[0001] The present invention relates to a device for rolling a metal sheet material and
a method for rolling a metal sheet material. A device in accordance with the preamble
of claim 1 is e.g. known from
JP-H 0452014. In particular, the present invention relates to a rolling device suitable for thick-plate
rolling devices, or roughing rolling devices or finishing rolling devices in a thin-sheet
hot rolling device, and capable of increasing the maximum gap between the top and
the bottom work rolls and easily applying a strong roll bending force, whereby it
is possible to achieve high-response and strong plate, strip-crown and shape controlling
function, and a rolling method using this rolling device.
[0002] Conventionally, rolling devices such as rolling devices 1A and 1B illustrated in
FIG. 12 and FIG. 13 are known, in which back up roll chocks cradle and hold work roll
chocks to obtain increased roller gap. However, an increase-bending device is incorporated
in an arm portion extending from the back up roll chock for holding the work roll
chock, and hence, it is difficult to employ a large-capacity hydraulic cylinder.
[0003] For example, a rolling device disclosed in Patent Document 1 is a four-high rolling
device having a structure type illustrated in FIG. 16. More specifically, a top work
roll chock 3-1 is held by an arm portion connected with a top back up roll chock 4-1.
Top increase-bending devices 6-1 and 6-2 that each work to a top work roll 1-1 are
assembled to the arm portion so as to achieve a large roller gap.
[0004] However, this type of rolling device has the following problems.
- (1) The top increase-bending devices 6-1, 6-2 are required to be incorporated in the
arm portion of the top back up roll chock 4-1 that cradles the top work roll chock
3-1. Thus, it is difficult to assemble the large-capacity hydraulic cylinder.
- (2) If the strong increase-bending force is applied to the top work roll 1-1, the
arm portion connected to the top back up roll chock 4-1 receives a moment acting in
the direction in which the arm portion opens outwards. In this case, it is highly
possible that the arm portion is pressed on the housing window, and the mill hysteresis
increases, causing deteriorated thickness accuracy, or a frictional force between
the chock and the window is not in symmetry in terms of right-left direction, which
causes the metal sheet to meander during rolling or increases instability of a rolling
operation due to occurrence of camber. Thus, it is substantially impossible to use
the strong work roll bender.
- (3) The top work roll chock 3-1 is brought into contact with the inner surface of
the arm portion of the top back up roll chock 4-1, and the side surface of the arm
portion is brought into contact with the inner surface of the housing window. Thus,
the metal sheet increasingly wobbles in the rolling direction, which increases the
possibility of meandering of the metal sheet or occurrence of camber during rolling.
- (4) Spaces are strictly limited, and in particular, complicated arrangement for wires
from the back up roll chock is required at the time of exchanging the back up roll.
Thus, it is difficult to install a mill stabilizer and load cell for measurement of
the force in the rolling direction.
[0005] There exists a rolling device such as a rolling device 1C illustrated in FIG. 14
in which the increase-bending devices 6-1 and 6-2 are incorporated in the bottom work
roll chock 3-2 to achieve a large roller gap.
[0006] For example, Patent Document 2 discloses a rolling device in which the increase-bending
device of the work roll is incorporated in the work roll chock.
[0007] Similarly, Patent Document 3 discloses a rolling device with a roll-cross system.
In this rolling device, the increase-bending device is incorporated in the work roll
chock.
[0008] This type of rolling device has the following problems.
(5) At the time of exchanging the work roll, hydraulic pipes need to be detached.
To make the detachment easy, it is necessary to employ flexible pipes, which makes
it difficult to employ a servo valve for controlling high-response hydraulic pressure.
Thus, it is difficult to configure a bending device having high responsiveness.
[0009] Further, a rolling device is known having a configuration in which an increase-bending
device is provided to a project block to obtain a bending device having high responsiveness.
[0010] For example, Patent Document 4 discloses a rolling device having a work-roll shift
function. In this rolling device, as illustrated in FIG. 15, increase-bending devices
6-1 to 6-4 are incorporated in project blocks 5-1 and 5-2 formed integrally with a
housing 9.
[0011] In the rolling device 1D illustrated in FIG. 15, bottom increase-bending devices
6-3 and 6-4 working to a bottom work roll 1-2 are incorporated in a project block
internally protruding from the housing 9.
[0012] However, this type of rolling device has the following problems.
(6) This rolling device has a structure in which a force on the work roll acting in
the rolling direction is supported by a contact surface on which the project block
and the work roll chock are brought into contact with each other. Thus, with the increase
in the roll gap, this contact surface becomes smaller. This makes it impossible to
appropriately support the work roll chock, and to obtain a large roller gap.
(7) The capacity of the hydraulic cylinder in the increase-bending device depends
on the height of the project block. Thus, if the rolling device includes a project
block not having sufficient height, the hydraulic cylinder cannot provide sufficient
stroke length, which makes it impossible to obtain the large roller gap.
[0013] It should be noted that the increase-bending device represents a hydraulic device
that applies a force acting on the work roll chock and in the direction in which the
roller gap increases, and is a generic name of a device including a hydraulic cylinder
serving as an actuator of the hydraulic device and a piston rod of the hydraulic device.
[0014] However, in the present invention, for the sake of simplicity, the increase-bending
device represents the hydraulic cylinder serving as the actuator of the increase-bending
device and the piston rod of the hydraulic cylinder unless otherwise specified. A
force applied to the work roll by the increase-bending device is referred to as the
increase-bending force.
[0015] A hydraulic device that applies, to the work roll chock, a force acting in a direction
in which the roller gap decreases is referred to as a decrease-bending device. Further,
a force applied to the work roll by the decrease-bending device is referred to as
the decrease-bending force. Yet further, the decrease-bending device is a generic
name of the device including the hydraulic cylinder serving as the actuator of the
device and the piston rod of the hydraulic cylinder. In the present invention, for
the sake of simplification, the decrease-bending device represents the hydraulic cylinder
serving as the actuator of the decrease-bending device and the piston rod of the decrease-bending
device, unless otherwise specified.
[0016] It should be noted that, in general, as illustrated in FIG. 12 to FIG. 16, the rolling
device for manufacturing the thick steel sheet does not have the decrease-bending
device (see Patent Documents 1 to 4).
[0017] This is because: (A) in the case of thick sheet rolling, a relatively large-diameter
work roll is used as compared with a case of thin sheet rolling, and hence, a change
in shape of the roll crown is smaller even when the same bending force is applied;
and (B) even if a small decrease-bending device is installed at a narrow portion in
the vicinity of a relatively large-diameter work roll chock as compared with the thin
sheet rolling device, the range of control is narrow, and the machine structure becomes
complicated, which results in a low cost performance.
[0018] Patent Documents referred to in the description are listed as below.
[0019]
Patent Document 1: Japanese Unexamined Patent Application, First Publication No. H06-87011
Patent Document 2: Japanese Unexamined Patent Application, First Publication No. S62-220205
Patent Document 3: Japanese Unexamined Patent Application, First Publication No. H06-198307
Patent Document 4: Japanese Unexamined Patent Application, First Publication No. H04-52014
[0020] As described above, conventionally, a rolling device having an increased roller gap
cannot achieve high responsiveness or accommodate a strong roll bending device.
[0021] A problem to be solved by the present invention is to provide a rolling device capable
of increasing the maximum gap between the top and the bottom work rolls and applying
a strong roll bending force, and a rolling method using this rolling device.
[0022] More specifically, an object of the present invention is to provide a rolling device
including a decrease-bending device as with a thin sheet rolling device and capable
of: dealing with a steel sheet having a wide range of thickness; increasing the roller
gap between the top and the bottom work rolls; easily applying a strong roll bending
force; and overcoming the above-described drawbacks that the conventional rolling
device has, and a rolling method using this rolling device.
[0023] The above problem can be solved by the features defined in the claims
[0024] According to the rolling device and the rolling method according to the present invention,
the maximum gap between the top and the bottom work rolls can be increased, and even
in the case where the decrease-bending device having low responsiveness is provided,
this is compensated for by the increase-bending device having high responsiveness
and provided to the pair of first project blocks, whereby it is possible to obtain
a high-response and strong plate, strip-crown and shape controlling function.
[0025] Thus, it is possible to obtain favorable plate, strip crown and shapes even if there
exist external disturbances such as thickness of the material on the input side or
temperatures of the rolling material, which varies during rolling, whereby it is possible
to significantly improve product quality and production yield.
[0026] Further, the increase-bending force and the decrease-bending force are applied to
the top work roll to achieve the strong plate, strip-crown and shape controlling function,
and further, a multi-stage hydraulic cylinder is employed for the top-work-roll decrease-bending
device to achieve generation of the roll balance force, whereby it is possible to
largely increase the roll gap. In other words, with only one rolling device, it is
possible to deal with various applications ranging from blooming roll with a large
thickness to hot-roll thin sheet roll for which precise plate, strip crown and shape
control is required.
[0027] Yet further, the force in the rolling direction acting on the top work roll chock
is always borne by the housing window, whereby it is possible to stably support the
top work roll chock.
[0028] Yet further, the top and the bottom increase-bending devices can be incorporated
in the pair of first project blocks. This makes it possible to achieve the strong
bending device having the large capacity and large stroke.
[0029] Yet further, the increase-bending device is incorporated in the pair of first project
blocks, which makes it possible to fix the hydraulic pipes and employ servo valves.
With this configuration, it is possible to control the increase-bending force in a
high response manner.
[0030] Yet further, even if the decrease-bending device having low responsiveness is used,
it is possible to control the roll bending force in a high response manner with cooperation
of the increase-bending device having high responsiveness. This makes it possible
to largely improve the product quality and yield in terms of rolling.
[0031] The invention is described in detail in conjunction with the drawings in which:
FIG. 1 is a side view illustrating a structure of a rolling device according to an
embodiment of the present invention,
FIG. 2 is a diagram illustrating a connection structure between a top work roll chock
and a top decrease-bending device,
FIG. 3A is a sectional view illustrating a first mode of an engagement relationship
between a first engagement portion of a third piston rod of a third hydraulic cylinder
and a second engagement portion of a top work roll chock,
FIG. 3B is a sectional view illustrating a second mode of an engagement relationship
between a first engagement portion of a third piston rod of a third hydraulic cylinder
and a second engagement portion of a top work roll chock,
FIG. 3C is a sectional view illustrating a third mode of an engagement relationship
between a first engagement portion of a third piston rod of a third hydraulic cylinder
and a second engagement portion of a top work roll chock,
FIG. 4 is a perspective plan view illustrating an example of arrangement of top and
bottom increase-bending devices,
FIG. 5 is a perspective plan view illustrating an example of arrangement of top and
bottom increase-bending devices,
FIG. 6 is a side view illustrating another example of a structure of a rolling device
according to an embodiment of the present invention,
FIG. 7 is a diagram illustrating an example of an operation flow of a rolling method
according to an embodiment of the present invention,
FIG. 8 is a diagram illustrating a change in time series of a roll bending force and
other parameters associated with the operation flow in FIG. 7,
FIG. 9 is a diagram illustrating a change in time series of a roll bending force and
other parameters in the case where the responsiveness of a decrease-bending device
is significantly low,
FIG. 10 is a diagram illustrating another example of an operation flow of a rolling
method according to an embodiment of the present invention,
FIG. 11 is a diagram illustrating a change in time series of a roll bending force
and other parameters associated with the operation flow in FIG. 10,
FIG. 12 is a side view illustrating a structure of a rolling device 1A according to
a conventional art,
FIG. 13 is a side view illustrating a structure of a rolling device 1B according to
a conventional art,
FIG. 14 is a side view illustrating a structure of a rolling device 1C according to
a conventional art,
FIG. 15 is a side view illustrating a structure of a rolling device 1D according to
a conventional art, and
FIG. 16 is a side view illustrating a structure of a rolling device 1E according to
a conventional art.
[0032] Hereinbelow, a rolling device according to the present invention based on the findings
described above and a rolling method using this rolling device will be described with
reference to FIG. 1 through FIG. 16.
[0033] FIG. 1 is a side view illustrating an example of a structure of a rolling device
1 according to an embodiment of the present invention. As illustrated in FIG. 1, the
rolling device 1 according to an embodiment of the present invention includes a top
work roll chock 3-1, a bottom work roll chock 3-2, a top back up roll chock 4-1, a
bottom back up roll chock 4-2, and a housing 9 containing these roll chocks. The housing
9 has a pair of first project blocks 5-1 and 5-2 (in other words, a first project
block provided on the side where a metal sheet material is inputted and a first project
block provided on the output side) formed integrally with the housing, thereby forming
a housing window 12.
[0034] The top work roll chock 3-1 supports a top work roll 1-1 for rolling a metal sheet
material, and the bottom work roll chock 3-2 supports a bottom work roll 1-2 for rolling
the metal sheet material.
[0035] Further, the top back up roll chock 4-1 supports a top back up roll 2-1 disposed
above the top work roll 1-1, and the bottom back up roll chock 4-2 supports a bottom
back up roll disposed below the bottom work roll 1-2.
[0036] The pair of the first project blocks 5-1 and 5-2 are formed integrally so as to protrude
inwardly from the housing 9. The pair of the first project blocks 5-1 and 5-2 are
provided with top increase-bending devices 6-1 and 6-2 that each apply an increase-bending
force through the top work roll chock 3-1 to the top work roll 1-1, and are provided
with bottom increase-bending devices 6-3 and 6-4 that each apply an increase-bending
force through the bottom work roll chock 3-2 to the bottom work roll 1-2.
[0037] More specifically, the top increase-bending devices 6-1 and 6-2 are each formed by
a first hydraulic cylinder serving as an actuator of the device 6-1, 6-2 and a piston
rod (first piston rod) of the first hydraulic cylinder. The first hydraulic cylinder
is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided
such that an end portion of the first piston rod protrudes from the top surface of
each of the pair of the first project block 5-1, 5-2 and comes into contact with the
top work roll chock 3-1.
[0038] Further, the bottom increase-bending devices 6-3 and 6-4 are each formed by a second
hydraulic cylinder serving as an actuator of the device 6-3, 6-4 and a piston rod
(second piston rod) of the second hydraulic cylinder. The second hydraulic cylinder
is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided
such that an end portion of the second piston rod protrudes from the bottom surface
of each of the pair of the first project blocks 5-1 and 5-2 and comes into contact
with the bottom work roll chock 3-2.
[0039] Further, the rolling device 1 according to this embodiment includes top decrease-bending
devices 7-1 and 7-2 provided in the top back up roll chock 4-1 and having a function
of applying the decrease-bending force through the top work roll chock 3-1 to the
top work roll 1-1 and a function of causing a pulling-up force (roll balance force)
for bringing the top work roll 1-1 into contact with the top back up roll 2-1.
[0040] The top decrease-bending devices 7-1 and 7-2 having the two functions are formed
by a third hydraulic cylinder serving as an actuator of the device 7-1, 7-2 and a
piston rod (third piston rod) of the third hydraulic cylinder. The third hydraulic
cylinder is provided in the top back up roll chock 4-1. The third piston rod includes
a top end shaped so as to engage with the top work roll chock 3-1.
[0041] Further, the rolling device 1 according to this embodiment includes bottom decrease-bending
devices 7-3 and 7-4 that each apply the decrease-bending force through the bottom
work roll chock 3-2 to the bottom work roll 1-2.
[0042] The bottom decrease-bending devices 7-3 and 7-4 are each formed by a fourth hydraulic
cylinder serving as an actuator of the device 7-3, 7-4 and a piston rod (fourth piston
rod) of the fourth hydraulic cylinder. The fourth hydraulic cylinder is provided to
the bottom back up roll chock 4-2, or is incorporated in a pair of second project
blocks 5-3 and 5-4, which will be described later. The fourth piston rod is provided
such that a top end thereof is brought into contact with the bottom work roll chock
3-2.
[0043] The configuration in which a project block has an increase-bending device, and top
and bottom back up roll chocks each have a decrease-bending device is commonly found
in hot-rolling finish rolling devices. However, with this configuration, the force
acting in the rolling direction and occurring during rolling has to be supported by
the contact surface on which the surface on the top stream side of the project block
provided on the output side of the metal sheet material is brought into contact with
the work roll chock. Thus, with the increase in the roller gap, the center of the
rotational moment of the top work roll deviates upward from the contact surface, and
the area of the contact surface that supports the force in the rolling direction decreases.
For these reasons, in the top work roll chock, even if the height of the pair of the
project blocks is increased, the contact surface between the surface on the top stream
side of the project block and the work roll chock decreases with the increase in the
roller gap, and the position of the top work roll chock becomes unstable, which makes
it impossible to increase the roller gap.
[0044] A rolling device 1E illustrated in FIG. 16 improves the above-described points, and
is frequently found in thick-sheet finishing rolling devices. In the rolling device
1E, the top back up roll chock 4-1 includes an arm that cradles the top work roll
chock 3-1. With this type of rolling device, the top back up roll chock 4-1 cradles
the top work roll chock 3-1, and hence, the top work roll 1-1 ascends as the top back
up roll 2-1 elevates, which makes it possible to increase the roller gap.
[0045] However, the rolling device having this structure does not have sufficient space
for the increase-bending device and the decrease-bending device used for the top work
roll 1-1. Thus, in general, as illustrated in FIG. 16, for the top work roll 1-1,
only the small-capacity increase-bending devices 6-1 and 6-2 are provided between
the top back up roll chock 4-1 and the top work roll chock 3-1, and no decrease-bending
device is provided for the top work roll 1-1. This results in a drawback of limited
shape-controlling ability.
[0046] Further, the force in the rolling direction acting on the top work roll 1-1 is received
by the contact surface on the downstream side in the rolling direction between the
top back up roll chock 4-1 and the top work roll chock 3-1. Further, this force is
finally received by the contact surface between the outer surface of the arm on the
downstream side in the rolling direction of the top back up roll chock 4-1 and the
inner side of the housing window 12. However, the contact surface on the downstream
side in the rolling direction has limited space, and it is difficult to install a
load cell that can sufficiently support the top work roll chock 3-1. Further, a wobble
remains on the contact surface between the top back up roll chock 4-1 and the housing
window 12. Yet further, a stabilizer or load cell is required for each back up roll
chock, and arrangement of wires necessary for activating these units significantly
deteriorates workability.
[0047] In view of the circumstances described above, the rolling device 1 according to this
embodiment includes the pair of the first project blocks 5-1 and 5-2 protruding inwardly
from the housing 9 and disposed at positions shifted downward with respect to a pass
line, as illustrated in FIG. 1. More specifically, unlike the conventional configuration
illustrated in FIG. 15, the pair of the first project blocks 5-1 and 5-2 are disposed
at positions that are not vertically symmetric with respect to the pass line. Further,
the top work roll chock 3-1 is shaped such that a base portion adjacent to the portion
located between the pair of the first project blocks 5-1 and 5-2, in other words,
the top side portion corresponding to the width of the housing window 12 (housing
window width) is set higher instead of increasing the height of the portion located
between the pair of the first project blocks 5-1 and 5-2.
[0048] With the rolling device 1 according to this embodiment having such a shape, the force
in the rolling direction such as a component of the offset force acting on the top
work roll 1-1, in other words, the force in the rolling direction acting on the body
portion of the top work roll 1-1 from the metal sheet (plate) material 10 or top back
up roll 2-1 is borne by the contact surface between the top side portion of the top
work roll chock 3-1 corresponding to the housing window width and the housing window
12 located above the pair of the first project blocks 5-1 and 5-2.
[0049] With this structure, the area of the surface on which the top work roll chock 3-1
is brought into contact with the housing window 12 remains unchanged even if a drafting
device 11 of the rolling device 1 is operated to increase the roller gap. Thus, the
position of the top work roll chock 3-1 can be stably maintained regardless of the
amount of the roller gap.
[0050] Further, the rolling device 1 according to this embodiment includes the pair of the
first project blocks 5-1 and 5-2 inwardly protruding from the housing 9 and including
the top increase-bending devices 6-1 and 6-2 that apply the increase-bending force
to the top work roll 1-1, and the bottom increase-bending devices 6-3 and 6-4 that
apply the increase-bending force to the bottom work roll 1-2.
[0051] This configuration eliminates the need for detaching the hydraulic pipes of the increase-bending
device every time the work roll is exchanged, and allows using fixed pipes. This makes
it possible to employ accurate servo valves, thereby obtaining a high-responsive increase-bending
device.
[0052] Further, the top decrease-bending devices 7-1 and 7-2 are formed by the third hydraulic
cylinder incorporated in the top back up roll chock 4-1 and the third piston rod of
the third hydraulic cylinder. The top end of the third piston rod of the third hydraulic
cylinder is operated to move in the roll axis direction at the time of exchanging
the roll so as to be able to be connected with the top work roll chock 3-1, thereby
applying the roll balance force.
[0053] With this configuration, the roller gap can be increased regardless of the stroke
of the increase-bending device, and it is possible to apply the strong decrease-bending
force in the case where a plate, strip crown control is necessary for a steel plate
with a thickness of approximately 100 mm or less. This makes it possible for only
one rolling device 1 to deal with various rolling applications ranging from rolling
of a roll material with a thickness of over 800 mm to rolling with a precise plate,
strip crown control during the thick-sheet rolling with a thickness of 100 mm or less.
[0054] Next, an example of a structure of the connection portion will be described in detail.
This example shows merely one embodiment, and does not limit the specific structure
of the present invention.
[0055] FIG. 2 is a plan view of the top work roll 1-1 and the top work roll chock 3-1, and
in the drawing, the near side shows the drive side, while the far side shows the work
side. At each of the right and the left on the top surface of the roll chock 3-1 for
the top work roll 1-1, there is formed a groove 31 having a reversed T-shape in cross-section
and engaged with the top end of the third piston rod of the third hydraulic cylinder
constituting the top decrease-bending device 7-1, 7-2 as a second engagement portion.
The groove 31 opens on the drive side, and extends up to the vicinity of the center
of the chock.
[0056] When a roll set is inserted into the rolling device 1, the work roll having both
ends each set with the roll chock from the operation side is delivered through a rail
or other tool to a predetermined position in the housing of the rolling device 1.
At this time, the piston rod of the hydraulic cylinder serving as the decrease-bending
device is retracted in the top back up roll chock 4-1, so that this piston rod does
not obstruct the delivery.
[0057] Next, the groove 31 of the top work roll chock 3-1 is positioned immediately in front
of an expanded portion (first engagement portion) of the third piston rod of the third
hydraulic cylinder to be engaged with the groove 31. At this position, the piston
rod is descended to a predetermined position. Then, as illustrated in FIG. 3C, the
inner surface of the groove 31 is kept in a position where it does not come into contact
with the external surface of the third piston rod, and the expanded portion of the
third piston rod is moved into the groove 31 from the groove opening portion on the
drive side. Through these procedures, the first engagement portion and the second
engagement portion are engaged with each other.
[0058] FIG. 3A is a diagram illustrating a state where the expanded portion formed at the
top end of the third piston rod of the third hydraulic cylinder of the top decrease-bending
device 7-1, 7-2 is engaged with the groove 31. More specifically, FIG. 3A illustrates
a state where, with the pulling-up operation made by the third hydraulic cylinder,
the third piston rod is pulled upward and is brought into contact with the top surface
of the groove 31 of the top work roll chock 3-1, thereby applying a lifting force
f
RB.
[0059] The lifting force f
RB acts as the roll balance force. Thus, without relying on the stroke of the first
piston rod of the top increase-bending devices 6-1 and 6-2 provided to the pair of
the first project blocks 5-1 and 5-2, it is possible to raise the top work roll 1-1
together with the top back up roll 2-1. This makes it possible to easily obtain the
large roller gap.
[0060] FIG. 3B is a diagram illustrating a state where the top decrease-bending force is
applied in the case of controlling plate, strip crown and shapes in such a case as
finishing rolling in the thin-sheet hot rolling.
[0061] More specifically, with the third hydraulic cylinder of the top decrease-bending
device 7-1, 7-2, the third piston rod extends downward to apply a pressing force f
DC to the bottom surface of the groove 31 of the top work roll chock 3-1, thereby applying
the decrease-bending force.
[0062] FIG. 3C is a diagram illustrating a non-contact state where the groove 31 is brought
into engagement with the third piston rod at the time of exchanging rolls as described
above, or this engagement is canceled.
[0063] In the example described above, the groove 31 is formed in the top work roll chock
3-1, and the expanded portion to be engaged with the groove 31 is formed in the top
decrease-bending device 7-1, 7-2. However, the present invention is not limited to
this mode. For example, it may be possible that the groove 31 is formed in the top
decrease-bending device 7-1, 7-2, and the expanded portion to be engaged with the
groove 31 is formed in the top work roll chock 3-1.
[0064] It should be noted that, in the rolling device 1 according to this embodiment, the
force in the rolling direction applied to the body portion of the bottom work roll
1-2 is borne by the contact surface between the bottom work roll chock 3-2 and the
project block (5-1 or 5-2) provided on the output side. Thus, in the rolling device
1 according to this embodiment illustrated in FIG. 1, a portion of the bottom work
roll chock 3-2 located between the pair of the first project blocks 5-1 and 5-2 is
raised.
[0065] Further, since the roller gap is adjusted mainly by moving upward and downward the
top work roll chock 3-1, the amount of travel of the bottom work roll chock 3-2 is
small in the vertical direction. Thus, the positions of the bottom work roll 1-2 remain
stable even if the roller gap is increased.
[0066] FIG. 4 is a plan sectional view illustrating an example of arrangement of the top
and bottom increase-bending devices 6-1 to 6-4. In other words, FIG. 4 is a sectional
view at the height of the pass line of the pair of the first project blocks 5-1 and
5-2.
[0067] In the rolling device 1 according to this embodiment, it is desirable to arrange
the top and bottom increase-bending devices 6-1 to 6-4 so as to be positionally shifted
to each other on the plan sectional view of the pair of the first project blocks 5-1
and 5-2. For example, as illustrated in FIG. 4, it is desirable to arrange the top
increase-bending devices 6-1 and 6-2 and the bottom increase-bending devices 6-3 and
6-4 so as to be positionally shifted in the axial direction of the work roll 1-2.
With this arrangement, the top and bottom increase-bending devices 6-1 to 6-4 do not
interfere with each other within the pair of the first project blocks 5-1 and 5-2.
[0068] In other words, the first hydraulic cylinder and the second hydraulic cylinder, which
are incorporated in each of the first project blocks 5-1 and 5-2, do not interfere
with each other. This makes it possible to increase the capacity of the first hydraulic
cylinder and the second hydraulic cylinder, increase the stroke of each of the first
piston rod and the second piston rod, and increase the amount of operation of the
increase bending.
[0069] It should be noted that, in FIG. 4, the bottom increase-bending devices 6-3 and
6-4 are formed by two second hydraulic cylinders located on the input side and the
output side. However, a similar effect can be obtained by using one second hydraulic
cylinder for each of the bottom increase-bending devices 6-3 and 6-4 and arranging
them at different positions in the axial direction of the bottom work roll 1-2 to
prevent the second hydraulic cylinder from interfering with the first hydraulic cylinder.
[0070] FIG. 5 is a plan sectional view illustrating an example of arrangement of the top
and bottom increase-bending devices 6-1 to 6-4. In other words, FIG. 5 is a sectional
view at the height of the pass line of the pair of the first project blocks 5-1 and
5-2. As illustrated in FIG. 5, the first hydraulic cylinder and the second hydraulic
cylinder may be arranged so as to be positionally shifted in the rolling direction.
With this arrangement, the first hydraulic cylinder and the second hydraulic cylinder
do not interfere with each other. Thus, it is possible to increase the capacity of
the first hydraulic cylinder and the second hydraulic cylinder, increase the stroke
of each of the first piston rod and the second piston rod, and increase the amount
of operation of bending.
[0071] These are descriptions of the structure of the rolling device 1 according to this
embodiment mainly from the viewpoint of increasing the roller gap, which is one of
the problems to be solved.
[0072] Next, with this structure, a description will be made showing that the strong roll
bending force can be easily applied, which is another problem to be solved.
[0073] FIG. 12 and FIG. 13 illustrate rolling devices 1A and 1B according to conventional
arts, each of which has an increased roller gap.
[0074] However, these rolling devices 1A and 1B cannot apply a strong roll bending force.
This is because these rolling devices have a structure in which the top increase-bending
devices 6-1 and 6-2 are incorporated in the arm portion protruding downward from the
top back up roll chock 4-1, which prevents the large-capacity and large-stroke top
increase-bending devices 6-1 and 6-2 from being installed. Further, these rolling
devices 1A and 1B have the arm portion extending from the top back up roll chock 4-1,
and hence, the top decrease-bending devices 7-1 and 7-2 are required to be installed
at the space shifted to the axial center of the roll. Thus, interference with the
bearing for the top back up roll 2-1 occurs, which makes it impossible to dispose
the large-capacity and large-stroke top decrease-bending devices 7-1 and 7-2.
[0075] Further, as illustrated in FIG. 1, in the rolling device 1 according to this embodiment,
the large-capacity and large-stroke top increase-bending devices 6-1 and 6-2 can be
disposed in the pair of the first project blocks 5-1 and 5-2 protruding inwardly from
the housing 9 of the rolling device 1.
[0076] Further, unlike the rolling devices 1A and 1B illustrated in FIG. 12 and FIG. 13,
in the rolling device 1 according to this embodiment, the top back up roll chock 4-1
does not have the arm portion. This allows the large-capacity and large-stroke top
decrease-bending devices 7-1 and 7-2 to be disposed at positions of the top back up
roll chock 4-1 that do not interfere with the bearing for the top back up roll 2-1,
whereby it is possible to apply the large decrease-bending force to the top work roll
1-1.
[0077] More specifically, according to the rolling device 1 of this embodiment having a
structure in which, together with the positions of the pair of the first project blocks
5-1 and 5-2, the force in the rolling direction applied to the body portion of the
top work roll 1-1 is received by the contact surface between the top work roll chock
3-1 and the housing window 12, it is possible to increase the roller gap and apply
the strong roll bending force.
[0078] Further, with this structure, it is possible to eliminate the need for detaching
the hydraulic pipes of the increase-bending device every time the work rolls are exchanged.
This makes it possible for the increase-bending devices 6-1 to 6-4 to be connected
with hydraulic control valves through fixed hydraulic pipes and employ servo valves
used for high-response hydraulic control. Thus, it is possible to obtain the high-response
increase-bending device.
[0079] FIG. 6 is a side view illustrating a rolling device 1' according to a modification
example of this embodiment. The rolling device 1' illustrated in FIG. 6 has the same
top roll systems as those illustrated in FIG. 1 and different bottom roll systems
from those illustrated in FIG. 1. In the rolling device illustrated in FIG. 1, the
bottom back up roll chock 4-2 has the bottom decrease-bending devices 7-3 and 7-4
that apply the decrease-bending force to the bottom work roll 1-2. On the other hand,
in the rolling device 1' illustrated in FIG. 6, the bottom decrease-bending devices
7-3 and 7-4 are disposed to a pair of second project blocks 5-3 and 5-4 located below
the pair of the first project blocks 5-1 and 5-2.
[0080] If the bottom decrease-bending devices 7-3 and 7-4 are disposed to the bottom back
up roll chock 4-2 as in the rolling device 1 illustrated in FIG. 1, the hydraulic
pipes of the decrease-bending device are required to be detached when the bottom back
up roll 2-2 is exchanged. In other words, it is highly likely that small foreign substances
enter the hydraulic pipes at the time of detachment.
[0081] Thus, in general, it is difficult to employ a servo valve for the high-response hydraulic
control, and further, it may be necessary to partially employ flexible pipes.
[0082] Accordingly, the roll bending device has reduced responsiveness as compared with
the case where the fixed pipes or servo valves are employed.
[0083] On the other hand, according to the rolling device 1' illustrated in FIG. 6, it is
possible to overcome the above-described problem occurring at the time of exchanging
the bottom back up roll 2-2. This is because servo valves for high-response hydraulic
control can be used for the hydraulic pipes of the bottom decrease-bending devices
7-3 and 7-4 provided to the pair of the second project blocks 5-3 and 5-4, whereby
it is possible to eliminate the need for using the flexible pipes. Thus, the bottom
back up roll 2-2 can be easily exchanged, and the high-response roll bending device
can be obtained.
[0084] Next, a rolling method according to this embodiment will be described.
[0085] In the case where the top decrease-bending devices 7-1 and 7-2 are provided to the
top back up roll chock 4-1 as illustrated in FIG. 1 and FIG. 6, the hydraulic pipes
of the top decrease-bending devices 7-1 and 7-2 are required to be detached at the
time of exchanging the top back up roll 2-1, and hence, it is highly likely that small
foreign substances enter the hydraulic pipes at the time of exchange.
[0086] Thus, in general, it is relatively difficult to employ the servo valve for high-response
hydraulic control. Further, in order to easily detach the pipes, it is necessary to
connect the hydraulic-control valves through detachable hydraulic pipes having flexibility
such as flexible pipes. However, in the case where the detachable hydraulic pipes
having flexibility such as flexible pipes are employed, this flexibility may absorb
or alleviate the variation of the hydraulic pressure.
[0087] Thus, in the case where the top decrease-bending devices 7-1 and 7-2 are provided
to the top back up roll chock 4-1, the responsiveness of the roll bending device reduces
as compared with the case where the fixed pipes or servo valves are used.
[0088] Incidentally, the decrease-bending force cannot be applied at idle time when the
rolling load is not applied. Thus, when the decrease-bending force is applied, it
is necessary to rapidly complete setting the decrease-bending force by the start of
rolling from the idle state in which the roll balance force is applied, and rapidly
turn back into the roll balance state at the time of completion of the rolling.
[0089] Thus, if the change in the roll bending force is controlled by the decrease-bending
device having reduced responsiveness, a predetermined decrease-bending force is not
applied at the tail end of the roll material, possibly causing malformation of the
roll material.
[0090] The rolling method according to this embodiment solves the above-described problems.
[0091] More specifically, the rolling method uses the rolling device 1, 1' according to
this embodiment including the top back up roll chock 4-1 provided with the top decrease-bending
devices 7-1 and 7-2, and solves the above-described problems that may occur in the
rolling device 1, 1'.
[0092] As described above, in the rolling device 1, 1' including the top back up roll chock
4-1 provided with the top decrease-bending devices 7-1 and 7-2, the responsiveness
of the decrease-bending device may deteriorate.
[0093] However, the rolling device 1, 1' according to this embodiment has a structure in
which the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the
housing 9 includes the top increase-bending devices 6-1 and 6-2, thereby obtaining
the top increase-bending device having the large capacity and large stroke.
[0094] It is not necessary to detach the hydraulic pipes of the increase-bending device
every time the rolls are exchanged, and hence, the fixed hydraulic pipes or servo
valves can be used, which makes it possible to obtain the increase-bending device
having the high-responsiveness.
[0095] The rolling method according to this embodiment uses the increase-bending device
having high responsiveness for changing the roll bending force at the time of starting
rolling and at the time of finishing rolling, in the case where the decrease-bending
force is applied to the work roll to control the plate, strip crown and shapes, thereby
compensating for the responsiveness of the decrease-bending device.
[0096] FIG. 7 is a diagram illustrating an example of an operation flow of the rolling method
according to this embodiment. More specifically, FIG. 7 is a diagram illustrating
an operation flow performed by the increase-bending device having the high responsiveness
and an operation flow performed by the decrease-bending device having relatively low
responsiveness as compared with the increase-bending device.
[0097] FIG. 8 illustrates a change in time series of the roll bending force to one roll
material or other parameters in this rolling method. FIG. 8 indicates, from top to
bottom, a change in time series of rolling load, output from the increase-bending
device, output from the decrease-bending device, and work-roll bending force serving
as the resultant force of these forces. Below, a description will be made with reference
to FIG. 7 and FIG. 8.
[0098] First, prior to start of rolling, calculation is made to obtain a setting value F
R of the work-roll bending force during rolling that corresponds to a roll material
to be next rolled. In this example, it is assumed that the F
R is a negative value, in other words, is calculated as the decrease-bending force.
Note that, in this embodiment, it is assumed that the increase-bending force (force
acting in the increase direction in which roll is opened) is a positive value and
the decrease-bending force (force acting in the decrease direction in which the roll
is pressed) is a negative value.
[First Step]
[0099] Prior to the start of rolling, both the increase-bending force and the decrease-bending
force are activated, so that a roll bending force on the increase side corresponding
to a roll balance force F
B acts as a resultant force on the work roll chock.
[0100] In other words, at the idle time before rolling, I
B + D
B acts as the roll balance force F
B (>0), where I
B (>0) is the output from the increase-bending device and D
B (<0) is the output from the decrease-bending device.
[0101] The roll balance force F
B is determined to be a force by which slippage does not occur between the work roll
driven by an electric motor even in the idle time and the back up roll, which is a
follower. At this time, D
B is set to be the minimum hydraulic pressure at which the actuator of the decrease-bending
device does not detach from the work roll chock.
[Second Step]
[0102] Next, at a certain timing prior to the start of rolling (at the point (a) on the
time axis), calculation is made on the basis of D
S = F
R - I
R to obtain a predetermined output Ds from the decrease-bending device during rolling
sufficient to generate the work-roll bending force F
R during rolling. Then, D
S and I
S are simultaneously outputted so as to make the roll balance force F
B constant. In this example, I
R is the output from the increase-bending device during rolling, and the value of I
R is determined in advance to be a value close to the minimum controllable value such
that the absolute value of D
S is not excessive. I
S is the output from the increase-bending device, and constitutes Is + D
S = Fr. Thus, at the timing of the setting, the work-roll bending force, which is the
resultant force, remains F
B, and is substantially unchanged.
[Third Step]
[0103] Next, at the start of rolling, the increase-bending force is changed (decreased)
while the decrease-bending force is kept constant so that the predetermined work-roll
bending force F
R during rolling acts as a resultant force on the work roll chock.
[0104] In other words, at the time of starting rolling (at the point b on the time axis),
the output from the increase-bending device is changed from Is to I
R. With this change, the work-roll bending force as the resultant force is rapidly
changed from the roll balance force F
B (>0) to the roll bending force F
R (<0) during rolling operation through the control performed by the increase-bending
device having high responsiveness, while the output from the decrease-bending device
having low responsiveness is kept unchanged from D
S.
[0105] It should be noted that the time (b) of starting rolling represents a time when the
rolling starts, and may be determined to be the time when the load detected, for example,
with a load cell for measuring the rolling load of the rolling device 1, 1' exceeds
30% of the expected rolling load.
[Fourth Step]
[0106] Then, the metal sheet is rolled while the roll bending force during rolling is maintained.
[Fifth Step]
[0107] At the time of completion of rolling, in order to return the roll bending force to
the state before the starting of rolling, the roll bending force corresponding to
the roll balance force F
B is caused to act as the resultant force on the work roll chock, and the rolling ends.
[0108] More specifically, at the time of completion of rolling (at the point (c) on the
time axis), the output from the increase-bending device having high responsiveness
is changed from I
R to Is, while the output from the decrease-bending device is kept to D
S. With this operation, the work-roll bending force as the resultant force is rapidly
changed from the work-roll bending force (F
R (<0)) during rolling to the roll balance force (F
S (>0)).
[0109] It should be noted that the time (c) of completion of rolling represents the time
when the rolling ends, and may be determined, for example, to be the timing when the
load detected, for example, with the load cell for measuring the rolling load of the
rolling device 1, 1' falls below 50% of the average value of the actual rolling load.
[Sixth Step]
[0110] Then, the point in time when 1 to 3 seconds elapses from the time (c) of completion
of rolling is determined to be a work completion timing (point (d) on the time axis),
and at this timing, the output from the increase-bending device is changed to be I
B, and the output from the decrease-bending device is changed to be D
B. Even at these changes, the work-roll bending force as the resultant force is substantially
kept to the roll balance force F
B.
[0111] As illustrated in FIG. 7 and FIG. 8, in the rolling method according to this embodiment,
the increase-bending device having high responsiveness is used to change the roll
bending force at the time of starting rolling and at the time of completion of rolling.
Thus, even in the case where the decrease-bending device having relatively low responsiveness
is required to be equipped, this is compensated for by the increase-bending device
having high responsiveness, so that it is possible to control plate, strip crown and
shapes in a high-response and strong manner.
[0112] Further, even in the case where the rolling force varies during rolling due to various
factors (external disturbance), it is possible to rapidly control with the increase-bending
device having high responsiveness so as to maintain the optimal work-roll bending
force.
[0113] In other words, according to the rolling method of this embodiment, it is possible
to obtain favorable plate, strip crown and shape even if there exist external disturbances
varying during rolling such as thickness of roll materials on the input side and temperatures
of the roll material. This makes it possible to significantly improve the product
quality and production yield.
[0114] FIG. 9 is a diagram illustrating a change in time series of the roll bending force
and other parameters in the case where the decrease-bending device has significantly
low responsiveness (in particular, the decrease-bending device has a hydraulic characteristic
in which the pressure decreases if the loading force becomes lost). As in FIG. 8,
FIG. 9 illustrates a change in time series of the roll bending force and other parameters
occurring in association with operations of rolling a roll material performed in accordance
with the operation flow of the increase-bending device and the decrease-bending device
illustrated in FIG. 7. In other words, FIG. 9 illustrates an example in which the
decrease-bending device has low response speed as compared with the case in FIG. 7
and FIG. 8.
[0115] At the timings b and c, the output from the increase-bending device having high responsiveness
sharply changes, and hence, the output from the decrease-bending device having low
responsiveness varies. As a result, the work-roll bending force as the resultant force
reaches F
R later than the timing (b), and reaches F
B later than the timing (c). The rolling method illustrated in FIG. 10 solves this
problem.
[0116] FIG. 10 is a diagram illustrating an operation flow in the case where the increase-bending
device having high responsiveness and the decrease-bending device having low responsiveness
are provided. Further, FIG. 11 illustrates a change in time series of the roll bending
force acting on one roll material and other parameters in this rolling method. FIG.
11 indicates, from top to bottom, a change in time series of rolling load, output
from the increase-bending device, output from the decrease-bending device, the work-roll
bending force, which is the resultant force thereof. Below, a description will be
made with reference to FIG. 10 and FIG. 11.
[0117] In the rolling method illustrated in FIG. 10, the decrease-bending force is measured
at all times with a load cell provided to the decrease-bending device, or the hydraulic
pressure in the hydraulic pipes connected with the decrease-bending device is measured
at all times. On the basis of the measured values, the increase-bending device is
dynamically controlled. More specifically, before and after the rolling, the output
from the increase-bending device is controlled on the basis of the decrease-bending
force or hydraulic pressure of the decrease-bending device so as to make the work-roll
bending force equal to the roll balance force F
B. Note that controls other than that described above are similar to those in the rolling
method illustrated in FIG. 7, and will be described in detail below.
[0118] First, prior to the start of rolling, calculation is made to obtain a setting value
F
R of the work-roll bending force during rolling suitable for a roll material to be
next rolled.
[First Step]
[0119] Before the start of rolling, both the increase-bending force and the decrease-bending
force are activated, so that a roll bending force on the increase side corresponding
to a roll balance force F
B acts as the resultant force on the work roll chock.
[0120] In other words, during idle time before rolling, I
B + D
B acts as the roll balance force F
B (>0), where I
B (>0) is the output from the increase-bending device and D
B (<0) is the output from the decrease-bending device.
[Second Step]
[0121] Next, at a certain timing prior to the start of rolling (at the point (a) on the
time axis), calculation is made on the basis of D
S = F
R - I
R to obtain a predetermined output Ds from the decrease-bending device during rolling
sufficient to generate the work-roll bending force F
R during rolling. The decrease-bending force is changed from D
B to D
S. Is is the output from the increase-bending device determined on the basis of I
S + D
S = Fr, and is outputted simultaneously with D
S. In this example, using a measured value D
M obtained by continuously measuring the decrease-bending force, the output Is from
the increase-bending device is controlled so as to always keep at constant the roll
balance force F
B that may slightly vary.
[Third Step]
[0122] Next, at the start of rolling, the increase-bending force is changed (decreased)
while the decrease-bending force is kept constant so that the predetermined work-roll
bending force F
R during rolling acts as the resultant force on the work roll chock.
[0123] In other words, at the time of starting rolling (at the point (b) on the time axis),
the output from the increase-bending device is changed from I
S to I
R. With this change, the work-roll bending force as the resultant force is rapidly
changed from the roll balance force F
B (>0) to the roll bending force F
R (<0) during rolling operation through the control performed by the increase-bending
device having high responsiveness while the output from the decrease-bending device
having low responsiveness is kept unchanged from D
S.
[Fourth Step]
[0124] Then, the metal sheet is rolled while the roll bending force during rolling is maintained.
In this step, using the measured value D
M obtained by continuously measuring the decrease-bending force, the output I
R from the increase-bending device is controlled so as to always keep at constant the
roll balance force F
B that may slightly vary, and then, is outputted simultaneously with the output D
S from the decrease-bending device.
[Fifth Step]
[0125] At the time of completion of rolling, in order to return the roll bending force to
the state before the starting of rolling, the roll bending force corresponding to
the roll balance force F
B is caused to act as the resultant force on the work roll chock, and the rolling ends.
[0126] More specifically, at the time of completion of rolling (at the point (c) on the
time axis), the output from the increase-bending device having high responsiveness
is changed from I
R to Is while the output from the decrease-bending device is kept to D
S. With this operation, the work-roll bending force as the resultant force is rapidly
changed from the work-roll bending force (F
R (<0)) during rolling to the roll balance force (F
S (>0)).
[Sixth Step]
[0127] Then, for example, the point in time when 1 to 3 seconds elapses from the time (c)
of completion of rolling is determined to be a work completion timing (point (d) on
the time axis), and at this timing, the output from the increase-bending device is
changed to I
B, and the output from the decrease-bending device is changed to D
B. In this step, using the measured value D
M obtained by continuously measuring the decrease-bending force, the output Is from
the increase-bending device is controlled so as to always keep at constant the roll
balance force F
B that may slightly vary, and then, is outputted simultaneously with D
S.
[0128] By performing rolling using the rolling method illustrated in FIG. 10, the variation
in the output from the decrease-bending device is compensated for by the increase-bending
device, as illustrated in FIG. 11, whereby it is possible to control the work-roll
bending force in an appropriate and high-response manner.
[0129] Further, without measuring the decrease-bending force during rolling or performing
feedback control through hydraulic measurement, it is possible to obtain a similar
effect, by predicting in advance the variation in the output from the decrease-bending
device, and setting the output from the increase-bending device that compensates for
the predicted variation.
[0130] It should be noted that, in the case where rolling is performed with a roller gap
exceeding the stroke of the first hydraulic cylinder, the roll balance force for the
top work roll 1-1 is provided through the pull operation of the third piston rod,
and then, in the case where rolling is performed with a roller gap not exceeding the
stroke of the first hydraulic cylinder, the above-described rolling method (first
step to sixth step) is applied. This makes it possible for only one rolling device
to deal with various applications ranging from blooming roll having a large thickness
to hot-roll thin-sheet roll for which precise plate, strip crown and shape control
is required.
[0131] The present invention may be expressed in the following manner.
- (1) A device for rolling a metal sheet material having a pair of top and bottom work
rolls and a pair of top and bottom back up rolls that support the top and the bottom
work rolls, respectively, in which: hydraulic cylinders that each apply an increase-bending
force to each of the top and the bottom work rolls are provided to a project block
protruding inwardly from a housing of the rolling device; a rolling direction force
acting on the bottom work roll is supported by the project block; a rolling direction
force acting on the top work roll is supported by a housing window of the rolling
device disposed above the project block; and a double-acting hydraulic cylinder that
applies a top-work-roll decrease-bending force is provided in a top back up roll chock,
and has a piston top end connected with a top work roll chock and having a roll balance
output force that maintains the top back up roll and the top work roll in a contacted
state.
In this rolling device, the hydraulic cylinder that applies the increase-bending force
to the top work roll and the hydraulic cylinder that applies the increase-bending
force to the bottom work roll may be arranged in the project block at different positions
in plan view.
In this rolling device, the hydraulic cylinder that applies the decrease-bending force
to the bottom work roll may be provided to a bottom back up roll chock or a second
project block located below the project block.
In this rolling device, a piston top end in cross-section of the hydraulic cylinder
that applies the top-work-roll decrease-bending force may be provided with an expanded
portion, and the top work roll chock may have a recessed portion that engages with
the expanded portion through movement in a roll axis direction at the time of exchanging
the top work roll.
- (2) A hot-rolling method that performs plate rolling using the rolling device described
above.
- (3) A hot rolling method in which, when a plate is manufactured with the rolling device
described above, the roll balance force of the top work roll is applied through a
pull operation performed by the hydraulic cylinder that applies the top-work-roll
decrease-bending force, in the case where a roll gap is set so as to exceed a stroke
of the hydraulic cylinder that applies the top-work-roll increase-bending force.
- (4) A hot rolling method that performs roughing rolling and/or finishing rolling in
strip hot rolling using the rolling device described above.
- (5) The hot rolling method described above, in which, prior to the start of rolling,
both the increase-bending force and the decrease-bending force are activated; a roll
bending force corresponding to the roll balance force is caused to act as the resultant
force on the work roll chock; then, the increase-bending force is changed while the
decrease-bending force is changed so as to be a predetermined decrease-bending force
during rolling so that the resultant force of the decrease-bending force and the increase-bending
force maintains the roll balance force; then, at the start of rolling, the increase-bending
force is changed while control is performed so as to keep the decrease-bending force
to be the predetermined decrease-bending force during rolling so that a predetermined
work-roll bending force during rolling as the resultant force acts on the work roll
chock; rolling is performed in a state where the predetermined work-roll bending force
during rolling is maintained during the rolling; then, at the time of completion of
rolling, the increase-bending force is changed so as to cause a roll bending force
corresponding to the roll balance force to act as the resultant force with the decrease-bending
force on the work roll chock; in this state, rolling of the metal sheet material is
ended; and then, the decrease-bending force and the increase-bending force are decreased
so that the roll balance force as the resultant force is maintained.
[0132] In this method for rolling the metal sheet material, it may be possible to measure
hydraulic pressure in a hydraulic cylinder that generates the decrease-bending force
or in hydraulic pipes connected with the hydraulic cylinder, and control the increase-bending
force on the basis of the measurement values so that the roll bending force acting
as the resultant force on the work roll chock is equal to a predetermined value.
[0133] According to the present invention, it is possible to provide a device for rolling
a steel sheet and a rolling method, which can deal with steel materials having various
thicknesses ranging from an extremely thick sheet to a thin sheet, and can be used
in particular as a reverse rolling device having an increased gap or a rolling device
that strongly controls plate, strip crown and shape.
Reference signs used in the description are listed as below:
[0134]
1-1 Top work roll,
1-2 Bottom work roll,
2-1 Top back up roll,
2-2 Bottom back up roll,
3-1 Top work roll chock,
3-2 Bottom work roll chock,
4-1 Top back up roll chock,
4-2 Bottom back up roll chock,
5-1, 5-2 Pair of first project blocks,
5-3, 5-4 Pair of second project blocks,
6-1 Top increase-bending device on input side,
6-2 Top increase-bending device on output side,
6-3 Bottom increase-bending device on input side,
6-4 Bottom increase-bending device on output side,
7-1 Top decrease-bending device on input side,
7-2 Top decrease-bending device on output side,
7-3 Bottom decrease-bending device on input side,
7-4 Bottom decrease-bending device on output side,
8-1 Input-side back up roll balance device,
8-2 Output-side back up roll balance device,
9 Housing,
10 Metal sheet (plate) material,
11 Drafting device,
12 Housing window, and
31 Groove.
1. A device for rolling a metal sheet material, comprising:
a top work roll (1-1) and a bottom work roll (1-2) that roll a metal sheet material;
a top back up roll (2-1) and a bottom back up roll (2-2) that support the top work
roll (1-1) and the bottom work roll (1-2), respectively;
a top work roll chock (3-1) and a bottom work roll chock (3-2) that support the top
work roll (1-1) and the bottom work roll (1-2), respectively;
a top back up roll chock (4-1) and a bottom back up roll chock (4-2) that support
the top back up roll (2-1) and the bottom back up roll (2-2), respectively;
a housing (9) that accommodates the top work roll chock (3-1), the bottom work roll
chock (3-2), the top back up roll chock (4-1), and the bottom back up roll chock (4-2),
the housing (9) including a pair of first project blocks (5-1, 5-2) protruding inwardly
that bears a force in a rolling direction acting on the bottom work roll (1-2),
first hydraulic cylinders (6-1, 6-2) provided to the pair of first project blocks
(5-1, 5-2) and each including a first piston rod that applies an increase-bending
force by way of the top work roll chock (3-1) to the top work roll (1-1); and
second hydraulic cylinders (6-3, 6-4) provided to the pair of first project blocks
(5-1, 5-2) and each including a second piston rod that applies an increase-bending
force by way of the bottom work roll chock (3-2) to the bottom work roll (1-2);
characterized in that the housing (9) further includes a housing window (12) that bears a force in the
rolling direction acting on the top work roll (1-1), and
the device further comprises
third hydraulic cylinders (7-1, 7-2) provided to the top back up roll chock (4-1)
and each including a third piston rod that applies a decrease-bending force to the
top work roll (1-1) or that brings the top work roll (1-1) into contact with the top
back up roll (2-1) to generate a roll balance force; and
fourth hydraulic cylinders (7-3, 7-4) each including a fourth piston rod that applies
a decrease-bending force to the bottom work roll (1-2).
2. The device for rolling a metal sheet material according to Claim 1, wherein
the first hydraulic cylinders (6-1, 6-2) and the second hydraulic cylinders (6-3,
6-4) are arranged in the pair of first project blocks (5-1, 5-2) at positions different
from each other in plan view.
3. The device for rolling a metal sheet material according to Claim 1, wherein
the bottom back up roll chock is provided with the fourth hydraulic cylinders (7-3,
7-4).
4. The device for rolling a metal sheet material according to Claim 1, wherein
the housing (9) further includes a pair of second project blocks (5-3, 5-4) located
below the pair of first project blocks (5-1, 5-2) and protruding inwardly from the
housing (9), and
the pair of second project blocks (5-3, 5-4) are provided with the fourth hydraulic
cylinders (7-3, 7,-4).
5. The device for rolling a metal sheet material according to Claim 1, wherein
the third piston rod has a top end portion having a first engagement portion, and
the top work roll chock (3-1) has a second engagement portion that engages with the
first engagement portion through movement of the top work roll (1-1) in a roll axial
direction.
6. A method for rolling a metal sheet material using the device for rolling a metal sheet
material according to any one of Claims 1 to 5, wherein
the third piston rod performs a pull operation to generate a roll balance force in
a case where rolling is performed with a roller gap exceeding a stroke of the first
hydraulic cylinders (6-1, 6-2).
7. A method for rolling a metal sheet material using the device for rolling a metal sheet
material according to any one of Claims 1 to 5, wherein
in a case where rolling is performed with a roller gap that falls within a stroke
of the first hydraulic cylinders (6-1, 6-2), the method includes:
a first process of, prior to start of rolling, causing an increase-bending force and
a decrease-bending force to act on the top work roll (1-1) and the bottom work roll
(1-2) to cause a roll bending force corresponding to a roll balance force to act as
a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
a second process of, after the first process, increasing the increase-bending force
while changing the decrease-bending force to be a decrease-bending force during rolling
so as to maintain the resultant force to be the roll balance force;
a third process of, at start of rolling, changing the increase-bending force while
maintaining the decrease-bending force to cause a roll bending force corresponding
to a roll bending force during rolling to act as a resultant force on the top work
roll (1-1) and the bottom work roll (1-2);
a fourth process of performing rolling while maintaining the roll bending force during
rolling;
a fifth process of, at completion of rolling, changing the increase-bending force
while maintaining the decrease-bending force to cause a roll bending force corresponding
to the roll balance force to act as a resultant force on the top work roll (1-1) and
the bottom work roll (1-2), and in this state, ending rolling of the metal sheet material;
and
a sixth process of, thereafter, decreasing the decrease-bending force and the increase-bending
force so as to maintain the roll balance force.
8. The method for rolling a metal sheet material according to Claim 7, wherein
continuous measurement is performed on at least one of hydraulic pressure in the third
hydraulic cylinders, hydraulic pressure in a hydraulic pipe connected with the third
hydraulic cylinders (7-1, 7-2), hydraulic pressure in the fourth hydraulic cylinders
(7-3, 7-4), and hydraulic pressure in a hydraulic pipe connected with the fourth hydraulic
cylinders (7-3, 7-4), and
based on a measurement result, the increase-bending force is controlled such that
the roll bending force acting as a resultant force on the top work roll chock (3-1)
and the bottom work roll chock (3-2) becomes a predetermined value.
9. A method for rolling a metal sheet material using the device for rolling a metal sheet
material according to any one of Claims 1 to 5, wherein
a roll balance force for the top work roll (1-1) is applied through a pull operation
performed by the third piston rod in a case where rolling is performed with a roller
gap exceeding a stroke of the first hydraulic cylinders (6-1, 6-2) during rolling,
and
then, in a case where rolling is performed with a roller gap that falls within a stroke
of the first hydraulic cylinders (6-1, 6-2), the method includes:
a first process of, prior to start of rolling, causing an increase-bending force and
a decrease-bending force to act on the top work roll (1-1) and the bottom work roll
(1-2) to cause a roll bending force corresponding to a roll balance force to act as
a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
a second process of, after the first process, increasing the increase-bending force
while changing the decrease-bending force to be a decrease-bending force during rolling
so as to maintain a resultant force to be the roll balance force;
a third process of, at the start of rolling, changing the increase-bending force while
maintaining the decrease-bending force to cause a roll bending force corresponding
to a roll bending force during rolling to act as a resultant force on the top work
roll (1-1) and the bottom work roll (1-2);
a fourth process of performing rolling while maintaining the roll bending force during
rolling;
a fifth process of, at completion of rolling, changing the increase-bending force
while maintaining the decrease-bending force to cause a roll bending force corresponding
to the roll balance force to act as a resultant force on the top work roll (1-1) and
the bottom work roll (1-2), and in this state, ending rolling of the metal sheet material;
and
a sixth process of, thereafter, decreasing the decrease-bending force and the increase-bending
force so as to maintain the roll balance force.
10. The method for rolling a metal sheet material according to Claim 9, wherein
continuous measurement is performed on at least one of hydraulic pressure in the third
hydraulic cylinders, hydraulic pressure in a hydraulic pipe connected with the third
hydraulic cylinders (7-1, 7-2), hydraulic pressure in the fourth hydraulic cylinders
(7-3, 7-4), and hydraulic pressure in a hydraulic pipe connected with the fourth hydraulic
cylinders (7-3, 7-4), and
based on a measurement result, the increase-bending force is controlled such that
the roll bending force acting as a resultant force on the top work roll chock (3-1)
and the bottom work roll chock (3-2) becomes a predetermined value.
1. Vorrichtung zum Walzen eines Blechmaterials, die aufweist:
eine obere Arbeitswalze (1-1) und eine untere Arbeitswalze (1-2), die ein Blechmaterial
walzen;
eine obere Stützwalze (2-1) und eine untere Stützwalze (2-2), die die obere Arbeitswalze
(1-1) bzw. die untere Arbeitswalze (1-2) stützen;
ein oberes Arbeitswalzeneinbaustück (3-1) und ein unteres Arbeitswalzeneinbaustück
(3-2), die die obere Arbeitswalze (1-1) bzw. die untere Arbeitswalze (1-2) stützen;
ein oberes Stützwalzeneinbaustück (4-1) und ein unteres Stützwalzeneinbaustück (4-2),
die die obere Stützwalze (2-1) bzw. die untere Stützwalze (2-2) stützen;
einen Ständer (9), in dem das obere Arbeitswalzeneinbaustück (3-1), das untere Arbeitswalzeneinbaustück
(3-2), das obere Stützwalzeneinbaustück (4-1) und das untere Stützwalzeneinbaustück
(4-2) untergebracht sind, wobei der Ständer (9) ein Paar nach innen vorstehende erste
Lagerblöcke (5-1, 5-2) aufweist, das eine Kraft in Walzrichtung trägt, die auf die
untere Arbeitswalze (1-2) wirkt,
erste Hydraulikzylinder (6-1, 6-2), die am Paar erste Lagerblöcke (5-1, 5-2) vorgesehen
sind und jeweils eine erste Kolbenstange aufweisen, die eine Biegungszunahmekraft
über das obere Arbeitswalzeneinbaustück (3-1) auf die obere Arbeitswalze (1-1) ausübt;
und
zweite Hydraulikzylinder (6-3, 6-4), die am Paar erste Lagerblöcke (5-1, 5-2) vorgesehen
sind und jeweils eine zweite Kolbenstange aufweisen, die eine Biegungszunahmekraft
über das untere Arbeitswalzeneinbaustück (3-2) auf die untere Arbeitswalze (1-2) ausübt;
dadurch gekennzeichnet, dass der Ständer (9) ferner ein Ständerfenster (12) aufweist, das eine Kraft in Walzrichtung
trägt, die auf die obere Arbeitswalze (1-1) wirkt, und
die Vorrichtung ferner aufweist:
dritte Hydraulikzylinder (7-1, 7-2), die am oberen Stützwalzeneinbaustück (4-1) vorgesehen
sind und jeweils eine dritte Kolbenstange aufweisen, die eine Biegungsabnahmekraft
auf die obere Arbeitswalze (1-1) ausübt oder die die obere Arbeitswalze (1-1) in Kontakt
mit der oberen Stützwalze (2-1) bringt, um eine Walzenausbalancierkraft zu erzeugen;
und
vierte Hydraulikzylinder (7-3, 7-4), die jeweils eine vierte Kolbenstange aufweisen,
die eine Biegungsabnahmekraft auf die untere Arbeitswalze (1-2) ausübt.
2. Vorrichtung zum Walzen eines Blechmaterials nach Anspruch 1, wobei
die ersten Hydraulikzylinder (6-1, 6-2) und die zweiten Hydraulikzylinder (6-3, 6-4)
im Paar erste Lagerblöcke (5-1, 5-2) an Positionen angeordnet sind, die sich in Draufsicht
voneinander unterscheiden.
3. Vorrichtung zum Walzen eines Blechmaterials nach Anspruch 1, wobei
das untere Stützwalzeneinbaustück mit den vierten Hydraulikzylindern (7-3, 7-4) versehen
ist.
4. Vorrichtung zum Walzen eines Blechmaterials nach Anspruch 1, wobei
der Ständer (9) ferner ein Paar zweite Lagerblöcke (5-3, 5-4) aufweist, die unter
dem Paar erste Lagerblöcke (5-1, 5-2) liegen und vom Ständer (9) nach innen vorstehen,
und
das Paar zweite Lagerblöcke (5-3, 5-4) mit den vierten Hydraulikzylindern (7-3, 7-4)
versehen ist.
5. Vorrichtung zum Walzen eines Blechmaterials nach Anspruch 1, wobei
die dritte Kolbenstange einen oberen Endabschnitt mit einem ersten Eingriffsabschnitt
hat, und
das obere Arbeitswalzeneinbaustück (3-1) einen zweiten Eingriffsabschnitt hat, der
einen Eingriff mit dem ersten Eingriffsabschnitt über Bewegung der oberen Arbeitswalze
(1-1) in Walzenaxialrichtung herstellt.
6. Verfahren zum Walzen eines Blechmaterials mit Hilfe der Vorrichtung zum Walzen eines
Blechmaterials nach einem der Ansprüche 1 bis 5, wobei
die dritte Kolbenstange einen Zugvorgang durchführt, um eine Walzenausbalancierkraft
in einem Fall zu erzeugen, in dem das Walzen mit einem Walzspalt durchgeführt wird,
der einen Hub der ersten Hydraulikzylinder (6-1, 6-2) übersteigt.
7. Verfahren zum Walzen eines Blechmaterials mit Hilfe der Vorrichtung zum Walzen eines
Blechmaterials nach einem der Ansprüche 1 bis 5, wobei
in einem Fall, in dem das Walzen mit einem Walzspalt durchgeführt wird, der in einen
Hub der ersten Hydraulikzylinder (6-1, 6-2) fällt, das Verfahren aufweist:
einen ersten Verfahrensablauf des vor Walzbeginn erfolgenden Veranlassens, dass eine
Biegungszunahmekraft und eine Biegungsabnahmekraft auf die obere Arbeitswalze (1-1)
und die untere Arbeitswalze (1-2) wirken, um zu veranlassen, dass eine Walzenbiegekraft
in Entsprechung zu einer Walzenausbalancierkraft als resultierende Kraft auf die obere
Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt;
einen zweiten Verfahrensablauf des nach dem ersten Verfahrensablauf erfolgenden Erhöhens
der Biegungszunahmekraft, während die Biegungsabnahmekraft in eine Biegungsabnahmekraft
im Walzverlauf so geändert wird, dass die resultierende Kraft als Walzenausbalancierkraft
beibehalten bleibt;
einen dritten Verfahrensablauf des bei Walzbeginn erfolgenden Änderns der Biegungszunahmekraft,
während die Biegungsabnahmekraft beibehalten bleibt, um zu veranlassen, dass eine
Walzenbiegekraft in Entsprechung zu einer Walzenbiegekraft im Walzverlauf als resultierende
Kraft auf die obere Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt;
einen vierten Verfahrensablauf des Walzdurchführens, während die Walzenbiegekraft
im Walzverlauf beibehalten bleibt;
einen fünften Verfahrensablauf des bei Walzabschluss erfolgenden Änderns der Biegungszunahmekraft,
während die Biegungsabnahmekraft beibehalten bleibt, um zu veranlassen, dass eine
Walzenbiegekraft in Entsprechung zur Walzenausbalancierkraft als resultierende Kraft
auf die obere Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt, und des
in diesem Zustand erfolgenden Beendens des Walzens des Blechmaterials; und
einen sechsten Verfahrensablauf des anschließenden Verringerns der Biegungsabnahmekraft
und der Biegungszunahmekraft, um die Walzenausbalancierkraft beizubehalten.
8. Verfahren zum Walzen eines Blechmaterials nach Anspruch 7, wobei
eine kontinuierliche Messung des Hydraulikdrucks in den dritten Hydraulikzylindern,
des Hydraulikdrucks in einer mit den dritten Hydraulikzylindern (7-1, 7-2) verbundenen
Hydraulikleitung, des Hydraulikdrucks in den vierten Hydraulikzylindern (7-3, 7-4)
und/oder des Hydraulikdrucks in einer mit den vierten Hydraulikzylindern (7-3, 7-4)
verbundenen Hydraulikleitung durchgeführt wird, und
auf der Grundlage eines Messergebnisses die Biegungszunahmekraft so geregelt wird,
dass die Walzenbiegekraft, die als resultierende Kraft auf das obere Arbeitswalzeneinbaustück
(3-1) und das untere Arbeitswalzeneinbaustück (3-2) wirkt, einen vorbestimmten Wert
annimmt.
9. Verfahren zum Walzen eines Blechmaterials mit Hilfe der Vorrichtung zum Walzen eines
Blechmaterials nach einem der Ansprüche 1 bis 5, wobei
eine Walzenausbalancierkraft für die obere Arbeitswalze (1-1) über einen Zugvorgang
ausgeübt wird, der durch die dritte Kolbenstange in einem Fall durchgeführt wird,
in dem das Walzen mit einem Walzspalt durchgeführt wird, der einen Hub der ersten
Hydraulikzylinder (6-1, 6-2) im Walzverlauf übersteigt, und
dann in einem Fall, in dem das Walzen mit einem Walzspalt durchgeführt wird, der in
einen Hub der ersten Hydraulikzylinder (6-1, 6-2) fällt, das Verfahren aufweist:
einen ersten Verfahrensablauf des vor Walzbeginn erfolgenden Veranlassens, dass eine
Biegungszunahmekraft und eine Biegungsabnahmekraft auf die obere Arbeitswalze (1-1)
und die untere Arbeitswalze (1-2) wirken, um zu veranlassen, dass eine Walzenbiegekraft
in Entsprechung zu einer Walzenausbalancierkraft als resultierende Kraft auf die obere
Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt;
einen zweiten Verfahrensablauf des nach dem ersten Verfahrensablauf erfolgenden Erhöhens
der Biegungszunahmekraft, während die Biegungsabnahmekraft in eine Biegungsabnahmekraft
im Walzverlauf so geändert wird, dass eine resultierende Kraft als Walzenausbalancierkraft
beibehalten bleibt;
einen dritten Verfahrensablauf des bei Walzbeginn erfolgenden Änderns der Biegungszunahmekraft,
während die Biegungsabnahmekraft beibehalten bleibt, um zu veranlassen, dass eine
Walzenbiegekraft in Entsprechung zu einer Walzenbiegekraft im Walzverlauf als resultierende
Kraft auf die obere Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt;
einen vierten Verfahrensablauf des Walzdurchführens, während die Walzenbiegekraft
im Walzverlauf beibehalten bleibt;
einen fünften Verfahrensablauf des bei Walzabschluss erfolgenden Änderns der Biegungszunahmekraft,
während die Biegungsabnahmekraft beibehalten bleibt, um zu veranlassen, dass eine
Walzenbiegekraft in Entsprechung zur Walzenausbalancierkraft als resultierende Kraft
auf die obere Arbeitswalze (1-1) und die untere Arbeitswalze (1-2) wirkt, und des
in diesem Zustand erfolgenden Beendens des Walzens des Blechmaterials; und
einen sechsten Verfahrensablauf des anschließenden Verringerns der Biegungsabnahmekraft
und der Biegungszunahmekraft, um die Walzenausbalancierkraft beizubehalten.
10. Verfahren zum Walzen eines Blechmaterials nach Anspruch 9, wobei
eine kontinuierliche Messung des Hydraulikdrucks in den dritten Hydraulikzylindern,
des Hydraulikdrucks in einer mit den dritten Hydraulikzylindern (7-1, 7-2) verbundenen
Hydraulikleitung, des Hydraulikdrucks in den vierten Hydraulikzylindern (7-3, 7-4)
und/oder des Hydraulikdrucks in einer mit den vierten Hydraulikzylindern (7-3, 7-4)
verbundenen Hydraulikleitung durchgeführt wird, und
auf der Grundlage eines Messergebnisses die Biegungszunahmekraft so geregelt wird,
dass die Walzenbiegekraft, die als resultierende Kraft auf das obere Arbeitswalzeneinbaustück
(3-1) und das untere Arbeitswalzeneinbaustück (3-2) wirkt, einen vorbestimmten Wert
annimmt.
1. Dispositif de laminage pour matériau en feuille métallique, comprenant :
un cylindre de travail supérieur (1-1) et un cylindre de travail inférieur (1-2) laminant
un matériau en feuille métallique ;
un cylindre d'appui supérieur (2-1) et un cylindre, d'appui inférieur (2-2) supportant
respectivement le cylindre de travail supérieur (1-1) et le cylindre de travail inférieur
(1-2) ;
une cale (3-1) de cylindre de travail supérieur et une cale (3-2) de cylindre de travail
inférieur supportant respectivement le cylindre de travail supérieur (1-1) et le cylindre
de travail inférieur (1-2) ;
une cale (4-1) de cylindre d'appui supérieur et une cale (4-2) de cylindre d'appui
inférieur supportant respectivement le cylindre d'appui supérieur (2-1) et le cylindre
d'appui inférieur (2-2) ;
un carter (9) où sont logées la cale (3-1) de cylindre de travail supérieur, la cale
(3-2) de cylindre de travail inférieur, la cale (4-1) de cylindre d'appui supérieur
et la cale (4-2) de cylindre d'appui inférieur, ledit carter (9) comprenant une paire
de premiers blocs saillants (5-1, 5-2) vers l'intérieur qui supportent une force agissant
dans une direction de laminage sur le cylindre de travail inférieur (1-2),
des premiers vérins hydrauliques (6-1, 6-2) prévus sur la paire de premiers blocs
saillants (5-1, 5-2) et pourvus chacun d'une première tige de piston appliquant une
force d'augmentation de flexion sur le cylindre de travail supérieur (1-1) par l'intermédiaire
de la cale (3-1) de cylindre de travail supérieur ;
des deuxièmes vérins hydrauliques (6-3, 6-4) prévus sur la paire de premiers blocs
saillants (5-1, 5-2) et pourvus chacun d'une deuxième tige de piston appliquant une
force d'augmentation de flexion sur le cylindre de travail inférieur (1-2) par l'intermédiaire
de la cale (3-2) de cylindre de travail inférieur ;
caractérisé en ce que le carter (9) est en outre pourvu d'une fenêtre (12) de carter qui supporte une force
agissant dans la direction de laminage sur le cylindre de travail supérieur (1-1),
et
en ce que ledit dispositif comprend en outre
des troisièmes vérins hydrauliques (7-1, 7-2) prévus sur la cale (4-1) de cylindre
d'appui supérieur et pourvus chacun d'une troisième tige de piston appliquant une
force de réduction de flexion sur le cylindre de travail supérieur (1-1) ou amenant
le cylindre de travail supérieur (1-1) en contact avec le cylindre d'appui supérieur
(2-1) afin de générer une force d'équilibre entre cylindres ; et
des quatrièmes vérins hydrauliques (7-3, 7-4) pourvus chacun d'une quatrième tige
de piston appliquant une force de réduction de flexion sur le cylindre de travail
inférieur (1-2).
2. Dispositif de laminage pour matériau en feuille métallique selon la revendication
1, où
les premiers vérins hydrauliques (6-1, 6-2) et les deuxièmes vérins hydrauliques (6-3,
6-4) sont montés dans la paire de premiers blocs saillants (5-1, 5-2) à des emplacements
différents en vue en plan.
3. Dispositif de laminage pour matériau en feuille métallique selon la revendication
1, où
la cale de cylindre d'appui inférieur est pourvue des quatrièmes vérins hydrauliques
(7-3, 7-4).
4. Dispositif de laminage pour matériau en feuille métallique selon la revendication
1, où
le carter (9) est en outre pourvu d'une paire de deuxièmes blocs saillants (5-3, 5-4)
disposée sous la paire de premiers blocs saillants (5-1, 5-2) et en saillie vers l'intérieur
depuis le carter (9), et où
la paire de deuxièmes blocs saillants (5-3, 5-4) est pourvue des quatrièmes vérins
hydrauliques (7-3, 7-4).
5. Dispositif de laminage pour matériau en feuille métallique selon la revendication
1, où
la troisième tige de piston présente une partie d'extrémité supérieure avec une première
partie d'engagement, et où la cale (3-1) de cylindre de travail supérieur présente
une deuxième partie d'engagement entre en contact avec la première partie d'engagement
par déplacement du cylindre de travail supérieur (1-1) dans une direction axiale de
laminage.
6. Procédé de laminage pour matériau en feuille métallique recourant au dispositif de
laminage pour matériau en feuille métallique selon l'une des revendications 1 à 5,
où
la troisième tige de piston exécute un mouvement de traction pour générer une force
d'équilibre entre cylindres si le laminage est exécuté avec un écartement entre cylindres
supérieur à la course des premiers vérins hydrauliques (6-1, 6-2).
7. Procédé de laminage pour matériau en feuille métallique recourant au dispositif de
laminage pour matériau en feuille métallique selon l'une des revendications 1 à 5,
où,
si le laminage est exécuté avec un écartement entre cylindres compris dans la course
des premiers vérins hydrauliques (6-1, 6-2), ledit procédé comprend :
une première étape préalable au démarrage du laminage, où une forcé d'augmentation
de flexion et une force de réduction de flexion agissent sur le cylindre de travail
supérieur (1-1) et le cylindre de travail inférieur (1-2) pour entraîner une force
de cintrage correspondant à une force d'équilibre entre cylindres à agir comme force
résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail inférieur
(1-2) ;
une deuxième étape consécutive à la première étape, d'augmentation de la force d'augmentation
de flexion en changeant de la force de réduction de flexion en force de réduction
de flexion pendant le laminage, de manière à maintenir la force résultante comme force
d'équilibre entre cylindres ;
une troisième étape au démarrage du laminage, de changement de la force d'augmentation
de flexion en maintenant la force de réduction de flexion pour entraîner une force
de cintrage correspondant à une force de cintrage pendant le laminage à agir comme
force résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail
inférieur (1-2) ;
une quatrième étape d'exécution du laminage en maintenant la force de cintrage pendant
le laminage ;
une cinquième étape à la fin du laminage, de changement de la force d'augmentation
de flexion en maintenant la force de réduction de flexion pour entraîner une force
de cintrage correspondant à la force d'équilibre entre cylindres à agir comme force
résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail inférieur
(1-2), et dans cet état, fin du laminage du matériau en feuille métallique ; et
une sixième étape ultérieure de réduction de la force de réduction de flexion et de
la force d'augmentation de flexion de manière à maintenir la force d'équilibre entre
cylindres.
8. Procédé de laminage pour matériau en feuille métallique selon la revendication 7,
où une mesure continue d'au moins une des pressions hydrauliques suivantes est exécutée
: pression hydraulique dans les troisièmes vérins hydrauliques, pression hydraulique
dans un conduit hydraulique relié aux troisièmes vérins hydrauliques (7-1, 7-2), pression
hydraulique dans les quatrièmes vérins hydrauliques (7-3, 7-4) et pression hydraulique
dans un conduit hydraulique relié aux quatrièmes vérins hydrauliques (7-3, 7-4), et
où sur la base d'un résultat de mesure, la force d'augmentation de flexion est commandée
de telle manière que la force de cintrage agissant comme force résultante sur la cale
(3-1) de cylindre de travail supérieur et la cale (3-2) de cylindre de travail inférieur
atteigne une valeur prédéfinie.
9. Procédé de laminage pour matériau en feuille métallique recourant au dispositif de
laminage pour matériau en feuille métallique selon l'une des revendications 1 à 5,
où
une force d'équilibre entre cylindres pour le cylindre de travail supérieur (1-1)
est appliquée par un mouvement de traction exécuté par la troisième tige de piston
si le laminage est exécuté avec un écartement entre cylindres supérieur à la course
des premiers vérins hydrauliques (6-1, 6-2) pendant le laminage, et où
si le laminage est exécuté ensuite avec un écartement entre cylindres compris dans
la course des premiers vérins hydrauliques (6-1, 6-2), ledit procédé comprend :
une première étape préalable au démarrage du laminage, où une force d' augmentation
de flexion et une force de réduction de flexion agissent sur le cylindre de travail
supérieur (1-1) et le cylindre de travail inférieur (1-2) pour entraîner une force
de cintrage correspondant à une force d'équilibre entre cylindres à agir comme force
résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail inférieur
(1-2) ;
une deuxième étape consécutive à la première étape, d'augmentation de la force d'augmentation
de flexion en changeant de la force de réduction de flexion en force de réduction
de flexion pendant le laminage, de manière à maintenir une force résultante comme
force d'équilibre entre cylindres ;
une troisième étape au démarrage du laminage, de changement de la force d'augmentation
de flexion en maintenant la force de réduction de flexion pour entraîner une force
de cintrage correspondant à une force de cintrage pendant le laminage à agir comme
force résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail
inférieur (1-2) ;
une quatrième étape d'exécution du laminage en maintenant la force de cintrage pendant
le laminage ;
une cinquième étape à la fin du laminage, de changement de la force d'augmentation
de flexion en maintenant la force de réduction de flexion pour entraîner une force
de cintrage correspondant à la force d'équilibre entre cylindres à agir comme force
résultante sur le cylindre de travail supérieur (1-1) et le cylindre de travail inférieur
(1-2), et dans cet état, fin du laminage du matériau en feuille métallique ; et
une sixième étape ultérieure de réduction de la force de réduction de flexion et de
la force d'augmentation de flexion de manière à maintenir la force d'équilibre entre
cylindres.
10. Procédé de laminage pour matériau en feuille métallique selon la revendication 9,
où une mesure continue d'au moins une des pressions hydrauliques suivantes est exécutée
:
pression hydraulique dans les troisièmes vérins hydrauliques, pression hydraulique
dans un conduit hydraulique relié aux troisièmes vérins hydrauliques (7-1, 7-2), pression
hydraulique dans les quatrièmes vérins hydrauliques (7-3, 7-4) et pression hydraulique
dans un conduit hydraulique relié aux quatrièmes vérins hydrauliques (7-3, 7-4), et
où sur la base d'un résultat de mesure, la force d'augmentation de flexion est commandée
de telle manière que la force de cintrage agissant comme force résultante sur la cale
(3-1) de cylindre de travail supérieur et la cale (3-2) de cylindre de travail inférieur
atteigne une valeur prédéfinie.