TECHNICAL FIELD
[0001] The present invention relates to an integrated circuit (IC) with a configurable output
cell, in particular to an IC for a hearing device or adapted for a hearing device.
BACKGROUND
[0002] Integrated circuits (ICs) or chips with embedded digital signal processors are widely
used in the hearing aid industry to provide a compact and small hearing aid. The ICs
used in hearing aids are small and the number of Input/Output ports or pads is limited.
Typically, ICs are designed to interface specific components of the hearing aid.
[0003] US 2011/211717 discloses a power management system for a digital processing core of a battery-powered
hearing aid. The power management system is adapted for providing power to the hearing
aid circuit in a particularly efficient manner. The power management system comprises
a first linear voltage regulator, and a second linear voltage regulator in series
with a switched-capacitor 2:1 SC converter, a positive bulk biasing voltage supply,
and a negative bulk biasing voltage supply, for controlling the switching speed, threshold
voltage, and current leak from the semiconductor elements of the digital processing
core when the core is operated at the reduced voltage provided by the power management
system.
SUMMARY
[0004] There is a need for increasing the design flexibility when designing and constructing
hearing aids to be able to use different components or be able to use the same component
in a number of different hearing device models. Further, there is a need for providing
ICs with low power consumption due to the limited power supply capacity of a hearing
device.
[0005] Accordingly, an integrated circuit (IC) for a hearing device as in claim 1 is provided,
wherein the integrated circuit comprises a ground rail, a first power rail adapted
to carry a first voltage, and a second power rail adapted to carry a second voltage,
the integrated circuit comprising a number of pads for connecting the integrated circuit
to other components, the number of pads including at least one output pad including
a first output pad. The integrated circuit comprises at least one output cell including
a first output cell having a ground pin connected to the ground rail, a first power
supply pin connected to the first power rail, a second power supply pin connected
to the second power rail, a data pin, at least one voltage select pin and an output
pin wired to the first output pad. The first output cell is adapted to operate according
to a first mode wherein the voltage on the first output pin has a first amplitude,
and according to a second mode wherein the voltage on the first output pin has a second
amplitude larger than the first amplitude depending on a control signal applied to
the at least one voltage select pin. The first output cell comprises at least three
transistors including a first transistor, a second transistor, and a third transistor,
each transistor having a first terminal, a second terminal, a third terminal and a
fourth terminal. The first terminal of the first transistor is wired to the ground
pin, the second terminal of the first transistor is connected to the data pin, optionally
via a level shifter, the third terminal is wired to the output pin, and the fourth
terminal is wired to the first terminal. The fourth terminal of the second and of
the third transducer are wired to a common terminal.
[0006] Also disclosed is a method for manufacture of an integrated circuit as in claim 12.
The method comprises providing at least one output cell having an output pin and at
least two drive transistors each having a first terminal connected to a respective
first and a second power supply pin of the output cell, a second terminal, a third
terminal connected to the output pin and a fourth terminal, wherein the fourth terminal
of the two drive transistors are wired such that the voltage difference between the
third and fourth terminal of the respective drive transistors is less than the diode
threshold voltage between the third and fourth terminal. The method may comprise wiring
the fourth terminals to the power supply pin adapted to carry the largest supply voltage,
e.g. the second power supply pin.
[0007] It is an advantage of the present invention that the voltage amplitude of the first
output pad may be easily adjusted by adjusting a register setting during configuration
or even during use, thereby increasing the design flexibility for hearing aid constructors
without increasing the number of pads on the IC, and at the same time maintaining
a low power consumption by avoiding undesired current paths in the IC.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The above and other features and advantages of the present invention will become
readily apparent to those skilled in the art by the following detailed description
of exemplary embodiments thereof with reference to the attached drawings, in which:
- Fig. 1
- schematically illustrates a hearing device,
- Fig. 2
- schematically illustrates an exemplary integrated circuit, and
- Fig. 3
- schematically illustrates an exemplary output cell.
DETAILED DESCRIPTION
[0009] The figures are schematic and simplified for clarity, and they merely show details
which are essential to the understanding of the invention, while other details have
been left out. Throughout, the same reference numerals are used for identical or corresponding
parts.
[0010] The at least one output cell, e.g. the first output cell, may be configured to form
a part of or be embedded in an input/output (IO) cell if bidirectional communication
is desired.
[0011] The integrated circuit optionally comprises a processing core e.g. for digital signal
processing of digital audio signal in order to compensate for hearing impairment of
a user. The processing core is connected to a number of communication cells or peripheral
units for communication with other units or components, e.g. an AD converter unit,
user interface, memory unit and/or radio unit of a hearing device. Accordingly, the
IC comprises at least one communication cell, including at least a first communication
cell embedding one or more output cells as described herein. The IC may comprise a
second and/or a third communication cell.
[0012] A communication cell may be adapted to communicate according to one or more standard
protocols. Exemplary protocols may include but are not limited to Serial Peripheral
Interface Bus (SPI), Inter-Integrated Circuit (IIC or I2C) with master and/or slave,
Integrated Interchip Sound (IIS, I2S), and protocols for wireless communication, etc.
[0013] A communication cell or unit may comprise one or more output cells, e.g. a first
output cell and/or a second output cell, depending on the functionality of the communication
cell. A communication cell may comprise one or more input cells. A communication cell
may comprise one or more input/output (IO) cells, i.e. cells that are adapted for
bidirectional communication.
[0014] The integrated circuit comprises a number of pads for connecting the IC or communication
cells of the IC to other components such as memory units, radio units, user interfaces,
power supplies such as a battery or others. The number of pads includes a first pad
for connection to ground or other reference voltage, a second pad for connection to
a power supply, such as a battery, and a number of communication pads including a
first communication pad adapted for operating as an output pad for connecting the
IC to other components.
[0015] The first power rail may be adapted to carry a first voltage V
1, such as V
battery, and the second power rail may be adapted to carry a second voltage V
2. The second voltage V
2 may be larger than the first voltage V
1. In one or more embodiments, V
2 = 2*V
battery.
[0016] An output cell, e.g. a first output cell and/or a second output cell, may comprise
a first transistor, a second transistor and a third transistor, where each transistor
has a first terminal, a second terminal, a third terminal, and a fourth terminal.
[0017] The first transistor may be an N-MOS transistor where the first terminal is the source,
the second terminal is the gate, the third terminal is the drain and the fourth terminal
is the body. The first transistor may be configured to pull the voltage on the output
pin towards ground or other reference voltage applied to the ground rail. Accordingly,
the first transistor may be denoted a ground transistor.
[0018] The second, third and/or a fourth transistor may be P-MOS transistors where the first
terminal is the source, the second terminal is the gate, the third terminal is the
drain and the fourth terminal is the body. The second, third and/or a fourth transistor
may be configured to pull or drive the voltage on the output pin towards the voltage
applied to the respective power supply pins via power rails available in the IC. Accordingly,
the second, third and/or fourth transistors may be denoted drive transistors. The
IC may comprise a plurality of drive transistors, each connected between the output
pin and a respective power supply pin. The fourth terminal of at least two drive transistors
may be connected to a common terminal with a voltage level equal to or larger than
the voltage level on the third terminals of the at least two drive transistors.
[0019] In one or more output cells, the first terminal of the first transistor may be wired
to the ground pin and the third terminal of the first transistor may be wired to the
output pin. The fourth terminal of the first transistor may be wired to the first
terminal.
[0020] The second terminal of the first transistor may be wired to the data pin or connected
to the ouput of a first level shifter adapting a data signal on the data pin to correct
signal amplitudes.
[0021] In one or more output cells, the first terminal of the second transistor may be wired
to the first power supply pin and the third terminal of the second transistor may
be wired to the output pin.
[0022] In one or more output cells, the first terminal of the third transistor may be wired
to the second power supply pin and the third terminal of the third transistor may
be wired to the output pin.
[0023] In one or more output cells, the fourth terminals of the drive transistors may be
wired such that a voltage difference V
dif = V
third terminal - V
fourth terminal between the third terminals and the fourth terminals of the respective drive transistors
is less than the diode threshold voltage V
thres for the parasitic diode between the third and fourth terminal. The voltage difference
V
dif may be less than 0.4 V. For one or more drive transistors, the voltage difference
V
dif may be less than 0.4 V, such as less than 0.3 V, less than 0.2 V. In one or more
embodiments, the voltage difference V
dif may be less than or equal to 0 V. In an embodiment, where the fourth terminals are
wired to the largest power supply voltage, it is ensured that V
dif is less than or equal to 0V irrespective of the mode of operation.
[0024] In one or more output cells, e.g. the first output cell, the fourth terminal of the
second transistor and the fourth terminal of the third transistor may be wired to
the power supply pin carrying the largest voltage. The fourth terminal of the second
transistor and the fourth terminal of the third transistor may be wired to a common
terminal. The first terminal of the third transistor may be the common terminal. Thereby
undesired leakage currents may be avoided when the output cells operate in the mode
with the smallest voltage amplitude on the output pin.
[0025] The second terminals of the second transistor and the third transistor may be connected
to the output of a logical circuit of the first output cell for selecting between
a first mode (second transistor active) and a second mode (third transistor active)
of operation.
[0026] One or more output cells of the integrated circuit may thus be adapted to be able
to operate in a first mode wherein the voltage signal on the output pin switches between
V
GND* and V
1*, and in a second mode wherein the voltage signal on the output pin switches between
V
GND* and V
2*, depending on a control signal applied to the at least one voltage select pin.
[0027] The integrated circuit may comprise a third power rail adapted to carry a third voltage
V
3, and the first output cell may comprises a fourth transistor connected between the
output pin and a third power supply pin connected to the third power rail.
[0028] The fourth transistor has a first terminal, a second terminal, a third terminal and
a fourth terminal. The fourth terminal may be wired to the common terminal. The first
output cell may be adapted to operate according to a third mode wherein the voltage
on the first output pin has a third amplitude depending on a control signal applied
to the at least one voltage select pin. The first terminal of the fourth transistor
may be wired to the third power supply pin, and the third terminal of the fourth transistor
may be wired to the output pin. The second terminal of the fourth transistor may be
wired to a logical circuit to enable activation of the fourth transistor in a third
mode of operation, wherein the voltage signal on the output pin switches between V
GND* and V
3*, depending on a control signal applied to the at least one voltage select pin.
[0029] One or more output cells of the integrated circuit may comprise a logical circuit
having input connected to the at least one voltage select pin and the data pin, and
output connected to the second terminals of the drive transistors (second, third and
fourth transistor if present) for selecting between the modes by selectively activating
the second, third and fourth transistor.
[0030] The integrated circuit may comprise at least one level shifter including a first
level shifter between the data pin and the second terminals of the first, second and
third transistor for adapting a data signal to correct signal amplitudes. The first
level shifter may be arranged between the data pin and the logical circuit and/or
between the logical circuit and the second terminals of the drive transistors.
[0031] The at least one level shifter may include a second level shifter between the at
least one voltage select pin and the logical circuit for adapting a voltage select
signal to correct signal amplitudes for the logical circuit.
[0032] The integrated circuit may comprise a core connected to the first output cell, wherein
the core is adapted to perform signal processing for a hearing device.
[0033] Fig. 1 shows a hearing device 2. The hearing device 2 comprises an audio input interface
4 for receiving audio signal(s) in electronic and/or acoustic form. The audio input
interface 4 may comprise one or more microphones, e.g. a first microphone and/or a
second microphone, and/or a telecoil. The audio input interface 4 may comprise an
audio connector or audio input boot for coupling external audiosources to the hearing
device 2. The audio input interface 4 is connected to an AD converter unit 6 which
is connected to a signal processing unit or integrated circuit 8. The AD converter
unit 6 converts or transforms audio signals from the audio input interface 4 and send
the digital audio signal(s) to the signal processing unit 8 for processing, e.g. in
order to compensate for hearing loss or other hearing impairment. The signal processing
unit 8 may send control signals to the AD converter unit 6 to configure and control
operation of the AD converter unit 6. The signal processing unit 8 may be connected
to a user interface 10 in order to allow a user, a computer or another hearing device
to communicate with the hearing device, e.g. during configuration and/or during use
of the hearing aid. The user interface 10 may comprise a push button and/or a connector
for a data cable in order to couple the hearing device to e.g. a computer during configuration
or another hearing device. The hearing device 2 may comprise a memory unit 12 connected
to the signal processing unit 8 for storing data or hearing aid parameters, and the
hearing device 2 may optionally comprise a radio unit 14 connected to the signal processing
unit 8 and adapted for receiving and/or transmitting radio signals, e.g. in order
to enable the hearing device 2 to communicate wirelessly with another device, such
as a hearing device and/or a wireless interface. The AD converter unit 6 may be embedded
in the signal processing unit or integrated circuit 8. The hearing device 2 may comprise
a receiver or loudspeaker 16 connected to the signal processing unit 8 for emitting
audio signals to a user.
[0034] Fig. 2 shows an exemplary signal processing unit or integrated circuit 8 according
to the present invention. The integrated circuit 8 comprises a processing core 18
e.g. for digital signal processing of digital audio signals from an AD converter 6.
The processing core 18 is connected to a number of communication cells or peripheral
units for communication with other units of the hearing device, e.g. the AD converter
unit 6, user interface 10, memory unit 12 and/or radio unit 14.
[0035] The integrated circuit 8 comprises a number of communication cells 20, 28, 30, 32,
34, 36, 38 forming interfaces to the processing core 18. A communication cell may
be configured to implement different communication protocols depending on the unit
to be connected thereto. A first and/or second output cell or IO cell may be implemented
in each or one or more of the communication cells 20, 28, 30, 32, 34, 36, 38. Further,
the integrated circuit may comprise a clock management cell 22 optionally comprising
one or more output cells or IO cells as described herein.
[0036] Fig. 3 illustrates an exemplary output cell according to the invention, e.g. a first
and/or a second output cell which for example may be implemented in one or more of
the communication cells of the integrated circuit in Fig. 2. The output cell 106 has
a ground pin 108 connected to a ground rail 50 of the integrated circuit, a first
power supply pin 110 connected to a first power rail 52 of the integrated circuit
adapted to carry a first voltage V
1, a second power supply pin 112 connected to a second power rail 54 of the integrated
circuit adapted to carry a second voltage V
2, a data pin 114, at least one voltage select pin 116 and an output pin 118 wired
to the first output pad 104. The output cell 106 further comprises a core power supply
pin 120 connected to the core power rail 56. The first output pad 104 may be embedded
in the output cell 106 as illustrated or be arranged outside the output cell in the
integrated circuit.
[0037] The output cell 106, i.e. the first output cell, is adapted to operate according
to a first mode wherein the voltage on the output pin 118 has a first amplitude V
1*, and according to a second mode wherein the voltage on the first output pin has a
second amplitude V
2*, larger than the first amplitude depending on a control signal applied to the at
least one voltage select pin 116. The output cell 106 comprises a first transistor
122, a second transistor 124 and a third transistor 126 having respective first terminals
128A, 128B, 128C, second terminals 130A, 130B, 130C, third terminals 132A, 132B, 132C,
and fourth terminals 134A, 134B, 134C. A logical circuit 136 is arranged between the
at least one voltage select pin 116 and the second terminals 130B and 130C to selectively
activate the second transistor and the third transistor depending on desired mode
of operation. The output cell comprises a first level shifter 138 coupled between
the data pin 114 and the second terminals 130B and 130C to adjust data signal level.
Further, a second level shifter 140 is coupled between the at least one voltage select
pin 116 and the second terminals 130B and 130C to adjust voltage select signal level.
The level shifters 138, 140 are connected to the second power power supply pin 112
and the core power supply pin 120. The at least one voltage select pin 116 may comprise
a first voltage select pin and a second voltage select pin in order to select between
more than two different operating modes of the output cell. Each transistor has an
intrinsic parasitic diode between the third terminal and the fourth terminal which
is also illustrated in Fig. 3. The coupling of fourth terminals eliminate or reduce
parasitic currents between fourth and third terminals of the drive transistors.
LIST OF REFERENCES
[0038]
- 2
- hearing device
- 4
- audio input interface
- 6
- analog-digital (AD) converter unit
- 8
- signal processing unit
- 10
- user interface
- 12
- memory unit
- 14
- radio unit
- 16
- loudspeaker/receiver
- 18
- core
- 20
- communication cell (Master interface)
- 22
- clock management unit
- 24
- audio input/output
- 26
- H-bridge
- 28
- communication cell (Wireless controller)
- 30
- communication cell (IIC Master)
- 32
- communication cell (IIS interface)
- 34
- communication cell (SPI Master)
- 36
- communication cell (Com interface)
- 38
- communication cell (IIC slave)
- 50
- ground rail
- 52
- first power rail
- 54
- second power rail
- 56
- core power rail
- 104
- first output pad
- 106
- output cell
- 108
- ground pin
- 110
- first power supply pin
- 112
- second power supply pin
- 114
- data pin
- 116
- voltage select pin(s)
- 118
- output pin or output node
- 120
- core power supply pin
- 122
- first transistor
- 124
- second transistor
- 126
- third transistor
- 128A, 128B, 128C
- first terminal
- 130A, 130B, 130C
- second terminal
- 132A, 132B, 132C
- third terminal
- 134A, 134B, 134C
- fourth terminal
- 136
- logical circuit
- 138
- first level shifter
- 140
- second level shifter
1. An integrated circuit for a hearing device, wherein the integrated circuit comprises
a ground rail (50), a first power rail (52) adapted to carry a first voltage (V1), and a second power rail (54) adapted to carry a second voltage (V2), the integrated circuit comprising a number of pads for connecting the integrated
circuit to other components, the number of pads including at least one output pad
including a first output pad (104), wherein the integrated circuit comprises at least
one output cell including a first output cell (106) having a ground pin (108) connected
to the ground rail (50), a first power supply pin (110) connected to the first power
rail (52), a second power supply pin (112) connected to the second power rail (54),
a data pin (114), at least one voltage select pin (116) and an output pin (118) wired
to the first output pad, wherein the first output cell comprises at least three transistors
including a first transistor (122), a second transistor (124), and a third transistor
(126), each transistor having a first terminal, a second terminal, a third terminal
and a fourth terminal, and wherein the first terminal (128A) of the first transistor
is wired to the ground pin (108), the second terminal (130A) of the first transistor
is connected to the data pin (114), optionally via a level shifter, the third terminal
(132A) is wired to the output pin, and the fourth terminal (134A) is wired to the
first terminal, wherein the first output cell is adapted to operate according to a
first mode wherein the voltage on the output pin (118) has a first amplitude, and
according to a second mode wherein the voltage on the output pin (118) has a second
amplitude larger than the first amplitude depending on a control signal applied to
the at least one voltage select pin, and wherein the fourth terminal of the second
transistor and the fourth terminal of the third transistor are wired to a common terminal.
2. An integrated circuit according to claim 1, wherein the fourth terminal (134B) of
the second transistor and the fourth terminal (134C) of the third transistor is wired
to the power supply pin carrying the largest voltage.
3. An integrated circuit according to any of claims 1-2, wherein the first terminal (128C)
of the third transistor is wired to the second power supply pin and wherein the first
terminal (128C) of the third transistor is the common terminal.
4. An integrated circuit according to any of claims 1-3, wherein the first terminal (128B)
of the second transistor is wired to the first power supply pin.
5. An integrated circuit according to any of claims 1-4, wherein the third terminal (132B,
132C) of the second transistor and the third transistor are wired to the output pin
(118).
6. An integrated circuit according to any of the claims 1-5, wherein the integrated circuit
comprises a third power rail adapted to carry a third voltage (V3), and wherein the first output cell comprises a fourth transistor connected between
the output pin and a third power supply pin, the third power supply pin being connected
to the third power rail.
7. An integrated circuit according to claim 6, wherein the fourth transistor has a first
terminal, a second terminal, a third terminal and a fourth terminal, wherein the fourth
terminal is wired to the common terminal, and wherein the first output cell is adapted
to operate according to a third mode wherein the voltage on the first output pin has
a third amplitude depending on a control signal applied to the at least one voltage
select pin.
8. An integrated circuit according to claim 7, wherein the first terminal of the fourth
transistor is wired to the third power supply pin and the third terminal of the fourth
transistor is wired to the output pin.
9. An integrated circuit according to any of the claims 1-8, wherein the first output
cell comprises a logical circuit having input connected to the at least one voltage
select pin and the data pin, and output connected to the second terminals of the second,
third and fourth transistor if present, for selecting between the modes by selectively
activating the second, third and fourth transistor, respectively.
10. An integrated circuit according to any of the preceding claims, wherein the integrated
circuit comprises a core (18) connected to the first output cell, wherein the core
is adapted to perform signal processing for a hearing device.
11. A hearing device comprising an integrated circuit according to any of the preceding
claims.
12. A method for manufacture of an integrated circuit, comprising
- providing at least one output cell having an output pin and at least two drive transistors
each having a first terminal connected to a respective first and a second power supply
pin of the output cell, a second terminal, a third terminal connected to the output
pin and a fourth terminal, wherein the fourth terminal of the two drive transistors
are wired such that the voltage difference between the third and fourth terminal of
the respective drive transistors is less than the diode threshold voltage between
the third and fourth terminal, and wherein the fourth terminals of the at least two
drive transistors are wired to a common terminal.
1. Integrierte Schaltung für ein Hörgerät, wobei die integrierte Schaltung eine Erdungsschiene
(50), eine erste zum Führen einer ersten Spannung (V1) eingerichtete Stromschiene (52) und eine zweite zum Führen einer zweiten Spannung
(V2) eingerichtete Stromschiene (54) umfasst, wobei die integrierte Schaltung eine Anzahl
von Pads zum Verbinden der integrierten Schaltung mit anderen Komponenten umfasst,
wobei die Anzahl von Pads mindestens ein Ausgangs-Pad mit einem ersten Ausgangs-Pad
(104) umfasst, wobei die integrierte Schaltung zumindest eine Ausgangszelle umfasst,
aufweisend eine erste Ausgangszelle (106) mit einem mit der Erdungsschiene (50) verbundenen
Erdungspin (108), einem ersten mit der ersten Stromschiene (52) verbundenen Stromversorgungspin
(110), einem zweiten mit der zweiten Stromschiene (54) verbundenen Stromversorgungspin
(112), einem Datenpin (114), zumindest einem Spannungsauswahlpin (116) und einem Ausgangspin
(118), verdrahtet mit dem ersten Ausgangs-Pad, wobei die erste Ausgangszelle mindestens
drei Transistoren, einschließlich eines ersten Transistors (122), eines zweiten Transistors
(124) und eines dritten Transistors (126) umfasst, wobei jeder Transistor einen ersten
Endpunkt, einen zweiten Endpunkt, einen dritten Endpunkt und einen vierten Endpunkt
aufweist, und wobei der erste Endpunkt (128A) des ersten Transistors mit dem Erdungspin
(108) verdrahtet ist, der zweite Endpunkt (130A) des ersten Transistors mit dem Datenpin
(114) verbunden ist, eventuell durch einen Niveauschalter, der dritte Endpunkt (132A)
mit dem Ausgangspin verdrahtet ist, und der vierte Endpunkt (134A) mit dem ersten
Endpunkt verdrahtet ist, wobei die erste Ausgangszelle dafür eingerichtet ist, gemäß
einem ersten Modus, wo die Spannung auf dem Ausgangspin (118) eine erste Amplitude
aufweist, und gemäß einem zweiten Modus, wo die Spannung auf dem Ausgangspin (118)
eine zweite Amplitude aufweist, die abhängig von einem auf dem zumindest einen Spannungsauswahlpin
angelegten Steuersignal größer als die erste Amplitude ist, zu wirken, und wobei der
vierte Endpunkt des zweiten Transistors und der vierte Endpunkt des dritten Transistors
mit einem gemeinsamen Endpunkt verdrahtet sind.
2. Integrierte Schaltung nach Anspruch 1, wobei der vierte Endpunkt (134B) des zweiten
Transistors und der vierte Endpunkt (134C) des dritten Transistors mit dem die größte
Spannung führenden Stromversorgungspin verdrahtet sind.
3. Integrierte Schaltung nach einem der Ansprüche 1-2, wobei der erste Endpunkt (128C)
des dritten Transistors mit dem zweiten Stromversorgungspin verdrahtet ist, und wobei
der erste Endpunkt (128C) des dritten Transistors der gemeinsame Endpunkt ist.
4. Integrierte Schaltung nach einem der Ansprüche 1-3, wobei der erste Endpunkt (128B)
des zweiten Transistors mit dem ersten Stromversorgungspin verdrahtet ist.
5. Integrierte Schaltung nach einem der Ansprüche 1-4, wobei der dritte Endpunkt (132B,
132C) des zweiten Transistors und des dritten Transistors mit dem Ausgangspin (118)
verdrahtet sind.
6. Integrierte Schaltung nach einem der Ansprüche 1-5, wobei die integrierte Schaltung
eine dritte zum Führen einer dritten Spannung (V3) eingerichtete Stromschiene umfasst, und wobei die erste Ausgangszelle einen vierten
Transistor umfasst, der zwischen dem Ausgangspin und einem dritten Stromversorgungspin
angeschlossen ist, wobei der dritte Stromversorgungspin mit der dritten Stromschiene
verbunden ist.
7. Integrierte Schaltung nach Anspruch 6, wobei der vierte Transistor einen ersten Endpunkt,
einen zweiten Endpunkt, einen dritten Endpunkt und einen vierten Endpunkt aufweist,
wobei der vierte Endpunkt mit dem gemeinsamen Endpunkt verdrahtet ist, und wobei die
erste Ausgangszelle dafür eingerichtet ist, gemäß einem dritten Modus zu wirken, wo
die Spannung auf dem ersten Ausgangspin eine dritte Amplitude aufweist, abhängig von
einem auf dem zumindest einen Spannungsauswahlpin angelegten Steuersignal.
8. Integrierte Schaltung nach Anspruch 7, wobei der erste Endpunkt des vierten Transistors
mit dem dritten Stromversorgungspin verdrahtet ist, und der dritte Endpunkt des vierten
Transistors mit dem Ausgangspin verdrahtet ist.
9. Integrierte Schaltung nach einem der Ansprüche 1-8, wobei die erste Ausgangszelle
eine logische Schaltung umfasst, wobei ein Eingang mit dem zumindest einen Spannungsauswahlpin
und dem Datenpin verbunden ist, und ein Ausgang mit dem zweiten Endpunkt des zweiten,
dritten und vierten Transistors, falls vorhanden, verbunden ist, zum Auswählen zwischen
den Modi durch selektives Aktivieren des jeweils zweiten, dritten und vierten Transistors.
10. Integrierte Schaltung nach einem der vorgehenden Ansprüche, wobei die integrierte
Schaltung einen Kern (18) umfasst, welcher mit der ersten Ausgangszelle verbunden
ist, wobei der Kern dafür eingerichtet ist, eine Signalbehandlung für ein Hörgerät
auszuführen.
11. Hörgerät umfassend eine integrierte Schaltung nach einem der vorgehenden Ansprüche.
12. Verfahren zur Herstellung einer integrierten Schaltung, umfassend
- Bereitstellen von mindestens einer Ausgangszelle mit einem Ausgangspin und mindestens
zwei Antriebstransistoren, die jeweils einen ersten Endpunkt, der mit einem jeweiligen
ersten und zweiten Stromversorgungspin der Ausgangszelle verbunden ist, einen zweiten
Endpunkt, einen dritten Endpunkt, der mit dem Ausgangspin verbunden ist, und einen
vierten Endpunkt aufweisen, wobei der vierte Endpunkt der zwei Antriebstransistoren
so verdrahtet sind, dass der Spannungsunterschied zwischen dem dritten und vierten
Endpunkt der jeweiligen Antriebstransistoren kleiner als die Diodenschwellenspannung
zwischen dem dritten und vierten Endpunkt ist, und wobei der vierte Endpunkt der mindestens
zwei Antriebstransistoren mit einem gemeinsamen Endpunkt verdrahtet sind.
1. Circuit intégré pour un dispositif de correction auditive, dans lequel le circuit
intégré comprend un rail de terre (50), un premier rail d'alimentation (52) adapté
pour porter une première tension (V1), et un deuxième rail d'alimentation (54) adapté pour porter une deuxième tension
(V2), le circuit intégré comprenant un certain nombre de plaquettes de raccordement du
circuit intégré à d'autres composantes, le nombre de plaquettes comprenant au moins
une plaquette de sortie comprenant une première plaquette de sortie (104), le circuit
intégré comprenant au moins une cellule de sortie comprenant une première cellule
de sortie (106) ayant une broche de terre (108) reliée au rail de terre (50), une
première broche d'alimentation de puissance (110) connectée au premier rail d'alimentation
(52), une deuxième broche d'alimentation de puissance (112) connectée au deuxième
rail d'alimentation (54), une broche de données (114), au moins une broche pour sélection
de tension (116) et une broche de sortie (118) câblée à la première plaquette de sortie,
la première cellule de sortie comprenant trois transistors comprenant un premier transistor
(122), un deuxième transistor (124) et un troisième transistor (126), chaque transistor
ayant une première borne, une deuxième borne, une troisième borne et une quatrième
borne, et la première borne (128A) du premier transistor étant câblée à la broche
de terre (108), la deuxième borne (130A) du premier transistor étant connecté à la
broche de données (114), éventuellement par l'intermédiaire d'un décaleur de niveau,
la troisième borne (132A) étant câblée à la broche de sortie, et la quatrième borne
(134A) étant câblée à la première borne, la première cellule de sortie étant adaptée
pour fonctionner selon un premier mode dans lequel la tension sur la broche de sortie
(118) présente une première amplitude, et selon un deuxième mode dans lequel la tension
sur la broche de sortie (118) présente une deuxième amplitude supérieure à la première
amplitude en fonction d'un signal de commande appliqué à l'au moins une broche pour
sélection de tension, et la quatrième borne du deuxième transistor et le quatrième
borne du troisième transistor étant câblées à une borne commune.
2. Circuit intégré selon la revendication 1, dans lequel la quatrième borne (134B) du
deuxième transistor et la quatrième borne (134C) du troisième transistor sont câblées
à la broche d'alimentation de puissance portant la plus grande tension.
3. Circuit intégré selon l'une quelconque des revendications 1 à 2, dans lequel la première
borne (128C) du troisième transistor est câblée à la deuxième broche d'alimentation
de puissance, et dans lequel la première borne (128C) du troisième transistor est
la borne commune.
4. Circuit intégré selon l'une quelconque des revendications 1 à 3, dans lequel la première
borne (128B) du deuxième transistor est câblée à la première broche d'alimentation
de puissance.
5. Circuit intégré selon l'une quelconque des revendications 1 à 4, dans lequel la troisième
borne (132B, 132C) du deuxième transistor et le troisième transistor sont câblés à
la broche de sortie (118).
6. Circuit intégré selon l'une quelconque des revendications 1 à 5, dans lequel le circuit
intégré comprend une troisième rail d'alimentation adapté pour porter un troisième
tension (V3), et dans lequel la première cellule de sortie comprend un quatrième transistor connecté
entre la broche de sortie et une troisième broche d'alimentation de puissance, la
troisième broche d'alimentation de puissance étant câblée au troisième rail d'alimentation.
7. Circuit intégré selon la revendication 6, dans lequel le quatrième transistor présente
une première borne, une deuxième borne, une troisième borne et une quatrième borne,
la quatrième borne étant câblée à la borne commune, et la première cellule de sortie
étant adaptée pour fonctionner selon un troisième mode dans lequel la tension sur
la première broche de sortie présente une troisième amplitude en fonction d'un signal
de commande appliqué à l'au moins une broche pour sélection de tension.
8. Circuit intégré selon la revendication 7, dans lequel la première borne du quatrième
transistor est câblée à la troisième broche d'alimentation de puissance, et la troisième
borne du quatrième transistor est câblée à la broche de sortie.
9. Circuit intégré selon l'une quelconque des revendications 1 à 8, dans lequel la première
cellule de sortie comprend un circuit logique ayant une entrée connectée à l'au moins
une broche pour sélection de tension et à la broche de données, et une sortie connectée
aux deuxièmes bornes du deuxième, troisième et quatrième transistor, si présent, pour
sélectionner entre les modes en activant sélectivement respectivement les deuxième,
troisième et quatrième transistors.
10. Circuit intégré selon l'une quelconque des revendications précédentes, dans lequel
le circuit intégré comprend une âme (18) connectée à la première cellule de sortie,
l'âme étant adaptée pour effectuer un traitement de signal pour un dispositif de correction
auditive.
11. Dispositif de correction auditive comprenant un circuit intégré selon l'une quelconque
des revendications précédentes.
12. Procédé de fabrication d'un circuit intégré, comprenant l'étape consistant à
- fournir au moins une cellule de sortie ayant une broche de sortie et au moins deux
transistors d'entraînement chacun ayant une première borne connectée respectivement
à une première et une deuxième broche d'alimentation de puissance de la cellule de
sortie, une deuxième borne, une troisième borne connectée à la broche de sortie et
à une quatrième borne,
la quatrième borne des deux transistors d'entraînement étant câblée si bien que la
différence de tension entre la troisième et la quatrième borne des transistors d'entraînement
respectifs est inférieure à la tension de seuil de diode entre la troisième et la
quatrième borne,
et les quatre bornes des au moins deux transistors d'entraînement étant câblées à
une borne commune.