TECHNICAL FIELD
[0001] The present invention relates to a vacuum operated waste collection system according
to the preamble of claim 1, and to a method of supplying power according to claim
6.
BACKGROUND
[0002] In mobile type waste collection systems waste deposited at different waste collection
points inside or outside buildings is gathered in respective waste storage tanks or
containers that are emptied by means of vacuum-equipped vehicles. Said vehicles, the
so called vacuum-trucks, are connectable to docking stations that in turn communicate
with one or several such waste storage tanks through waste pipe systems.
[0003] In recent years the storage capacity of such waste storage tanks has been gradually
increased in order to cope with the increasing waste volumes deposited at many collection
points between emptying sequences. These increasing waste volumes of the storage tanks
have necessitated the development of equipment and designs for securing rapid and
safe emptying of the large storage tank volumes without any risk of blockage in the
tanks or in the pipe systems. One such recent improvement is the provision of an agitator,
normally in the shape of an electrically powered feed screw, near the bottom of at
least large, heavily loaded storage tanks.
[0004] In the conventional mobile type systems efforts have been made, where at all possible,
to supply electric power to the above mentioned agitators from available supply points
in the area where the system is operated. This means that for storage tanks receiving
deposited waste from outdoor collection points, it has in most cases been necessary
to draw long, expensive electric supply lines from the available supply points to
the actual waste storage tanks. Another potential problem with regard to mobile waste
collection systems of this kind is the correlation of the electric power supply with
the different housing estates, possibly with different owners, that frequently share
one and the same waste deposit and collection station.
[0005] WO-A-2006/059896 discloses a vehicle that comprises a power source for providing power supply to an
external, separate installation to be energized. An external connection is further
provided, which is connected to the power source and which can be connected to the
external installation for selective energizing thereof with the power supply.
[0006] WO-A-2006/135296 discloses a vacuum operated waste collection system according to the preamble of
claim 1.
SUMMARY
[0007] The invention overcomes the above problems in an efficient and satisfactory manner.
[0008] It is a general object of the invention to provide an improved, efficient and convenient
power supply for a vacuum operated waste collection system, as defined in the appended
claims.
[0009] In particular, it is an object of the invention to provide an improved vacuum operated
waste collection system.
[0010] In particular, it is another object of the invention to provide an improved method
of supplying power to the electric drive motor of the electrically powered agitator
in at least one of the waste storage tanks of a waste collection point in the vacuum
operated waste collection system.
[0011] Specifically the invention provides a vacuum operated waste collection system wherein
waste storage tanks of a waste collection point are connected through a stationary
waste pipe system to a waste pipe docking station, and in which a vehicle carrying
a vacuum source is connectable to the docking station through a vehicle carried waste
pipe, at least one of the tanks has an electrically powered agitator provided therein
to assist emptying of the waste storage tank, whereby the vacuum source of the vehicle
is releasably connectable to a first pipe connector element of a pipe connecting interface
of the waste pipe docking station through the vehicle-carried pipe having a second
pipe connector element. According to the invention an auxiliary electrical power generator
is provided on the vehicle, an electrical power supply line is provided on the vehicle
and is connectable from the generator to an electrical connection interface being
integrated in the waste pipe docking station or in the pipe connecting interface of
the docking station and electrical power connection lines are laid down alongside
the stationary waste pipe system, extending from the electrical connection interface
to an electric drive motor for rotating the electrically powered agitator of said
at least one of the waste storage tanks having such an electrically powered agitator.
[0012] In another aspect the invention provides a method of supplying power to the electric
drive motor of the electrically powered agitator in at least one of the waste storage
of a waste collection point in the vacuum operated waste collection system of the
invention, whereby auxiliary electrical power is produced by means of the auxiliary
electrical power generator onboard the vehicle of the system, an electrical connection
is established through the electrical connecting interface of the system and produced
auxiliary electrical power is supplied from the auxiliary electrical power generator
to the electric drive motor.
[0013] One advantage of the suggested system and method is that no external power connections
will be required, with an associated reduction of the costs for and problems related
to auxiliary power installations.
[0014] In a further embodiment of the invention provisions are made for identifying the
docking station or the actual storage tank connected to the vehicle and for starting
the production of auxiliary electrical power onboard the vehicle only when a waste
storage tank having an agitator is connected for emptying.
[0015] Advantages offered by the present invention, in addition to those described above,
will be readily appreciated upon reading the below detailed description of embodiments
of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The invention, together with further objects and advantages thereof, may best be
understood by referring to the following description taken together with the accompanying
drawings, in which:
Fig. 1 is an exemplifying, schematical illustration of a mobile type waste collection
system;
Fig. 2 is a schematical illustration of a waste storage tank of the system of Fig.
1, with a waste agitator provided for the storage tank;
Fig. 3 is a partly schematical illustration of a power supply system;
Fig. 4 is a very schematical illustration of the general outline of a connecting interface;
Fig. 5 is a schematical illustration of a tank identification arrangement;
Fig. 6A is a detail view of a vacuum source for a vehicle; and
Fig. 6B is a schematical illustration of a vacuum fan control arrangement.
DETAILED DESCRIPTION
[0017] The invention will now be explained with reference to an exemplifying embodiment
of the system and method, illustrated particularly in drawing figures 3-5. The illustrated,
exemplifying embodiment relates to an application of the solution to an exemplary
waste collection system of the mobile type that is schematically illustrated in drawing
figures 1-2.
[0018] Fig. 1 very schematically illustrates the use of a conventional mobile type waste
collection system 1 in an imaginary residential or other area where waste is deposited
at different kinds of waste collection points 4.1; 4.2, 4.4, for collection and temporary
storage in waste storage tanks or containers 2.2, 2.3, 2.4; 3.1, 3.4. Specifically,
in said system are included indoor and outdoor types of collection points 4.4; 4.1
and 4.2, respectively. The indoor type 4.1; 4.4 is normally situated in a basement
of a building 6 and receives waste deposited in waste chutes extending through several
stories of the building 6, as is well known within this technical field. The outdoor
type of collection point 4.2 is situated outdoors and comprises an underground waste
storage tank 2.2, 2.3, 2.4 to which waste is deposited through a short chute 8 (see
Fig. 2) extending a short distance up to an insertion opening 9 above ground G.
[0019] Among the waste storage tanks, a distinction is made between a first type of tanks
2.2, 2.3, 2.4 having a rotatable agitator 20 with drive motor 21 for assisting in
the emptying, predominantly of larger and/or heavily loaded tanks of the system; and
a second type of tanks 3.1, 3.4 having no such auxiliary emptying equipment. One or
several of the waste collection points 4.4; 4.2; 4.1, or specifically their tanks,
are connected to a corresponding docking station 30 through the respective waste transport
pipes 5.1, 5.2, 5.3, 5.4. In the case where several tanks, such as the tanks 2.2 and
2.4, 3.4, respectively, are connected to one and the same docking station 30, branch
valves 7 are provided in the transport pipes 5.2, 5.4 to allow for the separate connection
of each tank to the docking station. The tanks of the system are sequentially emptied
by means of a vehicle 10 having a vehicle-mounted vacuum source 11 and being driven
along a drive way DW of the area for connection to the respective, spaced docking
stations 30, as will be described.
[0020] Fig. 2 likewise very schematically illustrates one such known waste storage tank
2.2, 2.3, 2.4 of the system 1 and its connection, through a stationary pipe system
5.2, 5.3, 5.4, a docking station 30 and a vehicle-mounted vacuum pipe 12, to the vehicle
10 for emptying. With the vehicle 10 communicating with the pipe system 5.2, 5.3,
5.4 through the vacuum pipe 12 and the docking station 30, emptying of the tank 2.2,
2.3, 2.4 in question is carried out by activating the vacuum source 11, opening a
respective tank discharge valve 19 - and in the relevant cases a corresponding branch
valve 7 (see Fig. 1) - and selectively activating the agitator 20 when the emptying
conditions so require. For further details regarding the preferable ways of operating
the agitators 20 during emptying, reference is made to
WO-A-2006/135296. In the conventional mobile system 1, the power supply for the agitator 20 drive
motors 21 is a great concern due to the extensive cost and labor involved in laying
stationary connection lines to the different, quite significantly spaced apart collection
points 4.1; 4.4; 4.2 and also due to the initially mentioned problems of coordinating
the electric power supply for the different collection points and a varying number
of housing estate owners.
[0021] To overcome such problems, a system integrated electric power supply for auxiliary
equipment employed at the collection points is provided. In the embodiment illustrated
in Fig. 3 said auxiliary equipment is an agitator, as represented by its drive motor
21, for a storage tank 2.2, 2.3, 2.4 of a collection point 4.2; 4.1 in the waste collection
system 1. The auxiliary electrical power produced onboard the vehicle 10 is used for
emptying the system storage tanks at regular intervals. Said produced auxiliary electrical
power is then supplied from the vehicle to an electrical connecting interface at or
near a vehicle waste pipe docking station and from the connecting interface to said
tank auxiliary equipment. Thereby, exceptional advantages are obtained compared to
the conventional system, since the electric power source is moved with the vehicle
to each docking station and since the required electrical power connection lines are
limited to the connection lines from the docking stations and to the respective collection
point. Said connection lines may preferably be laid down alongside of and simultaneously
with the stationary waste pipes for the collection points/storage tanks.
[0022] As the vacuum source of the vehicle is releasably connected to a pipe connecting
interface at the docking station through a vehicle-carried pipe, a convenient or alternatively
even automatic connection of the auxiliary electrical power from the vehicle to the
auxiliary equipment is provided by integrating the electrical connecting interface
in the docking station or in the actual pipe connecting interface, respectively. In
waste collection systems comprising several waste storage tanks that are emptied through
allotted docking stations and in which not all tanks are provided with an agitator,
or other auxiliary equipment requiring electrical power supply, the docking station
or the actual storage tank being connected to the vehicle is identified in connection
with each tank emptying procedure. Furthermore, the production of auxiliary electrical
power onboard the vehicle is started only when an identified waste storage tank provided
with an agitator is to be emptied through said docking station or alternatively when
the vehicle 10 is connected to such a docking station. An exemplary embodiment of
a method and means for performing such identification is described below, in association
with Fig. 5.
[0023] A presently preferred embodiment of a vacuum operated waste collection system 1 according
to the invention will now be described with reference to Figs. 3-5. Like in the conventional
system, one or several waste storage tanks 2.2; 2.3; 2.4 of a number of waste collection
points 4.1; 4.2 are connected through stationary waste pipe systems 5.2; 5.3; 5.4
to an allotted waste pipe docking station 30. A vehicle 10 carrying a vacuum source
11 is selectively connectable to each docking station 30 through a vehicle carried
waste pipe 12. Some tanks 2.2; 2.3; 2.4 of the system have a waste agitator 20 being
supported for rotation therein. The agitators are rotated by a drive motor 21 being
electrically powered. In the system a generator 13 for producing auxiliary electrical
power AEP is mounted on the vehicle 10, preferably supported on insulating rubber
feet 14.
[0024] The generator 13 is connectable through an electrical power supply line 18.1 supported
on the vehicle, to an electrical connection interface 34 (see FIG: 4) provided in
the vicinity of the respective waste pipe docking station 30. From the electrical
connection interface 34 the produced auxiliary electrical power AEP is supplied to
the agitator 20 of the respective storage tank 2.2; 2.3; 2.4 through a stationary
power line 18.2 extended from the connection interface 34 to the electric drive motor
21 for rotating the agitator 20. Specifically, in the illustrated embodiment, the
vacuum source 11 of the vehicle 10 is releasably connectable to a first pipe connector
element 32 of a pipe connecting interface 31 of the docking station 30 through the
vehicle-carried pipe 12 having a second pipe connector element 33, as is conventional
in this technique. A practical or convenient connection of the auxiliary electrical
power AEP from the vehicle to the auxiliary equipment 20 is thereby established by
integrating the electrical connecting interface 34 in the actual docking station 30.
Or the electrical connection interface 34 and the pipe connecting interface 31 is
formed as a unit, permitting automatic connection of the auxiliary electrical power
AEP when the pipe connection is performed. With such a configuration, the electrical
connection will be established without any separate manual maneuvering.
[0025] In a further development of the invention, it is proposed to identify, in connection
with each tank emptying procedure, the actual docking station 30 being connected to
the vehicle 10 for emptying and by starting the production of auxiliary electrical
power AEP onboard the vehicle only when said identified docking station 30 contains
a waste storage tank 2.2; 2.3; 2.4 being provided with an agitator 20. In a further
development of this embodiment, that will be discussed below with reference to FIG.
5, it will naturally also be possible to alternatively identify the actual waste storage
tank 3.1; 3.4; 2.2; 2.3; 2.4 that is to be emptied through the respective docking
station 30 and to start the production of auxiliary electrical power AEP onboard the
vehicle 10 only when said identified waste storage tank 2.2; 2.3; 2.4 is provided
with an agitator 20.
[0026] In a practical embodiment, the generator 13 delivers nominally 3 kW, 400V AC, and
for security reasons the generator 13 is provided with motor protection, load loss
and short circuit, as well as a residual current operated circuit-breaker. Preferably,
the auxiliary electrical power AEP is produced by means of a hydraulically driven
generator 13 carried onboard the vehicle 10, whereby said hydraulic drive power for
the generator will be supplied from a power take-off of a propulsion system of the
vehicle 10 in a manner that is obvious to the skilled practitioner and that will therefore
not be described in detail herein. As is indicated in Fig. 3 the auxiliary electrical
power producing generator 13 must also be grounded by means of a grounding line 19
connected to the vehicle 10 through the electrical connecting interface 34. The grounding
line from the connecting interface 34 to the vehicle is normally integrated in the
supply line 18.1 and has therefore not been specifically illustrated.
[0027] In Fig. 4 is very schematically illustrated the basic principles of a pipe connecting
interface 31 for use in the system 1 of the invention. The pipe connecting interface
31 consists of the above mentioned first and second pipe connector elements 32 and
33, respectively. Said connector elements 32, 33 are of any known quick-connection
type to be easily mutually connectable to provide a secure, sealed and air-tight connection
for the transfer of waste in the air stream produced by the vacuum source 11. Such
connector elements are well known within the art and will therefore not be described
or illustrated in detail herein. Fig. 4 illustrates the embodiment where the electrical
interface 34 is physically integrated in the docking station 30, and likewise only
very schematically shows a first connector element 34A connected to the vehicle supported
power supply line 18.1 and a second connector element 34B connected to the stationary
power line 18.2. Said electrical connector elements 34A and 34B may likewise be of
any known quick-connection type and will therefore not be shown or described in detail
herein. The electrical connection interface 34 is physically or functionally integrated
in the actual pipe connecting interface 31 in the waste pipe docking station 30 for
establishing an automatic connection of the supply of auxiliary electrical power AEP
from the vehicle to the auxiliary equipment 20.
[0028] In a preferred further development of the invention each waste storage tank 3.1;
3.4; 2.2; 2.3; 2.4 in the system 1 is identified so that the generator 13 will be
started only when a storage tank 2.2; 2.3; 2.4 requiring auxiliary power is connected
for emptying, as was briefly indicated above. With reference to FIG. 5, which is a
schematical illustration of a storage tank identification arrangement, the storage
tank identification is performed in the following manner. Each waste storage tank
3.1; 3.4; 2.2; 2.3; 2.4 of the system 1 is conventionally equipped with a tank control
box TCB through which several tank control functions are performed in cooperation
with a likewise conventional vacuum truck PLC, as is very schematically indicated
in FIG. 5. For further details of such possible further waste storage tank control
functions, reference is made to
WO-A-2006/135296.
[0029] For the purposes of this further development of present invention, the tank control
box TCB of each waste storage tank is equipped with an I/O-device 35 having a non-volatile
RAM-memory 36, which is a memory that does not loose data when power is switched off.
This memory 36 has a default factory value. The first time a vehicle 10 connects to
the docking stations 30 of a system installation, unique identification data, such
as identification numbers, is saved in the non-volatile RAM-memory 36 of each of the
distributed I/O-devices 35 of the tank control boxes TCB of the system 1. When the
vehicle 10 connects to the system 1 after the first time, a control system (not specifically
illustrated) in the vacuum truck PLC reads the identification data saved in the I/O-device
35 of the connected waste storage tank. In this way the control system retrieves identification
of the currently connected tank. Specifically, the identification numbers are supplied
to and retrieved from the respective tank control boxes by the vacuum truck PLC, through
a connection line 37 that may be automatically connected through the electrical connecting
interface 34 or alternatively through the pipe connecting interface 31 of the respective
docking station 30. When the vacuum truck PLC control system has identified that a
connected waste tank is equipped with an agitator or other equipment requiring auxiliary
power, activation of the generator 13 is initiated through a signal line 38. In this
manner it is secured that the generator 13 is only started when the vehicle 10 is
actually connected to a waste tank requiring auxiliary electric power.
[0030] In Fig. 6A is illustrated an exemplary vacuum fan 40 for use as the vacuum source
11 in the vehicle 10.
[0031] Conventionally, the vacuum fan 40 comprises a fan housing 41 with an impeller (not
shown) rotated by a hydraulic motor 42 that will normally be driven through the vehicle
propulsion (likewise not shown). The impeller sucks in air through a fan inlet channel
43 that in the waste collection system application communicates with the vehicle carried
waste pipe 12 to create vacuum in said waste pipe and ultimately in a waste storage
container 2.2, 2.3, 2.4; 3.1 or 3.4 and exhausts air to the atmosphere through a fan
outlet channel 44 and an exhaust air silencer 45. The vacuum fan 40 comprises an atmospheric
air intake 46 communicating with the inlet channel 43 and is selectively controlled
by an air valve 47. Upstream of the air valve 47 is provided atmospheric air silencers
48 causing a pressure drop of approximately 25 kPa.
[0032] In Fig. 6B is schematically illustrated a vacuum source 11 control arrangement. In
the operation of the waste collection system 1 it is known to continuously monitor
the vacuum pressure as well as the air flow in the waste pipes in order to immediately
detect any blockage therein. Thus, when an emptying sequence has been started in a
first step S1, said known continuous detection of the vacuum level and the air flow
is used in step S2 as an indication of whether or not blockage has been registered
somewhere in the pipe system. In particular, this is made by comparing the detected
values with predetermined threshold values, based on which it is determined in step
S3 whether a blockage has occurred. In case the detected values fall outside the accepted
values the atmospheric air intake 46 is opened by opening the atmospheric air valve
47 in step S4. Thereby, a controlled amount of air is introduced.
[0033] By the provision of the atmospheric air silencers 48 the introduced air will have
a controlled subatmospheric pressure. Simultaneously the speed (RPM) of the fan 40
will be increased and, taken together these measures will secure optimum use of the
vacuum fan 40 that has a poor energy efficiency in situations where the air intake
is close to zero. It will be realized that in the described arrangement, the controlled
subatmospheric pressure will be obtained by producing the correct pressure drop across
the silencers 48 being provided upstream of the air valve 47. The speed of the fan
40 will be controlled based on the detected air speed during the emptying sequence,
and such speed control may be performed by means of a variable displacement pump that
is mounted on a power take-off of the vehicle 10 engine. As soon as the detected values
return to normal the atmospheric air valve 47 is closed again, the speed of the fan
is adjusted back to normal and the tank emptying sequence is finished in the normal
mode in step S5.
[0034] The invention has been described in connection with what is presently considered
to be the most practical and preferred embodiments, but it is to be understood that
the invention is not to be limited to the disclosed embodiments. The invention is
therefore intended to cover various modifications included within the scope of the
appended claims.
1. A vacuum operated waste collection system (1) in which one or several waste storage
tanks (2.2; 2.3; 2.4; 3.1; 3.4) of a waste collection point (4.1; 4.2; 4.4) are connected
through a stationary waste pipe system (5.1; 5.2; 5.3; 5.4) to a waste pipe docking
station (30), and in which a vehicle (10) carrying a vacuum source (11) is selectively
connectable to the waste pipe docking station (30) through a vehicle carried waste
pipe (12), at least one of the waste storage tanks (2.2; 2.3; 2.4) has an electrically
powered agitator (20) provided therein to assist emptying of the waste storage tank
(2,2;2.3;2.4;3.1;3.4) whereby the vacuum source (11) of the vehicle (10) is releasably
connectable to a first pipe connector element (32) of a pipe connecting interface
(31) of the waste pipe docking station (30) through the vehicle-carried pipe (12)
having a second pipe connector element (33), characterized by an auxiliary electrical power generator (13) on the vehicle (10), an electrical power
supply line (18.1) on the vehicle (10) and connectable from the auxiliary electrical
power generator (13) to an electrical connection interface (34) being integrated in
the waste pipe docking station (30) or in the pipe connecting interface (31) of the
waste pipe docking station (30), and by electrical power connection lines (18.2) laid
down alongside the stationary waste pipe system (5.1; 5.2; 5.3; 5.4), extending from
the electrical connection interface (34) to an electric drive motor (21) for rotating
the electrically powered agitator (20) of said at least one of the waste storage tanks
(2.2; 2.3; 2.4) having such an electrically powered agitator (20).
2. The vacuum operated waste collection system (1) according to claim 1, characterized by waste storage tank identifying means (35, 36) integrated in a tank control box of
each waste storage tank (2.2; 2.3; 2.4; 3.1; 3.4) for providing waste storage tank
identification data to a vacuum truck control system of the vehicle (10).
3. The vacuum operated waste collection system (1) according to claim 2, characterized in that the waste storage tank identifying means comprise an I/O-device (35) having a non-volatile
RAM-memory (36) and by a connection line (37) for connecting each such non-volatile
RAM-memory (36) and said vacuum truck control system upon connection of the vehicle
(10) to the waste pipe docking station (30).
4. The vacuum operated waste collection system (1) according to any of claims 1-3, characterized in that the auxiliary electrical power generator (13) is hydraulically driven, the hydraulic
drive power being supplied from a propulsion system of the vehicle (10).
5. The vacuum operated waste collection system (1) according to any of claims 1-3, characterized in that the auxiliary electrical power generator (13) is grounded by means of a grounding
line (19) connected to the vehicle (10) through the electrical connecting interface
(34).
6. A method of supplying power to the electric drive motor (21) of the electrically powered
agitator (20) in at least one of the waste storage tanks (2.2; 2.3; 2.4) of a waste
collection point (4.1; 4.2; 4.4) in the vacuum operated waste collection system (1)
according to any of the claims 1-5, comprising the following steps:
- producing auxiliary electrical power (AEP) by means of the auxiliary electrical
power generator (13) on-board the vehicle (10);
- establishing an electrical connection through the electrical connecting interface
(34); and
- supplying produced auxiliary electrical power from the auxiliary electrical power
generator (13) to the electric drive motor (21).
7. The method according to claim 6, characterized by identifying, in connection with each tank emptying procedure, the waste pipe docking
station (30) and/or waste storage tank (2.2; 2.3; 2.4; 3.1: 3.4) being connected to
the vehicle (10) for emptying and by starting the production of auxiliary electrical
power on-board the vehicle (10) only when a waste storage tank (2.2; 2.3; 2.4; 3.1;
3.4) being provided with an electrically powered agitator (20) has been identified
for emptying through a respective waste pipe docking station (30).
8. The method according to claim 7, characterized by initially storing identification data unique for each waste storage tank (2.2; 2.3;
2.4; 3.1; 3.4) in a non-volatile RAM-memory (36) of a tank control box associated
with each waste storage tank (2.2; 2.3; 2.4; 3.1; 3.4) and by reading said unique
identification data by each connection of a waste storage tank (2.2; 2.3; 2.4; 3.1;
3.4) to the vehicle (10) for emptying, to thereby identify the connected waste storage
tank (2.2; 2.3; 2.4; 3.1; 3.4).
9. The method according to any of claims 6-8, characterized by grounding the auxiliary electrical power production through the electrical connecting
interface (34).
10. The method according to any of claims 6-9, characterized by producing the auxiliary electrical power by means of a hydraulically driven generator
(13) on-board the vehicle (10), the hydraulic drive power for the generator (13) being
supplied from a propulsion system of the vehicle (10).
1. Vakuumbetriebenes Müllsammelsystem (1), in dem ein oder mehrere Müllaufbewahrungsbehälter
(2.2; 2.3; 2.4; 3.1; 3.4) eines Müllsammelpunkts (4.1; 4.2; 4.4) über ein feststehendes
Abzugsrohrsystem (5.1; 5.2; 5.3; 5.4) mit einer Abzugsrohr-Andockstation (30) verbunden
ist bzw. sind, und in dem ein Fahrzeug (10), das eine Vakuumquelle (11) trägt, wahlweise
mit der Abzugsrohr-Andockstation (30) über ein vom Fahrzeug getragenes Abzugsrohr
(12) verbindbar ist, wobei zumindest einer der Müllaufbewahrungsbehälter (2.2; 2.3;
2.4) ein elektrisch angetriebenes Rührwerk (20) aufweist, das in diesem vorgesehen
ist, um ein Leeren des Müllaufbewahrungsbehälters (2.2; 2.3; 2.4; 3.1; 3.4) zu unterstützen,
wobei die Vakuumquelle (11) des Fahrzeugs (10) über das vom Fahrzeug getragene Rohr
(12), das ein zweites Rohrverbindungselement (33) aufweist, lösbar mit einem ersten
Rohrverbindungselement (32) einer Rohrverbindungsschnittstelle (31) der Abzugsrohr-Andockstation
(30) verbindbar ist, gekennzeichnet durch einen Hilfsstromerzeuger (13) an dem Fahrzeug (10), eine Stromzufuhrleitung (18.1)
an dem Fahrzeug (10) und verbindbar vom Hilfs-Stromerzeuger (13) zu einer elektrischen
Verbindungsschnittstelle (34), die in die Abzugsrohr-Andockstation (30) oder in die
Rohrverbindungsschnittstelle (31) der Abzugsrohr-Andockstation (30) eingebaut ist,
und durch elektrische Stromverbindungsleitungen (18.2), verlegt entlang des feststehenden Abzugsrohrsystems
(5.1; 5.2; 5.3; 5.4), die sich von der elektrischen Verbindungsschnittstelle (34)
zu einem elektrischen Antriebsmotor (21) erstrecken, um das elektrisch angetriebene
Rührwerk (20) des zumindest einen der Müllaufbewahrungsbehälter (2.2; 2.3; 2.4), der
ein derartig elektrisch angetriebenes Rührwerk (20) aufweist, zu drehen.
2. Vakuumbetriebenes Müllsammelsystem (1) nach Anspruch 1, gekennzeichnet durch Müllaufbewahrungsbehälter-Identifizierungsmittel (35, 36), die in einem Behältersteuergerät
jedes Müllaufbewahrungsbehälters (2.2; 2.3; 2.4; 3.1; 3.4) eingebaut sind, um Müllaufbewahrungsbehälter-Identifikationsdaten
für ein Vakuumfahrzeug-Steuersystem des Fahrzeugs (10) bereitzustellen.
3. Vakuumbetriebenes Müllsammelsystem (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Müllaufbewahrungsbehälter-Identifizierungsmittel eine Ein-/Ausgabe-Einheit (35)
mit einem nichtflüchtigen RAM-Speicher (36) umfassen, und durch eine Verbindungsleitung
(37) zum Verbinden jedes derartigen nichtflüchtigen RAM-Speichers (36) und des Vakuumfahrzeug-Steuersystems
bei Verbindung des Fahrzeugs (10) mit der Abzugsrohr-Andockstation (30).
4. Vakuumbetriebenes Müllsammelsystem (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Hilfsstromerzeuger (13) hydraulisch angetrieben wird, wobei die hydraulische
Antriebskraft von einem Antriebssystem des Fahrzeugs (10) geliefert wird.
5. Vakuumbetriebenes Müllsammelsystem (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Hilfsstromerzeuger (13) mittels einer Erdungsleitung (19), die über die elektrische
Verbindungsschnittstelle (34) mit dem Fahrzeug (10) verbunden ist, geerdet wird.
6. Verfahren zum Zuführen von Strom zum elektrischen Antriebsmotor (21) des elektrisch
angetriebenen Rührwerks (20) in zumindest einem der Müllaufbewahrungsbehälter (2.2;
2.3; 2.4) eines Müllsammelpunkts (4.1; 4.2; 4.4) in dem vakuumbetriebenen Müllsammelsystem
(1) nach einem der Ansprüche 1 bis 5, umfassend die folgenden Schritte:
- Erzeugen eines Hilfsstroms (AEP) mittels des Hilfsstromerzeugers (13) im Fahrzeug
(10);
- Herstellen einer elektrischen Verbindung über die elektrische Verbindungsschnittstelle
(34); und
- Zuführen des erzeugten Hilfsstroms von dem Hilfsstromerzeuger (13) zum elektrischen
Antriebsmotor (21).
7. Verfahren nach Anspruch 6, gekennzeichnet durch Identifizieren, in Verbindung mit jedem Behälterleerungsvorgang, der Abzugsrohr-Andockstation
(30) und/oder des Müllaufbewahrungsbehälters (2.2; 2.3; 2.4; 3.1; 3.4), der zum Leeren
mit dem Fahrzeug (10) verbunden wird, und durch Starten der Erzeugung von Hilfsstrom in dem Fahrzeug (10) nur dann, wenn ein Müllaufbewahrungsbehälter
(2.2; 2.3; 2.4; 3.1; 3.4), der mit einem elektrisch angetriebenen Rührwerk (20) ausgestattet
ist, zum Leeren über eine entsprechende Abzugsrohr-Andockstation (30) identifiziert
wurde.
8. Verfahren nach Anspruch 7, gekennzeichnet durch anfängliches Speichern von Identifikationsdaten, die spezifisch für jeden Müllaufbewahrungsbehälter
(2.2; 2.3; 2.4; 3.1; 3.4) sind, in einem nichtflüchtigen RAM-Speicher (36) eines Behältersteuergeräts,
das jedem Müllaufbewahrungsbehälter (2.2; 2.3; 2.4; 3.1; 3.4) zugeordnet ist, und
durch Lesen der spezifischen Identifikationsdaten bei jeder Verbindung eines Müllaufbewahrungsbehälters
(2.2; 2.3; 2.4; 3.1; 3.4) mit dem Fahrzeug (10) zum Leeren, um dadurch den verbundenen Müllaufbewahrungsbehälter (2.2; 2.3; 2.4; 3.1; 3.4) zu identifizieren.
9. Verfahren nach einem der Ansprüche 6 bis 8, gekennzeichnet durch Erden der Hilfsstromerzeugung durch die elektrische Verbindungsschnittstelle (34).
10. Verfahren nach einem der Ansprüche 6 bis 9, gekennzeichnet durch Erzeugen des Hilfsstroms mittels eines hydraulisch angetriebenen Stromerzeugers (13)
in dem Fahrzeug (10), wobei die hydraulische Antriebskraft für den Stromerzeuger (13)
von einem Antriebssystem des Fahrzeugs (10) geliefert wird.
1. Système de collecte de déchets actionné sous vide (1), dans lequel un ou plusieurs
réservoirs de stockage de déchets (2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4) d'un point de collecte
de déchets (4.1 ; 4.2 ; 4.4) sont reliés par un système de tuyau de déchets stationnaire
(5.1 ; 5.2 ; 5.3 ; 5.4) à un poste d'accueil de tuyau de déchets (30), et dans lequel
un véhicule (10) portant une source de vide (11) peut être relié sélectivement au
poste d'accueil de tuyau de déchet (30) par un tuyau de déchet porté par le véhicule
(12), au moins un des réservoirs de stockage de déchets (2.2 ; 2.3 ; 2.4) a un agitateur
électrique (20) prévu dedans pour assister au vidage du réservoir de stockage de déchets
(2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4),
moyennant quoi la source de vide (11) du véhicule (10) peut être reliée de manière
détachable à un premier élément connecteur de tuyau (32) d'une interface de liaison
de tuyau (31) du poste d'accueil de tuyau de déchet (30) par le tuyau porté par le
véhicule (12) présentant un second élément connecteur de tuyau (33), caractérisé par
un générateur de puissance électrique auxiliaire (13) sur le véhicule (10),
une ligne d'alimentation de puissance électrique (18.1) sur le véhicule (10) et pouvant
être reliée du générateur de puissance électrique auxiliaire (13) à une interface
de connexion électrique (34) étant intégrée dans le poste d'accueil de tuyau de déchet
(30) ou dans l'interface de liaison de tuyau (31) du poste d'accueil de tuyau de déchets
(30) et par des lignes de connexion de puissance électrique (18.2) posées le long
du système de tuyau de déchets stationnaire (5.1 ; 5.2 ; 5.3 ; 5.4) s'étendant depuis
l'interface de connexion électrique (34) à un moteur d'entraînement électrique (21)
pour la rotation de l'agitateur électrique (20) dudit au moins un des réservoirs de
stockage de déchets (2.2 ; 2.3 ; 2.4) présentant un tel agitateur électrique (20).
2. Système de collecte de déchets actionné sous vide (1) selon la revendication 1, caractérisé par des moyens d'identification de réservoir de stockage de déchets (35, 36) intégrés
dans une boîte de contrôle de réservoir de chaque réservoir de stockage de déchets
(2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4) pour la fourniture de données d'identification de réservoir
de stockage de déchets à un système de contrôle de camion de pompage par le vide du
véhicule (10).
3. Système de collecte de déchets actionné sous vide (1) selon la revendication 2, caractérisé en ce que les moyens d'identification de réservoir de stockage de déchets comprennent un dispositif
d'entrée et de sortie (35) présentant une mémoire RAM non volatile (36) et par une
ligne de connexion (37) pour la connexion de chaque telle mémoire RAM non volatile
(36) et dudit système de contrôle de camion de pompage par le vide suite à la connexion
du véhicule (10) au poste d'accueil de tuyau de déchets (30).
4. Système de collecte de déchets actionné sous vide (1) selon l'une quelconque des revendications
1 à 3, caractérisé en ce que le générateur de puissance électrique auxiliaire (13) est entraîné par voie hydraulique,
la puissance d'entraînement hydraulique étant fournie par un système de propulsion
du véhicule (10).
5. Système de collecte de déchets actionné sous vide (1) selon l'une quelconque des revendications
1 à 3, caractérisé en ce que le générateur de puissance électrique auxiliaire (13) est mis à la terre à l'aide
d'une ligne de terre (19) reliée au véhicule (10) par l'interface de liaison électrique
(34).
6. Procédé d'alimentation de puissance au moteur d'entraînement électrique (21) de l'agitateur
électrique (20) dans au moins un des réservoirs de stockage de déchets (2.2 ; 2.3
; 2.4) d'un point de collecte de déchets (4.1 ; 4.2 ; 4.4) dans le système de collecte
de déchets actionné sous vide (1) selon l'une quelconque des revendications 1 à 5,
comprenant les étapes suivantes :
- production de puissance électrique auxiliaire (AEP) à l'aide du générateur de puissance
électrique auxiliaire (13) à bord du véhicule (10) ;
- établissement d'une connexion électrique par l'interface de connexion électrique
(34) ;
et
- alimentation de la puissance électrique auxiliaire produite du générateur de puissance
électrique auxiliaire (13) au moteur d'entraînement électrique (21).
7. Procédé selon la revendication 6, caractérisé par l'identification en connexion avec chaque procédure de vidage de réservoir, du poste
d'accueil de tuyau de déchets (30) et/ou du réservoir de stockage de déchets (2.2
; 2.3 ; 2.4 ; 3.1 ; 3.4) qui est relié au véhicule (10) pour le vidage et par le démarrage
de la production de puissance électrique auxiliaire à bord du véhicule (10) seulement
lorsqu'un réservoir de stockage de déchets (2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4) qui est doté
d'un agitateur électrique (20) a été identifié pour le vidage par un poste d'accueil
de tuyau de déchet respectif (30).
8. Procédé selon la revendication 7, caractérisé par le stockage initial des données d'identification uniques pour chaque réservoir de
stockage de déchets (2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4) dans une mémoire RAM non volatile
(36) d'une boîte de contrôle de réservoir associée à chaque réservoir de stockage
de déchets (2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4) et par la lecture desdites données d'identification
uniques par chaque connexion d'un réservoir de stockage de déchets (2.2 ; 2.3 ; 2.4
; 3.1 ; 3.4) au véhicule (10) pour le vidage, pour identifier par là même le réservoir
de stockage de déchets connectés (2.2 ; 2.3 ; 2.4 ; 3.1 ; 3.4).
9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé par la mise à la terre de la production de puissance électrique auxiliaire par l'interface
de connexion électrique (34).
10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé par la production de la puissance électrique auxiliaire à l'aide d'un générateur entraîné
par voie hydraulique (13) à bord du véhicule (10), la puissance d'entraînement hydraulique
pour le générateur (13) étant fournie par un système de propulsion du véhicule (10).