the second member 36. The test piece 30 is illustrated as a connecting
rod, where a crankshaft end 92 of the connecting rod is clamped between the first
member 34 and the second member 36 in a predetermined orientation, exemplified here
as perpendicular. The crankshaft end 92 of the connecting rod is illustrated as a
fracture split type connecting rod, where the connecting rod is split along an axis
B-B (shown in FIG. 4) creating a split line 94. The fracture-type split line 94 is
typically created when the connecting rod is fractured into two pieces in a manufacturing
operation commonly known as cracking. Specifically, the connecting rod may be fractured
into a first portion 96 and a second portion or cap 98. The first portion 96 and the
cap 98 may be held together at the split line 94 by fasteners 100, which are illustrated
as bolts. The connecting rod is illustrated with a piston pin end 93 remaining generally
free in the loading device 20, where the piston pin end 93 is generally not tested
in the loading device 20. In one example, the piston pin end 93 may even be removed
from the connecting rod prior to being placed in the loading device 20.
[0025] Although FIG. 3A illustrates the connecting rod with a split line 94 created by cracking,
it should be noted that the split line 94 may be created by other manufacturing operations
as well, such as, for example, split machining. However, it may be advantageous to
include a split line 94 created by cracking, because fractured portions of the connecting
rod generally produce a more precise fit when assembled together when compared to
machining. In addition, connecting rods with no fracture or split line may also be
tested.
[0026] The longitudinal axis A2-A2 of the second surface 62 of the second member 36 (best
seen in FIG. 2) is illustrated as being generally perpendicular to the split line
94, while the longitudinal axis A1-A1 first surface 60 of the first member 34 (best
seen in FIG. 2) is illustrated as being generally parallel to and in contact with
the split line 94. As the second member 36 exerts the predetermined force in the second
direction 52 towards the first member 34 (illustrated in FIG. 1), the first member
34 remains relatively stationary while the second member 36 and the second surface
62 exerts the predetermined force upon the test piece 30. The relative movement between
the first and second members 34 and 36 creates a first bending movement in the crankshaft
end 92 of the connecting rod, where there is approximately zero displacement at the
split line 94, and about maximum displacement at a longitudinal axis L-A of the connecting
rod. That is, the first bending movement of the crankshaft end 92 may be at about
a minimum value at the fracture split line 94 of the crankshaft end 92, and about
a maximum value at the longitudinal axis L-A of the connecting rod as the second member
36 exerts force on the test piece 30. The first bending movement of the test piece
30 thus imparts a bending moment about a moment axis B-B (shown in FIG. 4) that is
aligned generally parallel to an interface between the cap portion 98 and first portion
96 of the test piece 30, e.g., the split line 94.
[0027] FIG. 3B illustrates the test piece 30 loaded between one of the first pair of clamps
72 including first clamp surface 82, and one of the second pair of clamps 74 including
the second clamp surface 84. When assembled to the loading device 20 (FIG. 1), the
first clamp surface 82 contacts the second side 32 of the test piece 30 and the second
clamp surface 84 contacts the first side 28 of the test piece 30. As the second member
36 is driven in the first direction 50 (FIG. 1), the second clamp surfaces 84 exerts
the predetermined force on the test piece 30, where the second clamp surfaces 84 may
be generally aligned with the second surface 62 located on the opposing side of the
test piece 30 (FIG. 3A), and positioned generally perpendicular to the split line
94. As the second member 36 (FIG. 3A) is driven in the first direction 50, the first
clamp surfaces 82 are translated with respect to the second clamp surface 84 as a
result of relative movement between the first and second pairs of clamps 72, 74.
[0028] The relative movement between the first and second pairs of clamps 72 and 74 create
the bending moment in the test piece 30 about the fracture split line 94 described
above. Further, the relative movement between the first and second pairs of clamps
72, 74 may also create a second bending movement in the crankshaft end 92 of the connecting
rod. The second bending movement in the test piece 30 may generally result from the
constraint of the test piece 30 along the longitudinal axis L-A between the second
surface 62 and second clamp surfaces 84 during the relative movement between the first
and second clamps 72, 74. This second bending movement generally creates a second
bending moment in the test piece 30 about the longitudinal axis L-A that is generally
perpendicular to moment axis B-B, i.e., the first bending movement described above
in FIG. 3A.
[0029] While FIG. 2 illustrates the first surface 60 and the first axis A1-A1 as generally
perpendicular to the second surface 62 and the second axis A2-A2, the first and second
surfaces 60 and 62 need only be oriented such that the loading device 20 exerts the
first bending moment as described above. That is, the first and second surfaces 60
and 62 need not be exactly perpendicular to one another, but only perpendicular to
the extent that that the first bending moment is created in the test piece 30 about
the split line 94, while the second bending moment is created in the test piece 30
about the longitudinal axis L-A of the connecting rod.
[0030] The first bending moment and second bending moment created by the loading device
20 are similar to the bending moments that the crankshaft end 92 of the connecting
rod experiences when operating within a reciprocating engine. More specifically, because
the predetermined force of the loading device 20 substantially simulates the load
and bending moments that a crankshaft end of a connecting rod experiences in a reciprocating
engine, similar bending moments created in the crankshaft end of the connecting rod
may also be created.
[0031] FIG. 4 is an exploded view of the test piece 30, which is illustrated as a connecting
rod, and includes the fasteners 100 that connect the first portion 96 to the cap 98.
The fasteners 100 may include threads 102, and the connecting rod may include receiving
apertures 104, where the fasteners 100 are received by the receiving apertures 104.
Specifically, the fasteners 100 may extend through an unthreaded portion of the apertures
104 in the cap 98 so that the threads 102 of the fasteners 100 engage complementary
threads 106 inside of the apertures 104 within the first portion 96.
[0032] During operation of the loading device 20, the first and second members 34 and 36
and the first and second pairs of clamps 72 and 74 create the first and second bending
moments on the test piece 30. The first and/or second bending moments generally create
relative motion between the fasteners 100 and the threads 106 of the apertures 104
when the connecting rod is assembled. The relative movement between the fasteners
100 and the threads 106 tends to loosen the fasteners 100 out of the apertures 104
over a predetermined period of time, similar to the loosening that the fasteners 100
may encounter when the connecting rod operates within a reciprocating engine. The
fasteners 100 may be loosened from the apertures 104 over a predetermined period of
time as the loading device 20 is operated. Therefore, the loading device 20 may be
used in place of a reciprocating engine during testing the connecting rod. In one
exemplary illustration, the predetermined amount of time may be in the range of about
150 to about 400 hours for an engine test, however, other time periods may be used
as well. By comparison, in one exemplary illustration the loading device 20 can loosen
fasteners 100 after only four to five hours of operation, and in some cases within
several minutes. The predetermined period of time depends on various factors, such
as the fastener 100 pre-load, thread geometry and coating. The predetermined period
of time also depends on the frequency and load that the loading device 20 exerts on
the test piece 30.
[0033] One advantage of using the loading device 20 is that the loading device is typically
more economical to use during testing of the connecting rod than a reciprocating engine.
The decreased time intervals associated with creating the loosening phenomenon in
a fastener 100 of a connecting rod have been noted above. Moreover, engine assemblies
may create significantly different test environments for connecting rods and may therefore
be very difficult to replicate even when engine designs are identical. Accordingly,
the loading device 20 ensures more repeatable results as a result of the more simplified
construction as compared with a reciprocating engine. Additionally, operating a reciprocating
engine for several hundred hours usually requires a substantial amount of fuel to
power the engine. Operating a reciprocating engine for several hundred hours may also
be costly because many engine components or even the entire engine may have to be
replaced.
[0034] With specific reference to FIG. 5, a process 500 for creating bending moments on
a crankshaft end of a connecting to simulate the load experienced on a connecting
rod during operation of a reciprocating engine is described. Process 500 generally
begins at steps 502. In step 502, a first member 34 is provided, where the first member
34 includes a first surface 60 that contacts a first side 28 of a test piece 30. In
the illustrations of FIGS. 1-4, the test piece 30 is a connecting rod including the
first side 28 and a second side 32 that generally oppose one another. Process 500
may then continue to step 504.
[0035] In step 504, a second member 36 is provided, where the second member includes a second
surface 62 that may be positioned generally perpendicular to the first surface 60
as described above. The second surface contacts the second side 32 of the test piece
30 in the assembled loading device 20. Referring to FIG. 2, the first and second surfaces
60 and 62 may be generally longitudinally oriented surfaces with a width W sized for
creating an edge load on the test piece 30. In one exemplary illustration, the first
and second surfaces 60 and 62 may include a width of between about 2 mm and about
3 mm, measuring the width in a direction generally normal to a longitudinally extending
axis of the surfaces 60, 62, e.g., axis A1-A1 and axis A2-A2, respectively. Process
500 may then continue to step 506.
[0036] In step 506, a first clamping member 72 including a first clamping surface 82 is
positioned to contact the second side 32 of the test piece 30. As discussed above,
the first clamping member 72 is secured to the first member 34. First fasteners 78
may be connected to the first member 34 by a threaded engagement, where the first
fasteners 78 engage within first apertures 88 of the first member 34 and with first
apertures 89 of the first clamping member 72 (FIGs. 1 and 2). Process 500 may then
continue to step 508.
[0037] In step 508, a second clamping member 74 including a second clamp surface 84 is positioned
to contact the first side 28 of the test piece 30. The second clamp surface 84 may
be generally perpendicular to the first clamp surface 82, as described above. Turning
to FIG. 1, when assembled to the loading device 20, the first clamp surface 82 contacts
the second side 32 of the test piece 30 and the second clamp surface 84 contacts the
first side 28 of the test piece 30. The second clamp surface 84 may be generally aligned
with the second surface 62 of the second member 36, and the second member 36 may be
fixedly connected to the second clamping members 74 when the loading device 20 is
assembled. The first clamping surface 82 contacts the second side 32 of the test piece
30 and may be positioned generally perpendicular to the first clamping surface 60.
The first and second clamping surfaces 82 and 84 may be generally longitudinally oriented
surface with a width W' sized for creating an edge load on the test piece 30. Similar
to the first and second surfaces 60 and 62, the width W' may be between about 2 mm
and about 3 mm. Process 500 may then continue to step 510.
[0038] In step 510, a predetermined force drives the second member 36 in a first direction
50 away from the first member 34. Referring generally to FIG. 1, an actuator 38 may
be used to communicate the predetermined force to the second member 36. As discussed
above, as the second member 36 is driven in the first direction 50, the second clamp
surface 84 exerts the predetermined force on the test piece 30, where the second clamp
surfaces 84 may be generally aligned with the second surface 62 located on the opposing
side of the test piece 30 (FIG. 3A). Process 500 may then continue to step 512.
[0039] In step 512, the predetermined force drives the second member 36 in a second direction
52 towards the first member 34. As discussed above, as the second member 36 exerts
the predetermined force in the second direction 52 towards the first member 34 (illustrated
in FIG. 1), the first member 34 remains generally stationary, thereby constraining
the test piece 30 and creating the first and/or second bending moments in the test
piece 30. Process 500 may then continue to step 514.
[0040] In step 514, bending movements in the test piece 30 are created as the predetermined
forces are exerted in the first and second directions 50 and 52, thereby creating
a first bending moment and a second bending moment. Specifically, as discussed above,
when the second member 36 is driven in the first direction 50 (FIG. 1), the second
clamp surface 84 exerts the predetermined force on the test piece 30, where the second
clamp surfaces 84 may be generally aligned with the second surface 62 located on the
opposing side of the test piece 30 (FIG. 3A), and positioned generally perpendicular
to the split line 94. The first clamp surface 82 may be generally stationary with
respect to the second clamp surface 84 as the second member 36 (FIG. 3A) is driven
in the first direction 50 (FIG. 1). Therefore, relative movement between the first
and second pairs of clamps 72 and 74 creates the first and second bending moments
in the crankshaft end 92 of the connecting rod described above.
[0041] As the second member 36 exerts the predetermined force in the second direction 50
towards the first member 34 (illustrated in FIG. 1), the first member 34 remains relatively
stationary while the second member 36 exerts the predetermined force upon the test
piece 30. The relative movement between the first and second members 34 and 36 creates
the first bending movement in the crankshaft end 92 of the connecting rod. Referring
generally to FIG. 3B, the first bending moment is created in the test piece 30 about
the split line 94, e.g., about moment axis B-B describe above. For example, as described
above the movement of the second member 36 relative to the first member 34 may result
in maximum displacement of the test piece 30 along longitudinal axis L-A of the test
piece 30, and minimum displacement of the test piece 30 at the fracture split line
94 as the second member 36 exerts force on the test piece 30. Process 500 may then
continue to step 516.
[0042] In step 516, the predetermined force is adjustable to correlate generally with a
transverse load exerted on a connecting rod of a reciprocating engine. More specifically,
as discussed above, the predetermined force substantially simulates approximately
the same load that a connecting rod would experience while operating in a reciprocating
engine, where the transverse load is typically caused by crank throw bending and crank
throw to cylinder misalignment that occurs in some reciprocating engines. This is
because reciprocating engines usually have some degree of bending in the crank throw
as well as some degree of crank throw to cylinder misalignment. In one exemplary illustration
of the loading device 20, the predetermined force is between about 2 kN and about
30 kN. Process 500 may then continue to step 518.
[0043] In step 518, the predetermined frequency correlates generally with an RPM of a reciprocating
engine. For example, as discussed above, the predetermined frequency substantially
simulates about the same frequency that a connecting rod would experience while operating
in a reciprocating engine. The predetermined force may be adjusted independently of
the predetermined frequency value, however, the predetermined force may also be adjusted
in relation to the predetermined frequency value as well. In one exemplary illustration
of the loading device 20, the predetermined frequency value is between about 10 Hz
and about 100 Hz. Process 500 may then terminate.
[0044] Although process 500 describes the loading device 20 utilized to simulate the test
piece 30 being operated within a reciprocating engine, the loading device 20 may have
other uses as well. In one alternative illustration of the loading device 20, the
loading device 20 may be utilized to create a connecting rod with a split-type crankshaft
end, such as the connecting rod 30 with the split line 94 illustrated in FIGs. 3A,
3B, and 4. That is, referring generally to FIGs. 3A and 3B, the loading device 20
may direct a predetermined breaking force having a predetermined frequency to the
connecting rod 30 such that the connecting rod 30 cracks along axis A-A, cracking
apart the cap 98 from the first portion 96 of the connecting rod and creating the
split line 94. For example, in one exemplary illustration, a predetermined load is
applied at a frequency generally corresponding to a natural frequency of a connecting
rod, thereby initiating a split fracture in the connecting rod.
[0045] More specifically, turning to FIG. 1, a test piece 30 that is a connecting rod without
a split line 94 may be placed within the loading device 20. The loading device 20
may then fracture the connecting rod at the crankshaft end 92. In this illustration
the connecting rod begins as a single unitary piece. The loading device 20 may then
exert the predetermined breaking force in the second direction 52, where the predetermined
breaking force is a value sufficient to fracture the test piece 30 into two pieces
at the crankshaft end. The test piece 30 may then be removed from the loading device
20.
1. A loading device (20) for a test piece (30) including a first side (28) and a second
side (32), the first side generally opposing the second side, the loading device comprising:
a first member (34) including a first surface (60), the first surface configured to
contact the first side (28) of the test piece (30);
a first pair of clamping members (72) fixedly secured to the first member (34) and
each including a first clamping surface (82), where the first clamping surface is
configured to contact the second side (32) of the test piece (30), a line connecting
the first clamping surfaces (82) defining a first longitudinal axis (A3);
a second member (36) including a second surface (62) configured to contact the second
side (32) of the test piece (30);
a second pair of clamping members (74) fixedly secured to the second member (36) and
each including a second clamping surface (84), wherein the second clamping surface
is configured to contact the first side (28) of the test piece (30), a line connecting
the second clamping surfaces (84) defining a second longitudinal axis (A4); and
an actuator (38) in communication with the second member (36) and configured to exert
a predetermined force to drive the second member in a first direction (50) away from
the first member (34) and a second direction (52) toward the first member;
wherein the first and second clamping members (72, 74) are positioned such that they
cooperate to create a bending moment in the test piece (30) when the predetermined
force is exerted on the test piece by driving the second member (36) in the first
direction (50).
wherein the first and second members (34, 36) are positioned such that they cooperate
to create a bending moment in the test piece (30) when the predetermined force is
exerted on the test piece by driving the second member (36) in the second direction
(52),
characterized in that
said first and second longitudinal axes (A3, A4) are positioned generally perpendicular
to each other.
2. The loading device (20) of claim 1, wherein the first and second surfaces (60, 62)
of the first and second members (34, 36) each define third and fourth longitudinal
axes (A1, A2), respectively, the third and fourth longitudinal axes being generally
perpendicular to each other.
3. The loading device (20) of claim 1, wherein the actuator (38) is configured to exert
the predetermined force on the second member (36) at a predetermined frequency value.
4. The loading device (20) of claim 3, wherein the predetermined frequency value is adjustable
and correlates generally with a rotational speed of a reciprocating engine associated
with the test piece (30), and the predetermined force is adjustable and correlates
generally with a transverse load exerted on a connecting rod of the reciprocating
engine.
5. The loading device (20) of claim 3, wherein the predetermined frequency value is between
about 10 Hz and about 100 Hz.
6. The loading device (20) of claim 3, wherein the predetermined frequency value is approximately
equal to a natural frequency of the test piece (30).
7. The loading device (20) of claim 3, wherein the predetermined force is between about
2 kN and about 30 kN.
8. A loading device (20) according to one of the claims 1 to 7, wherein the test piece
(30) includes two components secured together with a threaded fastener (100) and defining
a split between the two components, the bending moment created in the test piece having
a moment axis aligned generally parallel to the split between the two components of
the test piece.
9. The loading device of claim 8, wherein the test piece is a crankshaft end of a connecting
rod split along an axis to create a split line, and the first longitudinal axis (A3)
is aligned generally parallel with the split line (94), and
held together at the split line by the threaded fastener (100).
10. The loading device of claim 9, wherein the first clamping members (72) and the second
clamping members (74) are positioned such that they cooperate to create the bending
moment about the split line (94) as the predetermined force is exerted on the connecting
rod.
11. The loading device of claim 1, wherein the first surface (60) of the first member
(34) and the second surface (62) of the second member (36) are each between about
2 mm and about 3 mm in width, the width measured generally orthogonally with respect
to the first and second longitudinal axes of the first and second surfaces, respectively.
12. A method of loading a test piece (30), comprising the steps of:
providing a first member (34) including a first surface (60), the first surface contacting
a first side (28) of the test piece;
positioning a first clamping surface (82) of a first pair of clamping members (72)
to contact a second side (32) of the test piece, wherein the first pair of clamping
members is fixedly secured to the first member (34), a line connecting the first clamping
surfaces (82) of the first pair of clamping members defining a first longitudinal
axis (A3);
providing a second member (36) including a second surface (62), the second surface
contacting the second side (32) of the test piece (30) that generally opposes the
first side (28);
positioning a second clamping surface (84) of a second pair of clamping members (74)
to contact the first side (28) of the test piece, the second pair of clamping members
is fixedly secured to the second member (36), a line connecting the second clamping
surfaces (84) of the second pair of clamping members (74) defining a second longitudinal
axis (A4; and
exerting a predetermined force driving the second member (36) in a first direction
(50), wherein the first direction is oriented away from the first member (34);
wherein the first and second clamping members (72, 74) are positioned such that they
cooperate to create a bending moment In the test piece (30) when the predetermined
force is exerted on the test piece by driving the second member (36) in the first
direction (50), exerting the predetermined force driving the second member (36) in
a second direction (52), wherein the second direction is oriented towards the first
member (34);
wherein the first and second members (34, 36) are positioned such that they cooperate
to create a bending moment in the test piece (30) when the predetermined force is
exerted on the test piece by driving the second member (36) in the second direction
(52),
characterized in that
said first and second longitudinal axes (A3, A4) are positioned generally perpendicular
to each other.
13. The method of claim 12, further comprising:
adjusting the predetermined force to correlate generally with a transverse load exerted
on a connecting rod of a reciprocating engine; and
exerting the predetermined force at a predetermined frequency, wherein the frequency
correlates generally with a rotational speed of the reciprocating engine.
1. Belastungsvorrichtung (20) für ein Probestück (30), das eine erste Seite (28) und
eine zweite Seite (32) einschließt, wobei die erste Seite im Allgemeinen der zweiten
Seite gegenüberliegt, wobei die Belastungsvorrichtung Folgendes umfasst:
ein erstes Element (34), das eine erste Fläche (60) einschließt, wobei die erste Fläche
dafür konfiguriert ist, die erste Seite (28) des Probestücks (30) zu berühren,
ein erstes Paar von Klemmelementen (72), die unbeweglich an dem ersten Element (34)
befestigt sind und jeweils eine erste Klemmfläche (82) einschließen, wobei die erste
Klemmfläche dafür konfiguriert ist, die zweite Seite (32) des Probestücks (30) zu
berühren, wobei eine Linie, welche die ersten Klemmflächen (82) verbindet, eine erste
Längsachse (A3) definiert,
ein zweites Element (36), das eine zweite Fläche (62) einschließt, die dafür konfiguriert
ist, die zweite Seite (32) des Probestücks (30) zu berühren,
ein zweites Paar von Klemmelementen (74), die unbeweglich an dem zweiten Element (36)
befestigt sind und jeweils eine zweite Klemmfläche (84) einschließen, wobei die zweite
Klemmfläche dafür konfiguriert ist, die erste Seite (28) des Probestücks (30) zu berühren,
wobei eine Linie, welche die zweiten Klemmflächen (84) verbindet, eine zweite Längsachse
(A4) definiert, und
ein Stellorgan (38) in Verbindung mit dem zweiten Element (36) und dafür konfiguriert,
eine vorbestimmte Kraft auszuüben, um das zweite Element in einer ersten Richtung
(50), weg von dem ersten Element (34), und einer zweiten Richtung (52), hin zu dem
ersten Element, anzutreiben,
wobei das erste und das zweite Klemmelement (72, 74) derart angeordnet sind, dass
sie zusammenwirken, um ein Biegemoment in dem Probestück (30) zu erzeugen, wenn die
vorbestimmte Kraft auf das Probestück durch das Antreiben des zweiten Elements (36)
in der ersten Richtung (50) ausgeübt wird,
wobei das erste und das zweite Element (34, 36) derart angeordnet sind, dass sie zusammenwirken,
um ein Biegemoment in dem Probestück (30) zu erzeugen, wenn die vorbestimmte Kraft
auf das Probestück durch das Antreiben des zweiten Elements (36) in der zweiten Richtung
(52) ausgeübt wird,
dadurch gekennzeichnet, dass
die erste und die zweite Längsachse (A3, A4) im Allgemeinen senkrecht zueinander angeordnet
sind.
2. Belastungsvorrichtung (20) nach Anspruch 1, wobei die erste und die zweite Fläche
(60, 62) des ersten und des zweiten Elements (34, 36) jeweils eine dritte beziehungsweise
eine vierte Längsachse (A1, A2) definieren, wobei die dritte und die vierte Längsachse
im Allgemeinen senkrecht zueinander angeordnet sind.
3. Belastungsvorrichtung (20) nach Anspruch 1, wobei das Stellorgan (38) dafür konfiguriert
ist, die vorbestimmte Kraft mit einem vorbestimmten Frequenzwert auf das zweite Element
(36) auszuüben.
4. Belastungsvorrichtung (20) nach Anspruch 3, wobei der vorbestimmte Frequenzwert einstellbar
ist und im Allgemeinen mit einer Drehgeschwindigkeit einer mit dem Probestück (30)
verknüpften Kolbenkraftmaschine in Wechselbeziehung steht und die vorbestimmte Kraft
einstellbar ist und im Allgemeinen mit einer auf eine Pleuelstange der Kolbenkraftmaschine
ausgeübten Querbelastung in Wechselbeziehung steht.
5. Belastungsvorrichtung (20) nach Anspruch 3, wobei der vorbestimmte Frequenzwert zwischen
etwa 10 Hz und etwa 100 Hz beträgt.
6. Belastungsvorrichtung (20) nach Anspruch 3, wobei der vorbestimmte Frequenzwert annähernd
einer Eigenfrequenz des Probestücks (30) gleich ist.
7. Belastungsvorrichtung (20) nach Anspruch 3, wobei die vorbestimmte Kraft zwischen
etwa 2 kN und etwa 30 kN beträgt.
8. Belastungsvorrichtung (20) nach einem der Ansprüche 1 bis 7, wobei das Probestück
(30) zwei Bauteile einschließt, die mit einem mit Gewinde versehenen Befestigungselement
(100) aneinander befestigt sind und einen Spalt zwischen den zwei Bauteilen definieren,
wobei das in dem Probestück erzeugte Biegemoment eine Momentachse hat, die im Allgemeinen
parallel zu dem Spalt zwischen den zwei Bauteilen des Probestücks ausgerichtet ist.
9. Belastungsvorrichtung nach Anspruch 8, wobei das Probestück ein Kurbelwellenende einer
Pleuelstange ist, die entlang einer Achse gespalten ist, um eine Spaltlinie zu erzeugen,
und die erste Längsachse (A3) im Allgemeinen parallel zu der Spaltlinie (94) ausgerichtet
ist und an der Spaltlinie durch das mit Gewinde versehene Befestigungselement (100)
zusammengehalten wird.
10. Belastungsvorrichtung nach Anspruch 9, wobei die ersten Klemmelemente (72) und die
zweiten Klemmelemente (74) derart angeordnet sind, dass sie zusammenwirken, um das
Biegemoment und die Spaltlinie (94) zu erzeugen, wenn die vorbestimmte Kraft auf die
Pleuelstange ausgeübt wird.
11. Belastungsvorrichtung nach Anspruch 1, wobei die erste Fläche (60) des ersten Elements
(34) und die zweite Fläche (62) des zweiten Elements (36) jeweils zwischen etwa 2
mm und etwa 3 mm in der Breite betragen, wobei die Breite im Allgemeinen senkrecht
jeweils in Bezug auf die erste und die zweite Längsachse der ersten beziehungsweise
der zweiten Fläche gemessen wird.
12. Verfahren zum Belasten eines Probestücks (30), wobei das Verfahren die folgenden Schritte
umfasst:
das Bereitstellen eines ersten Elements (34), das eine erste Fläche (60) einschließt,
wobei die erste Fläche eine erste Seite (28) des Probestücks berührt,
das Anordnen einer ersten Klemmfläche (82) eines ersten Paars von Klemmelementen (72),
so dass sie eine zweite Seite (32) des Probestücks berührt, wobei das erste Paar von
Klemmelementen unbeweglich an dem ersten Element (34) befestigt ist, wobei eine Linie,
welche die ersten Klemmflächen (82) des ersten Paars von Klemmelementen verbindet,
eine erste Längsachse (A3) definiert,
das Bereitstellen eines zweiten Elements (36), das eine zweite Fläche (62) einschließt,
wobei die zweite Fläche die zweite Seite (32) des Probestücks (30), die im Allgemeinen
der ersten Seite (28) gegenüberliegt, berührt,
das Anordnen einer zweiten Klemmfläche (84) eines zweiten Paars von Klemmelementen
(74), so dass sie die erste Seite (28) des Probestücks berührt, wobei das zweite Paar
von Klemmelementen unbeweglich an dem zweiten Element (36) befestigt ist, wobei eine
Linie, welche die zweiten Klemmflächen (84) des zweiten Paars von Klemmelementen (74)
verbindet, eine zweite Längsachse (A4) definiert, und
das Ausüben einer vorbestimmten Kraft, die das zweite Element (36) in einer ersten
Richtung (50) antreibt, wobei die erste Richtung weg von dem ersten Element (34) gerichtet
ist,
wobei das erste und das zweite Klemmelement (72, 74) derart angeordnet sind, dass
sie zusammenwirken, um ein Biegemoment in dem Probestück (30) zu erzeugen, wenn die
vorbestimmte Kraft auf das Probestück durch das Antreiben des zweiten Elements (36)
in der ersten Richtung (50) ausgeübt wird,
das Ausüben der vorbestimmten Kraft, die das zweite Element (36) in einer zweiten
Richtung (52) antreibt, wobei die zweite Richtung hin zu dem ersten Element (34) gerichtet
ist,
wobei das erste und das zweite Element (34, 36) derart angeordnet sind, dass sie zusammenwirken,
um ein Biegemoment in dem Probestück (30) zu erzeugen, wenn die vorbestimmte Kraft
auf das Probestück durch das Antreiben des zweiten Elements (36) in der zweiten Richtung
(52) ausgeübt wird,
dadurch gekennzeichnet, dass
die erste und die zweite Längsachse (A3, A4) im Allgemeinen senkrecht zueinander angeordnet
sind.
13. Verfahren nach Anspruch 12, das ferner Folgendes umfasst:
das Einstellen der vorbestimmten Kraft, so dass sie im Allgemeinen mit einer auf eine
Pleuelstange einer Kolbenkraftmaschine ausgeübten Querbelastung in Wechselbeziehung
steht, und
das Ausüben der vorbestimmten Kraft mit einer vorbestimmten Frequenz, wobei die Frequenz
im Allgemeinen mit einer Drehgeschwindigkeit der Kolbenkraftmaschine in Wechselbeziehung
steht.
1. Dispositif de chargement (20) pour une pièce à tester (30) incluant un premier côté
(28) et un second côté (32), le premier côté étant généralement opposé au second côté,
le dispositif de chargement comprenant :
un premier élément (34) incluant une première surface (60), la première surface étant
configurée pour contacter le premier côté (28) de la pièce à tester (30) ;
une première paire d'éléments de serrage (72) fixés de manière sécurisée au premier
élément (34) et incluant chacun une première surface de serrage (82), où la première
surface de serrage est configurée pour contacter le second côté (32) de la pièce à
tester (30), une ligne raccordant les premières surfaces de serrage (82) définissant
un premier axe longitudinal (A3) ;
un second élément (36) incluant une seconde surface (62) configurée pour contacter
le second côté (32) de la pièce à tester (30) ;
une seconde paire d'éléments de serrage (74) fixés de manière sécurisée au second
élément (36) et incluant chacun une seconde surface de serrage (84), dans lequel la
seconde surface de serrage est configurée pour contacter le premier côté (28) de la
pièce à tester (30), une ligne raccordant les secondes surfaces de serrage (84) définissant
un second axe longitudinal (A4) ; et
un actionneur (38) en communication avec le second élément (36) et configuré pour
exercer une force prédéterminée afin d'entraîner le second élément dans
une première direction (50) s'écartant du premier élément (34) et un seconde direction
(52) allant vers le premier élément ;
dans lequel le premier et le second éléments de serrage (72, 74) sont positionnés
de sorte qu'ils coopèrent pour créer un couple de flexion dans la pièce à tester (30)
quand la force prédéterminée est exercée sur la pièce à tester en entraînant le second
élément (36) dans la première direction (50) ;
dans lequel le premier et le second éléments (34, 36) sont positionnés de sorte qu'ils
puissent coopérer afin de créer un couple de flexion dans la pièce à tester (30) quand
la force prédéterminée est exercée sur la pièce à tester en entraînant le second élément
(36) dans la seconde direction (52),
caractérisé en ce que
lesdits premier et second axes longitudinaux (A3, A4) sont positionnés généralement
perpendiculairement l'un à l'autre.
2. Dispositif de chargement (20) selon la revendication 1, dans lequel la première et
la seconde surfaces (60, 62) du premier et du second éléments (34, 36) définissent
chacun le troisième et quatrième axes longitudinaux (A1, A2), respectivement, le troisième
et la quatrième axes longitudinaux étant généralement perpendiculaires l'un à l'autre.
3. Dispositif de chargement (20) selon la revendication 1, dans lequel l'actionneur (38)
est configuré pour exercer la force prédéterminée sur le second élément (36) à une
valeur de fréquence prédéterminée.
4. Dispositif de chargement (20) selon la revendication 3, dans lequel la valeur de fréquence
prédéterminée est ajustable et corrèle généralement avec une vitesse de rotation d'un
moteur alternatif associé à la pièce à tester (30), et la force prédéterminée est
ajustable et corrèle généralement avec une charge transversale exercée sur une tige
de raccordement du moteur alternatif.
5. Dispositif de chargement (20) selon la revendication 3, dans lequel la valeur de fréquence
prédéterminée est entre environ 10 Hz et environ 100 Hz.
6. Dispositif de chargement (20) selon la revendication 3, dans lequel la valeur de fréquence
prédéterminée est approximativement égale à une fréquence naturelle de la pièce à
tester (30).
7. Dispositif de chargement (20) selon la revendication 3, dans lequel la force prédéterminée
est entre environ 2 kN et environ 30 kN.
8. Dispositif de chargement (20) selon une des revendications 1 à 7, dans lequel la pièce
à tester (30) inclut deux composants fixés ensemble par un connecteur fileté (100)
et définissant une fente entre les deux composants, le couple de flexion créé dans
la pièce à tester ayant un axe de couple aligné généralement parallèlement à la fente
entre les deux composants de la pièce à tester.
9. Dispositif de chargement selon la revendication 8, dans lequel la pièce à tester est
une extrémité de vilebrequin d'une fente de tige de raccordement le long d'un axe
pour créer une ligne de fente, et le premier axe longitudinal (A3) est aligné généralement
parallèlement à la ligne de fente (94) et maintenu conjointement au niveau de la ligne
de fente par le connecteur fileté (100).
10. Dispositif de chargement selon la revendication 9, dans lequel les premiers éléments
de serrage (72) et les seconds éléments de serrage (74) sont positionnés de sorte
qu'ils coopèrent afin de créer le couple de flexion autour de la ligne de fente (94)
lorsque la force prédéterminée est exercée sur la tige de raccordement.
11. Dispositif de chargement selon la revendication 1, dans lequel la première surface
(60) du premier élément (34) et la seconde surface (62) du second élément (36) ont
chacune une largeur comprise entre environ 2 mm et environ 3 mm, la largeur étant
mesurée généralement orthogonalement par rapport au premier et au second axe longitudinale
de la première et seconde surface, respectivement.
12. Procédé de chargement d'une pièce à tester (30), comprenant les étapes consistant
à :
fournir un premier élément (34) incluant une première surface (60), la première surface
contactant un premier côté (28) d'une pièce à tester ;
positionner une première surface de serrage (82) d'une première paire d'éléments de
serrage (72) afin de contacter un second côté (32) de la pièce de test, dans lequel
la première paire d'éléments de serrage est fixée de maière sécurisée au premier élément
(34), une ligne raccordant les premières surfaces de serrage (82) de la première paire
d'éléments de serrage définissant un premier axe longitudinal (A3) ;
fournir un second élément (36) incluant une seconde surface (62), la seconde surface
contactant le second côté (32) de la pièce à tester (30) qui est généralement opposé
au premier côté (28);
fournir un second élément (38) incluant une seconde surface (62), la seconde surface
contactant le second côté (32) de la pièce à tester (30) qui est généralement opposé
au premier côté (28) ;
positionner une seconde surface de serrage (84) d'une seconde paire d'éléments de
serrage (74) afin de contacter le premier côté (28) de la pièce de test, la seconde
paire d'éléments de serrage est fixée de manière sécurisée au second élément (36),
une ligne raccordant les secondes surfaces de serrage (84) de la seconde paire d'éléments
de serrage (74) définissant un second axe longitudinal (A4) ; et
exercer une force prédéterminée entraînant le second élément (36) dans une première
direction (50), dans lequel la première direction est orientée de manière à s'écarter
du premier élément (34) ;
dans lequel le premier et le second éléments de serrage (72, 74) sont positionnés
de sorte qu'ils coopèrent afin de créer un couple de flexion dans la pièce à tester
(30) quand la force prédéterminée est exercée sur la pièce à tester en entraînant
le second élément (36) dans la première direction (50),
exercer la force prédéterminée entraînant le second élément (36) dans une seconde
direction (52), dans lequel la seconde direction est orientée de manière à s'écarter
du premier élément (34) ;
dans lequel le premier et le second éléments (34, 36) sont positionnés de sorte qu'ils
coopèrent afin de créer un couple de flexion dans la pièce à tester (30) quand la
force prédéterminée est exercée sur la pièce de test en entraînant le second élément
(36) dans la seconde direction (52),
caractérisé en ce que
lesdits premier et second axes longitudinaux (A3, A4) sont positionnés généralement
perpendiculairement l'un à l'autre.
13. Procédé selon la revendication 12, comprenant en outre de :
ajuster la force prédéterminée afin de corréler généralement avec une force transversale
exercée sur une tige de raccordement d'un moteur alternatif ; et
exercer la force prédéterminée à une fréquence prédéterminée, dans lequel la fréquence
corrèle généralement avec une vitesse de rotation du moteur alternatif.