(19)
(11) EP 2 453 674 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.09.2015 Bulletin 2015/39

(21) Application number: 10190874.7

(22) Date of filing: 11.11.2010
(51) International Patent Classification (IPC): 
H04R 25/00(2006.01)

(54)

A suspension for a hearing device receiver, and a method of producing a hearing device, and a hearing device

Aufhängung für einen Hörgerätempfänger, Verfahren zur Herstellung eines Hörgeräts und Hörgerät

Suspension pour récepteur de dispositif auditif, et procédé de production d'un dispositif auditif et dispositif auditif


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
16.05.2012 Bulletin 2012/20

(73) Proprietor: GN ReSound A/S
2750 Ballerup (DK)

(72) Inventors:
  • Soendergaard, Morten Birkmose
    DK-3400, Hillerød (DK)
  • Johansen, Jan
    DK-4600, Køge (DK)

(74) Representative: Zacco Denmark A/S 
Arne Jacobsens Allé 15
2300 Copenhagen S
2300 Copenhagen S (DK)


(56) References cited: : 
WO-A1-01/43498
WO-A1-2007/011421
US-A1- 2008 002 848
WO-A1-2004/008803
WO-A2-2005/055653
US-B1- 7 403 629
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present specification relates to a suspension for a hearing device receiver and to a method for producing a hearing aid with such a suspension. Additionally, the present specification relates to a hearing device comprising such a suspension.

    Background



    [0002] A hearing device comprises a microphone which receives acoustic signals. The received acoustic signals are processed where the processing may include amplification of the data. The processed signals are transmitted to a receiver of the hearing device which converts the processed signals into another acoustic signal e.g. with a larger amplitude at certain frequencies. The receiver broadcasts the other acoustic signal towards the tympanic membrane of a user of the hearing device.

    [0003] The broadcasting of the other acoustic signal can cause the receiver and the hearing device to vibrate which vibrations may be transmitted back to the microphone resulting in an unwanted feedback loop thereby putting a limitation on the amplification which the hearing device may deliver to the user.

    [0004] Therefore, it would be advantageous to reduce the transmission of vibrations generated by the receiver to the rest of the hearing device.

    [0005] WO 2004/008803 discloses suspension means for transducer, where the suspension means also functions as a sound-guide for directing sound between the transducer and the external cabinet of an audio processing device. The suspension is shaped as a tube which has means for forming a connection with the inlet/outlet of the transducer at a first end and means for forming a connection with the cabinet wall of the audio processing device at a second end in order to guide sound through the tube, where the intermediate part of the tube in the length direction has alternating wide and narrow parts.

    [0006] WO 2007/011421 discloses a shock resisting vibration damping mounting for an acoustic transducer including a compliant first portion or boot coupled to a compliant second portion or tube. The first portion has an exterior surface and an interior surface with the interior surface defining a chamber for receiving the acoustic transducer. The second portion has an elongate portion having a first end and a second end and a passage extending within the elongate portion from the first end to the second end. The passage couples to the chamber such that with an acoustic transducer disposed within the chamber a port of the acoustic transducer is acoustically coupled to the passage.

    [0007] WO 2005/055653 discloses a communication device with casing parts enclosing a microphone and a receiver and suspension points therefore in the casing. A sound canal from the receiver to the ear of a user is provided, and the casing parts are shaped from an injection moulded fiber-reinforced polymer. WO 2001/043498 discloses an In-The-Canal hearing device including a flexible receiver suspension grommet seated in the sound port of the receiver housing of a hearing device. The suspension member includes a tubular portion extending into the receiver housing, the tubular portion configured to retain a receiver unit in a position such that sound waves emitted from the receiver unit are directed through the sound port. The proximal portion of the receiver unit is suspended gently away from the receiver housing walls by a thin membrane skirt. The membrane skirt is formed from an initially flat membrane, which is then stretched over the receiver unit, forming gentle pleats that help suspend the receiver unit in the receiver housing, isolating it from contact and/or vibrations from the housing walls.

    Summary of the invention



    [0008] It is an object of the present invention to provide a suspension for a hearing device receiver with an improved vibration reduction. The above-mentioned and other objects are fulfilled by a suspension for a hearing device receiver comprising the features of claim 1.

    [0009] Thereby is achieved a suspension with a part (vibration isolator) which can move freely between the receiver and the sound outlet thus ensuring that vibration energy may be dispersed in a direction away from the housing i.e. in one or more of the free moving directions. Thus, the vibration energy is reduced to the housing from the receiver.

    [0010] In an embodiment, a material thickness of the damping part varying along the longitudinal and/or the transverse axis of the vibration isolator provides the asymmetry of the damping part..

    [0011] Thereby, the asymmetry of the vibration isolator is constructed by varying the thickness of the damping part. This ensures that parts of the vibration isolator comprising relatively thick walls are stiffer than parts comprising relatively thin walls.

    [0012] In an embodiment, the damping part further comprises a flexible part and a substantially rigid part positioned substantially intermediary between the first and second parts; and wherein the flexible part is more flexible than the substantially rigid part..

    [0013] Thereby, the suspension is adapted to change the vibration pattern of the suspension and the receiver such that the vibrations from the receiver are reduced to the housing and/or the sound outlet, but instead the vibration energy is dispersed in the free moving motion of the vibration isolator.

    [0014] In an embodiment, the flexible part is positioned between the second part and the substantially rigid pa rt.

    [0015] Thereby, the vibrations are dispersed in the substantially rigid damping part and the flexible part dampens further vibrations.

    [0016] In an embodiment, the first and the second parts and the vibration isolator are molded in one piece.

    [0017] Thereby, substantial optimal mechanical coupling between the first and second parts and the vibration isolator is obtained and thus, acoustic leakage between the parts may be eliminated.

    [0018] In an embodiment, the first and the second parts and the vibration isolator are molded in an elastic material.

    [0019] Thereby, the material of the suspension enables absorption of vibration energy in addition to the dispersion of the vibration energy due to the free movement of the vibration isolator.

    [0020] In an embodiment, the damping part is asymmetric in at least two planes.

    [0021] Thereby, the suspension is able to disperse the vibration energy in the asymmetric planes.

    [0022] In an embodiment, the damping part is asymmetric in two planes and symmetrical in a third plane.

    [0023] Thereby, the suspension is able to disperse the vibration energy in the asymmetric planes.

    [0024] In an embodiment, the asymmetric planes are the X-Z plane and the Y-Z plane, and the symmetric plane is the X-Y plane.

    [0025] Thereby, the suspension is able to disperse the vibration energy in the asymmetric planes.

    [0026] In an embodiment, the flexible part comprises a transverse material thickness smaller than the substantially rigid part.

    [0027] Thereby, the flexibility of the flexible part is obtained by decreasing the wall thickness with respect to the wall thickness of the substantially rigid part.

    [0028] In an embodiment, a material thickness of the damping part varies asymmetrically along the longitudinal and/or transverse axis of the vibration isolator.

    [0029] Thereby, the suspension is able to disperse the vibration energy in the asymmetric planes.

    [0030] In an embodiment, the material thickness of the flexible part is smaller than the material thickness of the substantially rigid part.

    [0031] Thereby, the suspension is able to disperse the vibration energy in the asymmetric planes.

    [0032] In an embodiment, the acoustic passage is hollow and substantially tubular, and wherein a transverse dimension of the acoustic passage in proximity to the first part is smaller than the transverse dimension of the acoustic passage in proximity to the second part such that the acoustic passage ensures sufficient contact between the suspension and the receiver.

    [0033] Thereby, the acoustic passage is adapted to fit tightly around the snout of the receiver thereby reducing the risk of leaks from the receiver through the acoustic passage.

    [0034] The invention further relates to a method of producing a hearing device comprising a receiver and a sound outlet and a suspension, the suspension comprising a first part and a second part and a vibration isolator positioned between and mechanically coupled to the first and second parts; the vibration isolator comprising a damping part enclosing an acoustic passage; the method comprising: coupling mechanically the first (130) part to the receiver (120); and coupling mechanically the second part to the sound outlet; such that the suspension provides an acoustic passage between the receiver and the sound outlet; and providing the damping part of the vibration isolator asymmetrically along a longitudinal and/or a transverse axis of the vibration isolator; and suspending the vibration isolator freely between the first and the second parts.

    [0035] The method and embodiments thereof has the same advantages as the suspension for the same reasons.

    [0036] The invention further relates to a hearing device comprising a receiver and a sound outlet and a suspension according to an embodiment of the suspension, wherein the receiver is mechanically coupled to the first part of the suspension and the sound outlet is mechanically coupled to the second part of the suspension.

    [0037] The hearing device and embodiments thereof has the same advantages as the suspension for the same reasons.

    Brief description of the drawings



    [0038] 

    Figure 1 shows a part of a hearing device comprising a suspension for a receiver of the hearing device.

    Figure 2 shows a zoom of the vibration isolator.

    Figure 3 shows a zoom of the first part.

    Figure 4 shows a zoom of the second part.

    Figure 5 shows a view of the suspension focused on the first part.


    Detailed description



    [0039] In the above and below, a hearing device may be selected from the group consisting of a hearing aid, a hearing prosthesis, and the like. Examples of a hearing device may include a behind the ear (BTE) hearing aid and a in the ear (ITE) hearing aid.

    [0040] Figure 1 shows a part of a hearing device 100 comprising a suspension 110 for a receiver 120 of the hearing device 100. The hearing device further comprises a sound outlet 160. The receiver 120 and/or the suspension 110 and/or the sound outlet 160 may be contained in a housing 170 of the hearing device 100. In an embodiment, the receiver 120 and the suspension and the sound outlet 160 are contained in the housing 170.

    [0041] The suspension comprises a first part 130 and a second part 140 and a vibration isolator 150 positioned between the first 130 and the second 140 parts. The vibration isolator 150 may be mechanically coupled to the first 130 and second parts 140.

    [0042] In an embodiment, the mechanical coupling between the vibration isolator 150 and the first 130 and the second 140 parts is provided by molding the vibration isolator 150 and the first 130 and the second 140 parts in one piece.

    [0043] In an embodiment, the mechanical coupling between the vibration isolator 150 and the first 130 and the second 140 parts may be chosen from the group consisting of vulcanizing, and casting, and injection molding.

    [0044] In an embodiment, the mechanical coupling between the vibration isolator 150 and the first 130 and the second 140 parts is made by molding such as heat sealing or the like.

    [0045] In an embodiment, the first 130 and the second 140 parts and the vibration isolator 150 may be molded in an identical type of material such as an elastic material such as a rubber or silicone rubber or the like.

    [0046] In an embodiment, the first 130 and the second 140 parts and the vibration isolator 150 may be molded in different materials. In an embodiment, the vibration isolator 150 may be molded in a first material with a first elasticity and the first 130 and second 140 parts may be molded in a second material with a second elasticity. In an embodiment, the second elasticity is smaller than the first elasticity.

    [0047] Figure 2 shows a zoom of the vibration isolator 150. The vibration isolator 150 comprises an acoustic passage 151 and a damping 152 part enclosing said acoustic passage 151.

    [0048] The acoustic passage 151 provides an acoustic passage between the first 130 and second parts 140. In an embodiment, the acoustic passage 151 is hollow and substantially tubular such as to enable sound to travel from the first part 130 to the second part 140. The acoustic passage may in another embodiment have a shape different from substantially tubular such as for example a tubular shape with a rectangular cross section. In an embodiment, the acoustic passage 151 may have a cylindrical shape.

    [0049] In an embodiment, a transverse dimension of the acoustic passage 151 in proximity to the first part 130 is smaller than the transverse dimension of the acoustic passage 151 in proximity to the second part 140. For example, the diameter of a cylindrical shaped acoustic passage may be smaller in proximity to the first part 130 than the diameter of the cylindrical shaped acoustic passage in proximity to the second part 140.

    [0050] In an embodiment, the transverse dimension of a tubular or substantially tubular acoustic passage 151 in proximity to the first part 130 is smaller than the external diameter of a tubular or substantially tubular snout of the receiver 120. Thereby, the tubular or substantially tubular acoustic passage 151 ensures sufficient contact between the suspension 110 and the receiver 120 by being tight fitted around the snout of the receiver 120.

    [0051] In an embodiment, the transverse dimension of a tubular or substantially tubular acoustic passage 151 in proximity to the second part 140 is equal to or substantially equal to (e.g. within 5%) the inner diameter of the sound outlet 160.

    [0052] The damping 152 part of the vibration isolator 150 is asymmetrical along a longitudinal and/or a transverse axis of the vibration isolator 150. Reference 153 denotes a wall thickness of the vibration isolator 150.

    [0053] In an embodiment, the wall thickness 153 of the damping 152 part varies along the longitudinal and/or the transverse axis of the vibration isolator 150 and thereby provides the asymmetry of the damping 152 part. Thus, a material thickness of the damping 152 part varies along the longitudinal and/or the transverse axis of the vibration isolator 150.

    [0054] In an embodiment, a Cartesian coordinate system is used to define a number of planes in the drawings such as an X-Y plane, a X-Z plane and a Y-Z plane.

    [0055] In an embodiment, the wall thickness 153 of the damping 152 part is asymmetrical in the X-Z plane and the Y-Z plane of figure 1.

    [0056] In an additional embodiment, the wall thickness 153 of the damping 152 part is symmetrical in the X-Y plane of figure 1.

    [0057] In an embodiment, the damping part 152 further comprises a flexible 154 part and a substantially rigid 155 part. The substantially rigid part is positioned substantially intermediary between the first 130 and second 140 parts. The flexible 154 part is positioned between the second part 140 and the substantially rigid 155 part.

    [0058] In an embodiment, the flexible 154 part is more flexible than the substantially rigid 155 part i.e. the flexible 154 part has a larger elasticity than the substantially rigid 155 part. This may be achieved by molding the flexible 154 part in a more elastic material than the substantially rigid 155 part. Alternatively or additionally, it may be achieved by molding the flexible 154 part with a smaller wall thickness 153 than the wall thickness 153 of the substantially rigid 155 part i.e. the material thickness of the flexible 154 part is smaller than the material thickness of the substantially rigid 155 part.

    [0059] In an embodiment, the wall thickness of the substantially rigid part 155 is at least 3 times thicker than the smallest wall thickness of the flexible part 154.

    [0060] The flexible 154 and substantially rigid 155 parts ensures that the vibration pattern of the suspension is changed such that vibrations generated by the receiver 120 are directed in a direction away from the sound outlet 160 and substantially in one or more directions. Thereby, vibrations from the receiver 120 will be dampened and not propagate further in the hearing device 100 than to the vibration isolator.

    [0061] The vibration isolator 150 is freely suspended between the first 130 and second 140 parts of the suspension 110 i.e. the vibration isolator 150 is mechanically coupled to the hearing aid 100 by the first part 130 being mechanically coupled to the receiver 120 and the second part 140 being mechanically coupled to the sound outlet 160. Thereby, the vibration isolator 150 is able to move/vibrate freely in the three planes illustrated in figure 1 i.e. in the X-Y plane and the X-Z plane and the Y-Z plane.

    [0062] The substantially rigid 155 part of the damping part 150 is in an embodiment mechanically coupled directly to the first part 130 in order to ensure a stiff connection between the substantially rigid 155 part and the first part 130.

    [0063] Figure 3 shows a zoom of the first part 130. The first part 130 is adapted to enclose at least a part of the receiver 120. The first part 130 may comprise a rectangular part 210 adapted to enclose at least a part of the receiver body 220.

    [0064] In an embodiment, an inner cross section of the rectangular part 210 is equal to or substantially equal to (e.g. 5% less than or 2% less than) an outer cross section of the enclosed part of the receiver body 220 in order to ensure sufficient physical contact between the rectangular part 210 and the receiver body 220. Thereby is achieved that the receiver is in physical contact with the first part 130 by a gripping force between the first part 130 and the receiver 120.

    [0065] In an additional or alternative embodiment, an inner cross section of the acoustic passage 151 enclosing at least a part of a snout 222 of the receiver 120 is equal to or substantially equal to (e.g. 5% less than or 2% less than) an outer cross section of the enclosed part of the snout 222 in order to ensure sufficient physical contact between the acoustic passage 151 and the enclosed part of the snout 222. Thereby is achieved that the snout 222 is in physical contact with the acoustic passage 151 via a gripping force between the snout 222 and the acoustic passage 151.

    [0066] Figure 4 shows a zoom of the second part 140. The second part 140 is adapted to enclose at least a part of the sound outlet 160. The second part may comprise a tubular part 141 such as a cylindrical part and a rectangular part 142 such as a square part. The rectangular part 142 ensures sufficient abutment between the rectangular part 142 and the housing 170. Both the tubular part 141 and the square part 142 comprises an inner cross section matching or substantially matching (e.g. 5% less than) the outer cross section of the sound outlet 160 in order to ensure sufficient physical contact between the tubular part 141 and the square part 142 and the sound outlet 160. In an embodiment, the sound outlet 160 comprises a cylindrical outer cross section and thus, the inner cross section of the tubular part 141 and the rectangular part 142 are cylindrical thereby enabling reception of the sound outlet 160.

    [0067] The tubular part 141 and the rectangular part 142 may be molded in one piece or may be molded in two pieces and mechanically coupled together by e.g. welding.

    [0068] The first 130 and second 140 parts ensures a secure fastening of the suspension 110 to the housing 170 of the hearing aid 100 via the receiver 120 and the sound outlet 160.

    [0069] Figure 5 shows an embodiment of the suspension 110 wherein the vibration isolator 150 contains one or more structures 156, 157 adapted to receive one or more special features of the receiver 120 to thereby ensure correct placement of the receiver 120 with respect to the vibration isolator 150. Thereby, practical and easy assembly of the receiver 120 with the suspension 110 is enabled. In an embodiment, the structures 156, 157 may be formed as recesses in the vibration isolator 150 adapted to receive substantially similar protrusions of the receiver 120.

    [0070] The invention further comprises a number of aspects according to the below mentioned items.

    ITEMS



    [0071] 
    1. 1. A suspension (110) for a hearing device receiver (120) comprising
      • a first part (130) and a second part (140) and a vibration isolator (150) positioned between the first (130) and the second (140) parts and mechanically coupled to the first (130) and second (140) parts;
      • wherein the first part (130) is adapted to at least partly enclose the receiver (120); and
      • the second part (140) is adapted to at least partly enclose a sound outlet (160) of the hearing device (100); and
      • wherein the vibration isolator (150) comprises an acoustic passage (151) and a damping (152) part enclosing said acoustic passage (151); and
      • wherein the acoustic passage (151) part provides an acoustic passages between the first (130) and second parts (140); and
      • wherein the damping (152) part of the vibration isolator (150) is asymmetrical along a longitudinal axis of the vibration isolator (150); and
      • wherein the vibration isolator (150) is freely suspended between the first and second pa rts.
    2. 2. A suspension according to item 1, wherein a material thickness (153) of the damping (152) part varying along the longitudinal and/or the transverse axis of the vibration isolator (150) provides the asymmetry of the damping (152) part.
    3. 3. A suspension according to item 1 or 2, wherein the damping part (152) further comprises a flexible (154) part and a substantially rigid (155) part positioned substantially intermediary between the first (130) and second (140) parts; and wherein the flexible (154) part is more flexible than the substantially rigid (155) part.
    4. 4. A suspension according to item 3, wherein the flexible (154) part is positioned between the second (140) part and the substantially rigid (155) part.
    5. 5. A suspension according to anyone of the preceding items, wherein the first (130) and the second (140) parts and the vibration isolator (150) are molded in one piece.
    6. 6. A suspension according to anyone of the preceding items, wherein the first (130) and the second (140) parts and the vibration isolator (150) are molded in an elastic material.
    7. 7. A suspension according to anyone of the preceding items, wherein the damping part is asymmetric in at least two planes.
    8. 8. A suspension according to anyone of the preceding items, wherein the damping part is asymmetric in two planes and symmetrical in a third plane.
    9. 9. A suspension according to item 8, wherein the asymmetric planes are the X-Z plane and the Y-Z plane, and the symmetric plane is the X-Y plane.
    10. 10. A suspension according to item 3 or 4, wherein the flexible (154) part comprises a transverse material thickness smaller than the substantially rigid (155) part.
    11. 11. A suspension according to anyone of the preceding items, wherein a material thickness of the damping part (152) varies asymmetrically along the longitudinal and/or transverse axis of the vibration isolator (150).
    12. 12. A suspension according to item 3 or 4, wherein the material thickness of the flexible (154) part is smaller than the material thickness of the substantially rigid (155) part.
    13. 13. A suspension according to anyone of the preceding items, wherein the acoustic passage (151) is hollow and substantially tubular, and wherein a transverse dimension of the acoustic passage in proximity to the first (130) part is smaller than the transverse dimension of the acoustic passage in proximity to the second (140) part such that the acoustic passage (151) ensures sufficient contact between the suspension (110) and the receiver (120).
    14. 14. A method of producing a hearing device (100) comprising a receiver (120) and a sound outlet (160) and a suspension (110), the suspension (110) comprising a first (130) part and a second (140) part and a vibration isolator (150) positioned between and mechanically coupled to the first (130) and second (140) parts; the vibration isolator (150) comprising a damping (152) part enclosing an acoustic passage (151); the method comprising:
      • coupling mechanically the first (130) part to the receiver (120); and
      • coupling mechanically the second (140) part to the sound outlet (160);
      • such that the suspension (110) provides an acoustic passage between the receiver (120) and the sound outlet (160); and
      • providing the damping (152) part of the vibration isolator (150) asymmetrically along a longitudinal and/or a transverse axis of the vibration isolator (150); and
      • suspending the vibration isolator (150) freely between the first (130) and the second (140) parts.
    15. 15. A method according to item 14, wherein the asymmetry of the damping (152) part is provided by varying a material thickness (153) of the damping (152) part along the longitudinal and/or the transverse axis of the vibration isolator (150).
    16. 16. A method according to item 14 or 15, wherein the damping (152) part is further provided with a flexible (154) part and a substantially rigid (155) part; and wherein the flexible (154) part is more flexible than the substantially rigid (155) part.
    17. 17. A method according to anyone of items 14 to 16, wherein the method further comprises casting the first (130) and the second (140) parts and the vibration isolator (150) in one piece.
    18. 18. A method according to anyone of items 14 to 17, wherein the method further comprises positioning the first (130) part at a non-parallel angle to the second (140) part.
    19. 19. A hearing device (100) comprising a receiver (120) and a sound outlet (160) and a suspension (110) according to anyone of items 1 to 13, wherein the receiver (120) is mechanically coupled to the first (130) part of the suspension (110) and the sound outlet (160) is mechanically coupled to the second (140) part of the suspension (110).



    Claims

    1. A suspension (110) for a hearing device receiver (120) comprising

    a. a first part (130) and a second part (140) and a vibration isolator (150) positioned between the first (130) and the second (140) parts and mechanically coupled to the first (130) and second (140) parts;

    b. wherein the first part (130) is adapted to at least partly enclose the receiver (120); and

    c. the second part (140) is adapted to at least partly enclose a sound outlet (160) of the hearing device (100); and

    d. wherein the vibration isolator (150) comprises an acoustic passage (151) and a damping (152) part enclosing said acoustic passage (151); and

    e. wherein the acoustic passage (151) part provides an acoustic passages between the first (130) and second parts (140); and

    f. wherein the damping (152) part of the vibration isolator (150) is asymmetrical along a longitudinal axis of the vibration isolator (150); and

    g. wherein the vibration isolator (150) is freely suspended between the first and second pa rts.


     
    2. A suspension according to claim 1, wherein a material thickness (153) of the damping (152) part varying along the longitudinal and/or the transverse axis of the vibration isolator (150) provides the asymmetry of the damping (152) part.
     
    3. A suspension according to claim 1 or 2, wherein the damping part (152) further comprises a flexible (154) part and a substantially rigid (155) part positioned substantially intermediary between the first (130) and second (140) parts; and wherein the flexible (154) part is more flexible than the substantially rigid (155) part.
     
    4. A suspension according to claim 3, wherein the flexible (154) part is positioned between the second (140) part and the substantially rigid (155) part.
     
    5. A suspension according to anyone of the preceding claims, wherein the damping part is asymmetric in at least two planes.
     
    6. A suspension according to claim 5, wherein the asymmetric planes are the X-Z plane and the Y-Z plane, and a symmetric plane is the X-Y plane.
     
    7. A suspension according to claim 3 or 4, wherein the flexible (154) part comprises a transverse material thickness smaller than a transverse thickness of the substantially rigid (155) part.
     
    8. A suspension according to anyone of the preceding claims, wherein a material thickness of the damping part (152) varies asymmetrically along the longitudinal and/or transverse axis of the vibration isolator (150).
     
    9. A suspension according to anyone of the preceding claims, wherein the acoustic passage (151) is hollow and substantially tubular, and wherein a transverse dimension of the acoustic passage in proximity to the first (130) part is smaller than the transverse dimension of the acoustic passage in proximity to the second (140) part such that the acoustic passage (151) ensures sufficient contact between the suspension (110) and the receiver (120).
     
    10. A method of producing a hearing device (100) comprising a receiver (120) and a sound outlet (160) and a suspension (110), the suspension (110) comprising a first (130) part and a second (140) part and a vibration isolator (150) positioned between and mechanically coupled to the first (130) and second (140) parts; the vibration isolator (150) comprising a damping (152) part enclosing an acoustic passage (151); the method comprising:

    a. coupling mechanically the first (130) part to the receiver (120); and

    b. coupling mechanically the second (140) part to the sound outlet (160);

    c. such that the suspension (110) provides an acoustic passage between the receiver (120) and the sound outlet (160); and

    d. providing the damping (152) part of the vibration isolator (150) asymmetrically along a longitudinal axis of the vibration isolator (150); and

    e. suspending the vibration isolator (150) freely between the first (130) and the second (140) parts.


     
    11. A method according to claim 10, wherein the asymmetry of the damping (152) part is provided by varying a material thickness (153) of the damping (152) part along the longitudinal and/or the transverse axis of the vibration isolator (150).
     
    12. A method according to claim 10 or 11, wherein the damping (152) part is further provided with a flexible (154) part and a substantially rigid (155) part; and wherein the flexible (154) part is more flexible than the substantially rigid (155) part.
     
    13. A method according to anyone of claims 10 to 12, wherein the method further comprises casting the first (130) and the second (140) parts and the vibration isolator (150) in one piece.
     
    14. A method according to anyone of claims 10 to 13, wherein the method further comprises positioning the first (130) part at a non-parallel angle to the second (140) part.
     
    15. A hearing device (100) comprising a receiver (120) and a sound outlet (160) and a suspension (110) according to anyone of claims 1 to 9, wherein the receiver (120) is mechanically coupled to the first (130) part of the suspension (110) and the sound outlet (160) is mechanically coupled to the second (140) part of the suspension (110).
     


    Ansprüche

    1. Aufhängung (110) für einen Hörgerätempfänger (120), umfassend

    a. einen ersten Teil (130) und einen zweiten Teil (140) und einen zwischen dem ersten (130) und zweiten (140) Teil angeordneten Vibrationsisolator (150), welcher mit dem ersten (130) und zweiten (140) Teil mechanisch verbunden ist;

    b. wobei der erste Teil (130) dafür eingerichtet ist, zumindest teilweise den Empfänger (120) umzugeben; und

    c. der zweite Teil (140) dafür eingerichtet ist, zumindest teilweise einen Geräuschausgang (160) des Hörgeräts (100) umzugeben; und

    d. wobei der Vibrationsisolator (150) einen akustischen Durchgang (151) und einen den akustischen Durchgang (151) umgebenen Dämpfungsteil (152) umfasst; und

    e. wobei der akustische Durchgangsteil (151) einen akustischen Durchgang zwischen dem ersten (130) und zweiten Teil (140) bereitstellt; und

    f. wobei der Dämpfungsteil (152) des Vibrationsisolators (150) entlang einer Längsachse des Vibrationsisolators (150) asymmetrisch ist; und

    g. wobei der Vibrationsisolator (150) zwischen dem ersten und zweiten Teil frei hängend ist.


     
    2. Aufhängung nach Anspruch 1, wobei eine Materialdicke (153) des Dämpfungsteils (152), die entlang der Längs- und/oder Querachse des Vibrationsisolators (150) variabel ist, die Asymmetrie des Dämpfungsteils (152) bereitstellt.
     
    3. Aufhängung nach Anspruch 1 oder 2, wobei der Dämpfungsteil (152) weiter einen flexiblen (154) Teil und einen im Wesentlichen steifen (155) Teil umfasst, angeordnet im Wesentlichen zwischen dem ersten (130) und zweiten (140) Teil; und wobei der flexible (154) Teil flexibler als der im Wesentlichen steife (155) Teil ist.
     
    4. Aufhängung nach Anspruch 3, wobei der flexible (154) Teil zwischen dem zweiten (140) Teil und dem im Wesentlichen steifen (155) Teil angeordnet ist.
     
    5. Aufhängung nach einem der vorgehenden Ansprüche, wobei der Dämpfungsteil in zumindest zwei Ebenen asymmetrisch ist.
     
    6. Aufhängung nach Anspruch 5, wobei die asymmetrischen Ebenen die X-Z-Ebenen und die Y-Z-Ebenen sind, und eine symmetrische Ebene die X-Y-Ebene ist.
     
    7. Aufhängung nach Anspruch 3 oder 4, wobei der flexible (154) Teil eine querverlaufende Materialdicke aufweist, die kleiner als eine querverlaufende Dicke des im Wesentlichen steifen (155) Teils ist.
     
    8. Aufhängung nach einem der vorgehenden Ansprüche, wobei eine Materialdicke des Dämpfungsteils (152) entlang der Längs- und/oder Querachse des Vibrationsisolators (150) asymmetrisch variiert.
     
    9. Aufhängung nach einem der vorgehenden Ansprüche, wobei der akustische Durchgang (151) hohl und im Wesentlichen rohrförmig ist, und wobei eine querlaufende Dimension des akustischen Durchgangs in der Nähe von dem ersten (130) Teil kleiner als die querlaufende Dimension des akustischen Durchgangs in der Nähe von dem zweiten (140) Teil ist, so dass der akustische Durchgang (151) einen ausreichenden Kontakt zwischen der Aufhängung (110) und dem Empfänger (120) gewährleistet.
     
    10. Verfahren zur Herstellung eines Hörgeräts (100), umfassend einen Empfänger (120) und einen Geräuschausgang (160) und eine Aufhängung (110), wobei die Aufhängung (110) einen ersten (130) Teil und einen zweiten (140) Teil und einen dazwischen angeordneten Vibrationsisolator (150), welcher mit dem ersten (130) und zweiten (140) Teil mechanisch verbunden ist, umfasst; wobei der Vibrationsisolator (150) einen Dämpfungsteil (152) umfasst, welcher einen akustischen Durchgang (151) umgibt; welches Verfahren Folgendes umfasst:

    a. mechanisches Verbinden des ersten (130) Teils mit dem Empfänger (120); und

    b. mechanisches Verbinden des zweiten (140) Teils mit dem Geräuschausgang (160);

    c. so dass die Aufhängung (110) einen akustischen Durchgang zwischen dem Empfänger (120) und dem Geräuschausgang (160) bereitstellt; und

    d. Bereitstellen des Dämpfungsteils (152) des Vibrationsisolators (150) asymmetrisch entlang einer Längsachse des Vibrationsisolators (150); und

    e. Aufhängen des Vibrationsisolators (150) frei hängend zwischen dem ersten (130) und zweiten (140) Teil.


     
    11. Verfahren nach Anspruch 10, wobei die Asymmetrie des Dämpfungsteils (152) dadurch bereitstellt wird, eine Materialdicke (153) des Dämpfungsteils (152) entlang der Längs- und/oder Querachse des Vibrationsisolators (150) zu variieren.
     
    12. Verfahren nach Anspruch 10 oder 11, wobei der Dämpfungsteil (152) weiter mit einem flexiblen (154) Teil und einem im Wesentlichen steifen (155) Teil bereitgestellt wird, und wobei der flexible (154) Teil flexibler als der im Wesentlichen steife (155) Teil ist.
     
    13. Verfahren nach einem der Ansprüche 10 bis 12, wobei das Verfahren weiter Gießen des ersten (130) und zweiten (140) Teils und des Vibrationsisolators (150) in einem Stück umfasst.
     
    14. Verfahren nach einem der Ansprüche 10 bis 13, wobei das Verfahren weiter Positionieren des ersten (130) Teils in einem nicht-parallelen Winkel zum zweiten (140) Teil umfasst.
     
    15. Hörgerät (100) umfassend einen Empfänger (120) und einen Geräuschausgang (160) und eine Aufhängung (110) nach einem der Ansprüche 1 bis 9, wobei der Empfänger (120) mit dem ersten (130) Teil der Aufhängung (110) mechanisch verbunden ist und der Geräuschausgang (160) mit dem zweiten (140) Teil der Aufhängung (110) mechanisch verbunden ist.
     


    Revendications

    1. Suspension (110) pour un récepteur de la prothèse auditive (120) comprenant

    a. une première partie (130) et une deuxième partie (140) et un isolateur de vibrations (150) positionné entre les première (130) et deuxième (140) parties et couplé mécaniquement aux première (140) et deuxième (130) parties;

    b. la première partie (130) étant adaptée pour entourer au moins partiellement le récepteur (120); et

    c. la deuxième partie (140) étant adaptée pour entourer au moins partiellement un orifice de sortie sonore (160) de la prothèse auditive (100); et

    d. l'isolateur de vibrations (150) comprenant une partie de passage acoustique (151) et une partie d'amortissement (152) entourant ledit passage acoustique (151); et

    e. la partie de passage acoustique (151) fournissant un passage acoustique entre les première (130) et deuxième parties (140); et

    f. la partie d'amortissement (152) de l'isolateur de vibrations (150) étant asymétrique le long d'un axe longitudinal de l'isolateur de vibrations (150); et

    g. l'isolateur de vibrations (150) étant librement suspendu entre les première et deuxième parties.


     
    2. Suspension selon la revendication 1, dans laquelle une épaisseur de matériau (153) de la partie d'amortissement (152) variant le long de l'axe longitudinal et/ou transversal de l'isolateur de vibrations (150) fournit l'asymétrie de la partie d'amortissement (152).
     
    3. Suspension selon la revendication 1 ou 2, dans laquelle la partie d'amortissement (152) comprend en outre une partie flexible (154) et une partie essentiellement rigide (155) positionnées essentiellement à une position intermédiaire entre les première (130) et deuxième (140) parties; et la partie flexible (154) étant plus flexible que la partie essentiellement rigide (155).
     
    4. Suspension selon la revendication 3, dans laquelle la partie flexible (154) est positionnée entre la deuxième partie (140) et la partie essentiellement rigide (155).
     
    5. Suspension selon l'une quelconque des revendications précédentes, dans laquelle la partie d'amortissement est asymétrique dans au moins deux plans.
     
    6. Suspension selon la revendication 5, dans laquelle les plans asymétriques sont le plan X-Z et le plan Y-Z, et un plan symétrique est le plan X-Y.
     
    7. Suspension selon la revendication 3 ou 4, dans lequel la partie flexible (154) comprend une épaisseur de matériau transversale inférieure à une épaisseur transversale de la partie essentiellement rigide (155).
     
    8. Suspension selon l'une quelconque des revendications précédentes, dans laquelle une épaisseur de matériau de la partie d'amortissement (152) est variable de manière asymétrique le long de l'axe longitudinal et/ou transversal de l'isolateur de vibrations (150).
     
    9. Suspension selon l'une quelconque des revendications précédentes, dans laquelle le passage acoustique (151) est creux et essentiellement tubulaire, et une dimension transversale du passage acoustique à proximité de la première partie (130) étant inférieure à la dimension transversale du passage acoustique à proximité de la deuxième partie (140) si bien que le passage acoustique (151) assure un contact suffisant entre la suspension (110) et le récepteur (120).
     
    10. Procédé de production d'une prothèse auditive (100) comprenant un récepteur (120) et un orifice de sortie sonore (160) et une suspension (110), la suspension (110) comprenant une première partie (130) et une deuxième partie (140) et un isolateur de vibrations (150) positionné entre et couplé mécaniquement aux première (140) et deuxième (130) parties; l'isolateur de vibrations (150) comprenant une partie d'amortissement (152) entourant un passage acoustique (151); le procédé comprenant les étapes consistant à:

    a. coupler mécaniquement la première partie (130) au récepteur (120); et

    b. coupler mécaniquement la deuxième partie (140) à l'orifice de sortie sonore (160);

    c. si bien que la suspension (110) fournit un passage acoustique entre le récepteur (120) et l'orifice de sortie sonore (160); et

    d. fournir la partie d'amortissement (152) de l'isolateur de vibrations (150) étant arrangée de manière asymétrique le long d'un axe longitudinal de l'isolateur de vibrations (150); et

    e. suspendre l'isolateur de vibrations (150) librement entre les première (130) et deuxième (140) parties.


     
    11. Procédé selon la revendication 10, dans lequel l'asymétrie de la partie d'amortissement (152) est pourvue en variant une épaisseur de matériau (153) de la partie d'amortissement (152) le long de l'axe longitudinal et/ou transversal de l'isolateur de vibrations (150).
     
    12. Procédé selon la revendication 10 ou 11, dans lequel la partie d'amortissement (152) est en outre pourvue d'une partie flexible (154) et une partie essentiellement rigide (155); et la partie flexible (154) étant plus flexible que la partie essentiellement rigide (155).
     
    13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel le procédé comprend en outre le moulage des première (130) et deuxième partie (140) et de l'isolateur de vibrations (150) d'une seule pièce.
     
    14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel le procédé en outre comprend le positionnement de la première partie (130) à un angle non parallèle à la deuxième partie (140).
     
    15. Prothèse auditive (100) comprenant un récepteur (120) et un orifice de sortie sonore (160) et une suspension (110) selon l'une quelconque des revendications 1 à 9, dans lequel le récepteur (120) est couplé mécaniquement à la première partie (130) de la suspension (110), et l'orifice de sortie sonore (160) est couplé mécaniquement à la deuxième partie (140) de la suspension (110).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description