Field of the Invention
[0001] The present invention relates generally to fossil fuel combustion, and in particular,
to an apparatus for gaseous fuel combustion in a steam generating boiler.
Background of the Invention
[0002] Fossil fuel burners convert chemical energy stored in fossil fuels to thermal heat
by combusting the fossil fuel in the presence of an oxidant. In power generating applications,
thermal heat may be transferred to water in order to produce steam for driving electricity
producing turbines. In non power generating applications, thermal heat can be transferred
to any number of conceivable objects or processes.
[0003] Conventional steam generating boilers generally comprise of one or more burners,
one or more fuel injection points, one or more oxidant injection points, and a means
for propelling the injected fuel and oxidant into a combustion furnace. Upon ignition
of the oxidant/fuel mixture (Fig. 1) a combustion envelope 4 is formed comprising
a flame 3 and an oxidant/fuel mixing zone 2 between the flame 3 and the burner 1.
[0004] Figures 2 and 3 are schematic representations of conventional steam generating boilers
utilizing a single and multiple burner(s) respectively. The interior walls 10 comprise
a plurality of steam generating tubes 6 fluidly connected to a boiler bank (not shown).
Thermal energy produced within the combustion envelope 4 radiantly heats the tubes
6 which in turn coduct thermal energy to the water in the tubes 6 for the purpose
of generating steam.
[0005] In many steam generating boilers, the length and width of the combustion envelope
4 play an integral role in the design of the combustion furnace 5. In FM boilers,
for example, the combustion furnace 5 is preferably designed sufficiently large enough
to avoid excessive contact of the combustion envelope 4 with the furnace walls 10.
Also known as flame impingement, seen in Fig 3, excessive flame 3 contact with a furnace
wall 10 may result in incomplete combustion, leading to higher emissions of CO and
other combustion byproducts, or premature degradation, leading to costly repairs and
boiler downtime. Accordingly, combustion furnaces 5 are generally designed to accommodate
a given burner combustion envelope 4 while minimizing the possibility of flame impingement.
[0006] Conventional burners generally utilize flow control mechanisms to control the axial
and radial expansion of the combustion envelope 4. Radial expansion of the combustion
envelope 4 is generally a function of swirl and the natural expansion of the fuel,
oxidant, and flame. Some conventional burner designs utilize flow control mechanisms
to restrict the natural radial expansion of the combustion envelope 4, resulting in
a longer narrower flame. Shearing forces created by flow control mechanisms may also
be used to influence the extent of oxidant/fuel mixing prior to combustion, thereby
having an effect on emissions such as CO and NOx.
[0007] The availability of oxidant and fuel and their ability to mix prior to combustion
influences the length of a combustion envelope 4 within a combustion furnace 5. Longer
flames generally result from an insufficient supply of oxidant or inadequate mixing
of the oxidant and fuel within the combustion envelope 4. Shorter flames generally
result from a sufficient supply of oxidant and adequate mixing of the oxidant and
fuel within the combustion envelope 4. Flame length may also be influenced by the
velocity at which fuel and/or oxidant streams enter the combustion envelope 4. Excessive
velocities or momentary interruptions of fuel and/or oxidant streams may cause the
burner flame 3 to lose ignition. Such loss of ignition is especially undesirable,
as it may result in an accumulation of combustibles susceptible to violent explosion
upon reignition.
[0008] The U.S Department of Energy has articulated that a long felt need exists to reduce
the size and weight of steam generator boilers such as industrial boilers. Conventional
steam generating boilers are built to accommodate the size of the combustion envelope
4 produced. Accordingly, a long felt need exists to develop a combustion envelope
4 capable of producing sufficient thermal energy for steam production in a significantly
smaller volume, thereby allowing the production of smaller, lighter, and more compact
steam generating boiler designs.
[0009] US 2 362 972 describes a gas burner having a mixing chamber at one end and having its opposite
end open; means for introducing gas and air into said chamber; non-combustible porous
packing in the open end of said burner through which the gas-air mixture diffuses;
an insulated casing forming a primary combustion chamber into which the open end of
the burner projects; means for admitting secondary air into the combustion chamber;
said casing also forming a secondary combustion chamber adjacent said primary chamber;
and a porous relatively thick layer of non-combustible material separating said primary
and secondary combustion chambers and adapted to be heated to a high degree by the
products of combustion.
Summary of the Invention
[0010] Particular aspects and embodiments are set out in the appended independent claim
and the dependent claims.
[0011] The present invention solves the aforementioned problems and provides a steam generating
boiler capable of firing liquid fuels, gaseous fuels, or any combination thereof.
[0012] An objective of the present invention is to provide a compact steam generating boiler.
[0013] Another objective of the present invention is to provide a steam generating boiler
with a radially wider and axially shorter combustion envelope than that of conventional
steam generating boilers.
[0014] Another objective of the present invention is to provide a low NOx and low CO steam
generating boiler.
[0015] Another objective of the present invention is to provide a steam generating boiler
capable of passively maintaining a constant ignition source.
[0016] Yet another objective of the present invention is to provide a means for designing
a steam generating boiler of reduced size and weight as compared to that of a conventional
steam generating boiler.
[0017] The present invention discloses a steam generating boiler. A steam generating boiler
according to the present invention comprises a combustion furnace (5), an oxidant
inlet, a fuel inlet, a matrix means (8), and steam tubes (6).
[0018] The various features which characterize the present invention are pointed out with
particularity in the claims annexed to and forming a part of this disclosure. For
a better understanding of the invention, its operating advantages and specific objects
attained by its uses, reference is made to the accompanying drawings and descriptive
matter in which the preferred embodiments of the invention are illustrated.
Brief Description of The Drawings
[0019] In the accompanying drawings, forming a part of this specification, and in which
reference numerals shown in the drawings designate like or corresponding parts throughout
the same:
FIG. 1 is a schematic representation of a combustion envelope.
FIG. 2 is a schematic representation of a conventional industrial boiler utilizing
a single burner.
FIG. 3 is a schematic representation of a conventional industrial boiler utilizing
more than one burner.
FIG. 4 is a schematic representation of an undesirable combustion envelope wherein
excessive flame contact occurs along the length and width of the combustion furnace.
FIG. 5 is an embodiment of the present invention, wherein a matrix means is retrofitted
into the combustion furnace of an existing steam generating boiler.
FIG. 6 is an illustration of an embodiment of the present invention wherein a fuel
and an oxidant are introduced upstream of the a matrix means.
FIG. 7 is an illustration of an embodiment of the present invention wherein a fuel
and an oxidant are introduced in the sides of a matrix means.
FIG. 8 is an illustration of an embodiment of the present invention wherein a fuel
and an oxidant are introduced in both the front and the side(s) of a matrix means.
Fig 9. is an embodiment of a matrix means according to the present invention, wherein
matrix cross sections are illustrated.
Figure 10 is a graphic representation of an embodiment of the present invention where
two matrix means are used to facilitate staged combustion.
Fig 11 is a graphic representation of a staged combustion embodiment of the present
invention wherein interstaged cooling is used in a two matrix means staged combustion
boiler.
Fig. 12 is a graphical illustration of an example of a matrix means not according
to the present invention.
Fig. 13 is a graphical illustration of another example of a matrix means not according
to the present invention.
Description of the Preferred Embodiments
[0020] The present invention utilizes a combination of features to improve upon the design
of conventional oil and gas fired steam generating boilers. Conventional oil and gas
fired steam generating boilers include, but are not limited to: FM, High Capacity
FM, PFM, PFI, PFT, SPB, and RB; all of which are described in
Chapter 27 of Steam/its Generation and Use, 41th Edition, Kitto and Stultz, Eds.,
© 2005 The Babcock & Wilcox Company.
[0021] For the purposes of explaining the present invention, schematic views of FM boiler
are used herein. However, as one of ordinary skill in the art can appreciate, the
intent of utilizing FM boiler schematics is merely for reason of example and not intended
to limit the present invention to that of FM boiler embodiments.
[0022] Referring to Figures 2 and 3, schematic representations of prior art FM boilers are
shown. Within the FM boiler a baffle wall 20 separates a combustion furnace 5 from
a boiler bank (not shown). Combustion envelope 4 is located inside the combustion
furnace 5. Fuel and oxidant are delivered to burner 1, producing a combustion envelope
4 upon ignition.
[0023] The interior walls 10 of the combustion furnace comprise a series of tubes 6 fluidly
connected to a steam drum 7, producing steam used for process of electrical generation
purposes. The conically diffusing shape of the combustion envelope 4 results in significant
unused combustion furnace volume along side the combustion envelope 4 as it expands.
[0024] An object of the present invention is to reduce unused combustion furnace volume.
The present invention provides a matrix 8, placed either within or prior to the flame
of the combustion envelope. Referring to Figure 5, a retrofit embodiment of the present
invention is shown. Matrix 8 is placed with combustion furnace 5 downstream of the
burner 1. Fuel and oxidant enter matrix 8, wherein the cross sectional design of matrix
8 provides a means for passively mixing gaseous streams and radially dispersing the
resulting combustion envelope 9.
[0025] Provided to the matrix 8 is at least one gaseous fuel stream and at least one gaseous
oxidant stream, or combinations thereof. The gaseous streams may enter the matrix
8 from any side. Fig. 6 illustrates a preferred embodiment where the fuel stream 12
and oxidant stream 11 are introduced upstream of the matrix 8. Alternatively, as shown
in Fig. 7 and Fig. 8, the gaseous streams 11, 12 may enter the matrix 8 from the side(s)
only or a combination of the front and side(s) of the matrix 8.
[0026] Referring to Fig. 9, an embodiment of a matrix 8 according to the present invention
is illustrated. In this embodiment, the combustion apparatus is a matrix 8 comprising
at least one layer of spheres. The spheres may be arranged in either a random or ordered
manner within the matrix 8. The spheres may be hollow, solid, or porous in nature,
or any combination thereof. The spheres may vary in size or be of a substantially
similar size. The spheres comprise a high temperature metal capable of withstanding
the extreme temperatures to which the matrix 8 may be exposed during the combustion
of fossil fuels.
[0027] Referring to Figure 9, four cross sectional matrix planes are identified to schematically
represent variations in open area for gaseous flow across the matrix 8. Plane 1 is
approximately 46 percent open, plane two is approximately 31 percent open, plane 3
is about 9 percent open, and plane 4 is about 58 percent open.
[0028] An object of the present invention is improved mixing of the gaseous streams. Improved
mixing is achieved in the presence of a matrix 8 comprising at least two cross sectional
planes having different percentages of open area, such that a first cross sectional
plane possesses a greater percentage of open area for gaseous flow than a second cross
sectional plane. Plane 1 and plane 2 of Fig. 9 are two cross sectional planes having
different percentages of open area for gaseous flow. As the gaseous streams pass between
the two planes, a pressure differential is encountered forcing the gas streams to
compress or expand; thereby creating shearing forces and mixing the gaseous streams.
The superior mixing provided by the matrix 8, minimizes CO and excess air need to
complete combustion.
[0029] Another object of the present invention is to radially disperse the combustion envelope.
Radial dispersion is achieved in the presence of matrix 8 comprising at least two
cross sectional planes having different percentages of open area, wherein the two
planes are taken from different axes, and a first cross sectional plane possesses
a greater percentage of open area for gaseous flow than a second cross sectional plane.
Plane 3 and plane 4 of Fig. 9 are cross sectional planes of different axes having
different percentages of open area for gaseous flow. As the gaseous streams approach
plane 3, resistance is encountered due to the relatively low open area for gaseous
flow across plane 3, forcing a portion of gas to change its vector towards a plane
of lower flow resistance, such as plane 4; thereby axially suppressing and radially
dispersing the combustion envelope.
[0030] The present invention provides a combustion apparatus that allows for improved steam
generating boiler designs while retaining similar heat output. Referring back to Figs.
5, a schematic representation of the present invention retrofitted into a convention
FM boiler is shown. The present invention radially expands the combustion envelope
4, resulting in a shorter combustion envelope 9, wherein unused combustion volume
is shifted downstream of the combustion envelope 9. In retrofit applications, additional
steam generating equipment can be placed in the unused combustion volume, thereby
maximizing energy generation potential.
[0031] A benefit of reducing the depth of a combustion furnace is the ability to develop
new compact boiler designs without sacrificing heat output. Combustion furnaces 5
in steam generating boilers are generally designed to accommodate a given combustion
envelope 4 while minimizing risk of flame impingement. Shortening the combustion envelope
4 allows for significant furnace depth reduction at any given heat output. Use of
the present invention reduces boiler size, thus weight, as shorter boilers utilize
considerably less raw materials to make boiler walls and tubes 6.
[0032] A matrix 8 according to the present invention may be placed anywhere within the combustion
envelope 4. Preferably the matrix 8 is placed within the mixing zone 2 and will be
of a depth sufficient to allow combustion to begin within the matrix 8 and combustion
flames 3 to exit the matrix 8 downstream of where fuel and oxidant are introduced.
In this embodiment, flame width is maximized as ignition of the combustible stream
creates expansive forces, enabling further radial expansion within the matrix 8.
[0033] An additional benefit of the present invention is passively maintaining a constant
ignition source. In this embodiment, the matrix 8 is comprised of a material capable
of retaining thermal heat. When a flame would otherwise lose ignition due to excessive
velocities or fluctuations in fuel and/or oxidant streams, the thermal heat retained
within the matrix elements provides a thermal reservoir sufficient to maintain ignition;
thereby avoiding undesirable situations associated with delayed reignition.
[0034] In another embodiment of the present invention, a steam generating boiler may utilize
more than one matrix 8. Figure 10 is a graphic representation of an embodiment of
the present invention where two matrixes are used to facilitate staged combustion.
In this embodiment, a second matrix 14 is located downstream of a first matrix 8.
The first matrix 8 is provided with a fuel stream 18 and substoichiometric oxidant
17 to inhibit the production of undesirable combustion byproducts such as NOx. A second
oxidant stream 13, providing sufficient oxygen to burn remaining fuel, is provided
downstream of the first matrix 8 and upstream of the second matrix 14.
[0035] Fig 11 illustrates an alternative two matrix staged combustion embodiment according
to the present invention. In this embodiment, cooling tubes 15 are placed between
the two matrixes 8, 14 for the purpose of controlling flame temperature and the formation
of thermal NOx. A perforated plate 150 may also be placed upstream of the first matrix
8, serving the function of acting as a flame arrestor and/or pre distributing the
substoichiometric oxidant 17.
[0036] In another embodiment of the present invention, a sensor 16 may be placed within
the combustion furnace for observing the combustion process within the combustion
furnace 5.
[0037] In another embodiment of the present invention, a igniter 160 may be placed within
the combustion furnace for preheating the matrix 8 or igniting a fuel and oxidant.
[0038] Fig. 12 provides a graphical representation of an example not according to the invention.
In this example the matrix 8 comprises a random or ordered block of fibers or interlaced
particles. Between the fibers and particles of this embodiment are series of internal
passage having cross sections of varying open area for gaseous flow providing a means
for gaseous fuel and oxidant streams to passively mix and radially disperse within
the matrix 8. Section A-A provides a cross section view of the present embodiment.
[0039] Fig. 13 provides a graphical representation of another exemple not according to the
invention. In this exemple the matrix 8 comprises fired or fitted tiles with venturi
holes 19. An expanded view of a Section B-B of this embodiment is shown where the
cross sectional dimensions of the venturi holes 19 are shown varying along the depth
of the matrix 8.
[0040] In another embodiment of the present invention, oxidant and/fuel may be fed to the
matrix 8 in multiple streams.
[0041] In yet another embodiment of the present invention, the spheres may be coated with
any number of chemical substrates known to one of ordinary skill in the art for the
purpose of altering the chemistry of the fuel, enhancing combustion, and reducing
pollutant emissions.
[0042] The matrix 8 itself can be rectangular, circular, or of any other geometric design.
Generally, the matrix 8 elements of the present invention are held captive by a suitable
apparatus for preventing movement between the spheres. Examples of suitable apparatus
are, but are not limited to, wire frames and/or chemically or mechanically bonding
the matrix 8 elements to one another.
[0043] In yet another example, multiple matrixes may be arranged in parallel within a boiler.
In such an example, multiple fuels may be combusted simultaneously, thereby providing
combustion fuel flexibility to boiler designs.
[0044] In yet another example, forced air or recirculation fans may be utilized to create
a pressure differential across the matrix 8 to either promote or restrict gaseous
flow there through.
1. A steam generating boiler, comprising:
a combustion furnace (5) having a baffle wall (20) and a plurality of furnace walls
(10), each furnace wall (10) comprising a plurality of steam tubes (6) in fluid connection
with a steam drum (7) located downstream of the combustion chamber,
a first oxidant inlet for providing a first oxidant,
a fuel inlet for providing a fuel,
a first matrix means (8) comprising spherical metallic elements for passively mixing
the oxidant and the fuel, located on the opposite side of the baffle wall (20) from
the steam drum (7) and located downstream of the oxidant and fuel inlets, wherein
the edges of the first matrix means (8) do not contact the furnace walls (10) and
baffle wall (20).
2. The steam generating boiler of claim 1, wherein the first matrix means (8) radially
disperses a combustion envelope (4) produced by igniting the fuel and the oxidant.
3. The steam generating boiler of claim 2, wherein the first matrix means (8) comprises
a first cross section having an open area for gaseous flow, a second cross section
having an open area for gaseous flow, and the open area for gaseous flow across the
first cross section is greater than the open area for gaseous flow across the second
cross section.
4. The steam generating boiler of claim 3, wherein the first matrix means (8) further
comprises a third cross section and the open area for gaseous flow across the third
cross sectional area is substantially equal to the open area for gaseous flow across
the first cross section.
5. The steam generating boiler of claim 3, wherein the first matrix means (8) further
comprises a third cross section and the open area for gaseous flow across the third
cross sectional area is greater than the open area for gaseous flow across the second
cross section.
6. The steam generating boiler of claim 2, wherein the combustion envelope (4) protrudes
the matrix means downstream of the fuel injection inlet.
7. The steam generating boiler of claim 6, wherein the first matrix means (8) comprises
a thermal reservoir capable of maintaining ignition of the fuel and the first oxidant.
8. The steam generating boiler of claim 2, wherein the fuel inlet is located within the
first matrix mean (8).
9. The steam generating boiler of claim 2, wherein the first oxidant inlet is located
within the first matrix means (8).
10. The steam generating boiler of claim 2, further comprising a perforated plate (150)
located upstream of the first matrix means (8).
11. The steam generating boiler of any preceding claim, further comprising,
a second oxidant inlet for providing a second oxidant, and
a second matrix (14) means comprising spherical metallic elements and located downstream
of the second oxidant inlet for passively mixing the second oxidant and the fuel.
12. The steam generating boiler of claim 11, further comprising cooling tubes (15) located
between the first matrix means (8) and the second matrix means (14).
13. The steam generating boiler of claim 11, further comprising an ignited (160) located
between the first matrix means (8) and the second matrix means (14).
14. The steam generating boiler of claim 11, further comprising a sensor (16) located
between the first matrix means (8) and the second matrix means (14).
1. Dampferzeugungskessel, umfassend:
einen Verbrennungsofen (5) mit einer Umlenkwand (20) und mehreren Ofenwänden (10),
wobei jede Ofenwand (10) mehrere Dampfrohre (6) in Fluidverbindung mit einer Dampftrommel
(7), die stromabwärts der Verbrennungskammer angeordnet ist, umfasst:
einen ersten Oxidationsmitteleinlass zum Bereitstellen eines ersten Oxidationsmittels,
einen Brennstoffeinlass zum Bereitstellen eines Brennstoffs,
ein erstes Matrixmittel (8), umfassend kugelförmige metallische Elemente zum passiven
Mischen des Oxidationsmittels mit dem Brennstoff, das auf der gegenüberliegenden Seite
der Umlenkwand (20) der Dampftrommel (7) angeordnet ist und stromabwärts des Oxidationsmittel-
und Brennstoffeinlasses angeordnet ist, wobei die Kanten des ersten Matrixmittels
(8) die Ofenwände(10) und die Umlenkwand (20) nicht berühren.
2. Dampferzeugungskessel nach Anspruch 1, wobei das erste Matrixmittel (8) radial eine
Verbrennungstasche (4) verteilt, die durch Zünden des Brennstoffs und des Oxidationsmittels
erzeugt wird.
3. Dampferzeugungskessel nach Anspruch 2, wobei das erste Matrixmittel (8) einen ersten
Querschnitt mit einem offenen Bereich für die Gasströmung und einen zweiten Querschnitt
mit einem offenen Bereich für die Gasströmung umfasst, wobei der offene Bereich für
die Gasströmung über dem ersten Querschnitt größer als der offene Bereich für die
Gasströmung über dem zweiten Querschnitt ist.
4. Dampferzeugungskessel nach Anspruch 3, wobei das erste Matrixmittel (8) ferner einen
dritten Querschnitt umfasst und der offene Bereich für die Gasströmung über dem dritten
Querschnittsbereich im Wesentlichen dem offenen Bereich für die Gasströmung über dem
ersten Querschnitt entspricht.
5. Dampferzeugungskessel nach Anspruch 3, wobei das erste Matrixmittel (8) ferner einen
dritten Querschnitt umfasst und der offene Bereich für die Gasströmung über dem dritten
Querschnittsbereich größer als der offene Bereich für die Gasströmung über dem zweiten
Querschnitt ist.
6. Dampferzeugungskessel nach Anspruch 2, wobei die Verbrennungstasche (4) über das Matrixmittel
stromabwärts des Brennstoffeinspritzeinlasses hervorsteht.
7. Dampferzeugungskessel nach Anspruch 6, wobei das erste Matrixmittel (8) einen Wärmespeicher
umfasst, der die Zündung des Brennstoffs und des ersten Oxidationsmittels beibehalten
kann.
8. Dampferzeugungskessel nach Anspruch 2, wobei der Brennstoffeinlass innerhalb des ersten
Matrixmittels (8) angeordnet ist.
9. Dampferzeugungskessel nach Anspruch 2, wobei der erste Oxidationsmitteleinlass innerhalb
des ersten Matrixmittels (8) angeordnet ist.
10. Dampferzeugungskessel nach Anspruch 2, ferner umfassend eine perforierte Platte (150),
die stromaufwärts des ersten Matrixmittels (8) angeordnet ist.
11. Dampferzeugungskessel nach einem der vorhergehenden Ansprüche, ferner umfassend:
einen zweiten Oxidationsmitteleinlass zur Bereitstellung eines zweiten Oxidationsmittels,
und
ein zweites Matrixmittel (14), das kugelförmige metallische Elemente umfasst und stromabwärts
des zweiten Oxidationsmitteleinlasses zum passiven Mischen des zweiten Oxidationsmittels
mit dem Brennstoff angeordnet ist.
12. Dampferzeugungskessel nach Anspruch 11, ferner umfassend Kühlleitungen (15) zwischen
dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (44).
13. Dampferzeugungskessel nach Anspruch 11, ferner umfassend einen Zünder (160), der zwischen
dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (14) angeordnet ist.
14. Dampferzeugungskessel nach Anspruch 11, ferner umfassend einen Sensor (16), der zwischen
dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (14) angeordnet ist.
1. Chaudière génératrice de vapeur, comprenant :
un four à combustion (5) ayant une paroi de déflection (20) et une pluralité de parois
de four (10), chaque paroi de four (10) comprenant une pluralité de tubes de vapeur
(6) en connexion fluidique avec un tambour de vapeur (7) situé en aval de la chambre
de combustion,
une première entrée d'agent oxydant pour fournir un premier agent oxydant,
une entrée de carburant pour fournir un carburant,
un premier moyen de matrice (8) comprenant des éléments métalliques sphériques pour
mélanger passivement l'agent oxydant et le carburant, situé sur le côté de la paroi
de déflection (20) opposé au tambour de vapeur (7) et situé en aval des entrées d'agent
oxydant et de carburant, les bords du premier moyen de matrice (8) ne venant pas en
contact avec les parois de four (10) et la paroi de déflection (20).
2. Chaudière génératrice de vapeur selon la revendication 1, dans laquelle le premier
moyen de matrice (8) disperse radialement une enveloppe de combustion (4) produite
en brûlant le carburant et l'agent oxydant.
3. Chaudière génératrice de vapeur selon la revendication 2, dans laquelle le premier
moyen de matrice (8) comprend une première section transversale ayant une zone ouverte
permettant l'écoulement gazeux, une deuxième section transversale ayant une zone ouverte
permettant l'écoulement gazeux, et la zone ouverte permettant l'écoulement gazeux
en travers de la première section transversale est supérieure à la zone ouverte permettant
l'écoulement gazeux en travers de la deuxième section transversale.
4. Chaudière génératrice de vapeur selon la revendication 3, dans laquelle le premier
moyen de matrice (8) comprend en outre une troisième section transversale et la zone
ouverte permettant l'écoulement gazeux en travers de la troisième zone en section
transversale est substantiellement égale à la zone ouverte permettant l'écoulement
gazeux en travers de la première section transversale.
5. Chaudière génératrice de vapeur selon la revendication 3, dans laquelle le premier
moyen de matrice (8) comprend en outre une troisième section transversale et la zone
ouverte permettant l'écoulement gazeux en travers de la troisième zone en section
transversale est supérieure à la zone ouverte permettant l'écoulement gazeux en travers
de la deuxième section transversale.
6. Chaudière génératrice de vapeur selon la revendication 2, dans laquelle l'enveloppe
de combustion (4) fait saillie au-delà du moyen de matrice en aval de l'entrée d'injection
de carburant.
7. Chaudière génératrice de vapeur selon la revendication 6, dans laquelle le premier
moyen de matrice (8) comprend un réservoir thermique capable de maintenir la combustion
du carburant et du premier agent oxydant.
8. Chaudière génératrice de vapeur selon la revendication 2, dans laquelle l'entrée de
carburant est située à l'intérieur du premier moyen de matrice (8).
9. Chaudière génératrice de vapeur selon la revendication 2, dans laquelle la première
entrée d'agent oxydant est située à l'intérieur du premier moyen de matrice (8).
10. Chaudière génératrice de vapeur selon la revendication 2, comprenant en outre une
plaque perforée (150) située en amont du premier moyen de matrice (8).
11. Chaudière génératrice de vapeur selon l'une quelconque des revendications précédentes,
comprenant en outre
une deuxième entrée d'agent oxydant pour fournir un deuxième agent oxydant, et
un deuxième moyen de matrice (14) comprenant des éléments métalliques sphériques et
situé en aval de la deuxième entrée d'agent oxydant pour mélanger passivement le deuxième
agent oxydant et le carburant.
12. Chaudière génératrice de vapeur selon la revendication 11, comprenant en outre des
tubes de refroidissement (15) situés entre le premier moyen de matrice (8) et le deuxième
moyen de matrice (14).
13. Chaudière génératrice de vapeur selon la revendication 11, comprenant en outre un
dispositif d'allumage (160) situé entre le premier moyen de matrice (8) et le deuxième
moyen de matrice (14).
14. Chaudière génératrice de vapeur selon la revendication 11, comprenant en outre un
capteur (16) situé entre le premier moyen de matrice (8) et le deuxième moyen de matrice
(14).