(19)
(11) EP 2 149 711 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
22.02.2017 Bulletin 2017/08

(21) Application number: 09166516.6

(22) Date of filing: 27.07.2009
(51) International Patent Classification (IPC): 
F04D 29/32(2006.01)
F04D 29/02(2006.01)
F04D 29/38(2006.01)
F01D 5/28(2006.01)

(54)

Blade, associated manufacturing system and manufacturing method

Schaufel, zugehörige Herstellungssystem und Herstellungsverfahren

Aube, système et procédé de fabrication associés


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 31.07.2008 US 183805

(43) Date of publication of application:
03.02.2010 Bulletin 2010/05

(73) Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72) Inventors:
  • Kray, Nicholas Joseph
    Cincinnati, OH 45242 (US)
  • Davis, Tod
    Hamilton, OH 45011 (US)
  • Mcafee, Christopher Lee
    Fairfield, OH 45014 (US)
  • Franks, Michael John
    Cincinnati, OH 45211 (US)
  • Kirkeng, Kevin Lee
    Milford, OH 45150 (US)
  • Crall, David
    Loveland, OH 45140 (US)

(74) Representative: Williams, Andrew Richard et al
GE International Inc. GPO-Europe The Ark 201 Talgarth Road Hammersmith
London W6 8BJ
London W6 8BJ (GB)


(56) References cited: : 
EP-A2- 1 914 383
FR-A1- 2 060 049
US-A- 3 664 764
US-A- 5 375 978
WO-A1-96/06776
GB-A- 2 443 482
US-A- 4 363 602
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The field of this disclosure relates generally to blades and, more particularly, to a method and a system for manufacturing blades.

    [0002] Many known gas turbine engine compressors include rotor blades that extend radially outwardly from a disk or spool to a blade tip to define an airflow path through the engine. In operation, air flowing through the engine imparts significant mechanical stresses (e.g., chordwise bending stresses) on the blades, causing the blades to crack or otherwise fail over time. As such, at least some known rotor blades are formed from plies of composite material that internally span the length of the blade to facilitate adding structural support and longevity to the blade.

    [0003] At least some known compressor rotor blades have a larger cross-sectional area proximate the root of the blade to form a dovetail for coupling the blade to the disk or spool. To form the larger cross-sectional area, supplemental composite plies are often inserted near the root of the blade to spread apart the composite plies that span the blade. In many known rotor blades, the supplemental plies create zones of weakness throughout the dovetail, increasing the likelihood that the blade will fail under the thermal and/or mechanical stresses imparted on the blade during operation of the gas turbine engine.

    [0004] US 5,375,978 discloses a composite airfoil having a progression of filament reinforced airfoil laminations of varying span, arranged in order by span, and interrupted by at least filament reinforced airfoil lamination having a span out of height order.

    BRIEF DESCRIPTION OF THE INVENTION



    [0005] In one aspect, a method of manufacturing a blade is provided in accordance with claim 7 herein.

    [0006] In another aspect, a system for manufacturing a blade is provided in accordance with claim 1 herein.

    [0007] In another aspect, a blade is provided in accordance with claim 6 herein.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] There follows a detailed description of embodiments of the invention by way of example only with reference to the accompanying drawings, in which:

    Figure 1 is a schematic illustration of a gas turbine engine;

    Figure 2 is a perspective view of a rotor blade for use with the gas turbine engine shown in Figure 1;

    Figure 3 is a cross-sectional view of the blade shown in Figure 2;

    Figure 4 is a plan view of an exemplary ply for use in manufacturing the blade shown in Figure 3;

    Figure 5 is an enlarged cross-sectional view of a portion of the blade shown in Figure 3; and

    Figure 6 is an exploded view of a portion of the blade shown in Figure 3.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] The following detailed description illustrates exemplary methods and a system for manufacturing blades by way of example and not by way of limitation, the scope of the invention being defined by the appended claims.

    [0010] Figure 1 is a schematic illustration of a gas turbine engine 100 including a fan assembly 102, a high pressure compressor 104, and a combustor 106. Engine 100 also includes a high pressure turbine 108 and a low pressure turbine 110. In operation, air flows through fan assembly 102 and compressed air is supplied from fan assembly 102 to high pressure compressor 104. The highly compressed air is delivered to combustor 106. Airflow from combustor 106 drives rotating turbines 108 and 110 and exits gas turbine engine 100 through an exhaust system 118.

    [0011] Figure 2 is a perspective view of an exemplary rotor blade 200 for use with gas turbine engine 100 (shown in Figure 1). In one embodiment, a plurality of rotor blades 200 form a high pressure compressor stage (not shown) of gas turbine engine 100. Each rotor blade 200 includes an airfoil 202 and an integral dovetail 204 for mounting airfoil 202 to a rotor disk (not shown). In one embodiment, blades 200 may extend radially outwardly from the disk such that a plurality of blades 200 form a blisk (not shown).

    [0012] Airfoil 202 includes a first contoured sidewall 206 and a second contoured sidewall 208. First sidewall 206 is convex and defines a suction side of airfoil 202, and second sidewall 208 is concave and defines a pressure side of airfoil 202. Sidewalls 206 and 208 are joined at a leading edge 210 and at an axially-spaced trailing edge 212. A chord 214 of airfoil 202 includes a chord length 216 that represents the distance from leading edge 210 to trailing edge 212. More specifically, airfoil trailing edge 212 is spaced chordwise and downstream from airfoil leading edge 210. First and second sidewalls 206 and 208 extend radially outward in a span 218 from a root 220 to a tip 222. In the exemplary embodiment, blade 200 has a greater cross-sectional area CC proximate root 220 than proximate tip 222 to facilitate forming dovetail 224 for coupling blade 200 to the disk.

    [0013] Figure 3 is a cross-sectional view of blade 200 proximate dovetail 224 during a manufacturing process of blade 200. In the exemplary embodiment, blade 200 is constructed by stacking plies 302 of composite material in a mold 304 and heating mold 304 (e.g., using a curing process) to form a structural core 306 of blade 200. Mold 304 is at least partially formed in the shape of blade 200. In the exemplary embodiment, mold 304 has two halves, namely a pressure half 308 and a suction half 310. Pressure half 308 and suction half 310 extend from a mold base portion 312 to a mold tip portion (not shown). An axis X runs through mold from base portion 312 to the tip portion. Pressure half 308 and suction half 310 are generally convex and may be coupled together to form mold 304. Mold 304 includes a hollow cavity (not shown) that is sized to accommodate a stack 314 of plies 302 therein.

    [0014] In the exemplary embodiment, blade 200 is formed by initially layering plies 302 atop one another upwardly from pressure half 308 (hereinafter referred to as stacking plies 302 in an "upward direction 309") and coupling suction half 310 with pressure half 308 to at least partially encase stack 314 within the cavity of mold 304. Alternatively, stack 314 may be formed by layering plies 302 in any direction relative to mold 304 that enables blade 200 to function as described herein, such as, for example, by layering plies 302 atop one another upwardly from suction half 310. After encasing stack 314 within mold 304, mold 304 is subjected to a heating process that facilitates solidifying stack 314 into a structural core 306. After structural core 306 has been formed, structural core 306 is removed from mold 304 and is machined along a dovetail form 316 (e.g., using a grinding process) to create blade root 220 (shown in Figure 2) and dovetail 224 (shown in Figure 2).

    [0015] Stack 314 includes plies 302 that extend substantially the length of span 218 (shown in Figure 2) (i.e., extend from blade root 220 to blade tip 222 after structural core 306 has been machined at dovetail form 316) (hereinafter referred to as "structural plies 318"). Stack 314 also includes plies 302 that extend only partially the length of span 218 (i.e., extend only a portion of span 218 from blade root 220 after structural core 306 has been machined at dovetail form 316) (hereinafter referred to as "insert plies 320"). Insert plies 320 are layered in stack 314 to facilitate spreading structural plies 318 apart from one another proximate root 220 to facilitate forming dovetail 224. In one embodiment, insert plies 320 may be fabricated from a different material (e.g., a different composite material) than the material used to fabricate structural plies 318. Insert plies 320 are layered in stack 314 in bunches (hereinafter referred to as "insert packs 322"). In one embodiment, each insert pack 322 may include ten insert plies 320, for example. In another embodiment, insert pack 322 may include only one insert ply 320. Alternatively, insert pack 322 may include any number of insert plies 320 that enables blade 200 to function as described herein.

    [0016] Figure 4 is a plan view of an exemplary ply 302 (shown in Figure 3). In the exemplary embodiment, ply 302 includes an arrangement 400 of composite fibers 402 (e.g., carbon fibers, ceramic matrix fibers, etc.). In one embodiment, composite fibers 402 are oriented in a direction relative to an axis Y of ply 302 (hereinafter referred to as a "unidirectional fiber orientation µ"). In another embodiment, arrangement 400 may include composite fibers that are woven together (i.e., oriented in different directions relative to axis Y). In the exemplary embodiment, arrangement 400 is impregnated with a resin material (not shown) such that, during the heating process, the resin material flows between plies 302 of stack 314 (shown in Figure 3) to facilitate solidifying structural core 306. As used herein, the term "ply" refers to a segment of material having any contour and is not limited to substantially planar material segments as described herein.

    [0017] Figure 5 is an enlarged cross-sectional view of a portion 500 of stack 314 (shown in Figure 3) taken along area 55. Each insert pack 322 (shown in Figure 3) is formed with a tapered tip 501 that creates a divergence region 502 between adjacent structural plies 318 to facilitate reducing a formation of resin pockets 504 between insert pack 322 and adjacent structural plies 318 during the heating process. Tapered tip 501 is formed by staggering inner ends 506 of insert plies 320 as insert plies 320 are layered in stack 314. In the exemplary embodiment, tapered tip 501 has a top insert ply 508, a bottom insert ply 510, and at least one middle insert ply 512 positioned between top insert ply 508 and bottom insert ply 510. Bottom insert ply 510 extends into mold 304 a distance A from mold base portion 312, middle insert ply 512 extends into mold 304 a distance B from mold base portion 312, and top insert ply 508 extends into mold 304 a distance C from mold base portion 312. In the exemplary embodiment, distance B is greater than distance A and distance C, such that middle insert ply 512 extends further from mold base portion 312 than top insert ply 508 and bottom insert ply 510. In another embodiment, distance A is greater than distance B, and distance B is greater than distance C, such that bottom insert ply 510 extends further from mold base portion 312 than middle insert ply 512, and middle insert ply 512 extends further from mold base portion 312 than top insert ply 508. Alternatively, distance C is greater than distance B, and distance B is greater than distance A, such that top insert ply 508 extends further from mold base portion 312 than middle insert ply 512, and middle insert ply 512 extends a distance further from mold base portion 312 than bottom insert ply 510.

    [0018] Each structural ply 318 has a thickness TT, and each insert ply 320 has a thickness T. According to the invention, thickness TT is greater than thickness T to facilitate reducing a formation of resin pockets 504 during the heating process. In one embodiment, thickness TT is twice as thick as thickness T. For example, thickness TT may be approximately 0.254 mm (.01 inches), and thickness T may be approximately 0.127 mm (.005 inches).

    [0019] Figure 6 is an exploded view of a portion 600 of stack 314 (shown in Figure 3). In the exemplary embodiment, each ply 302 (shown in Figure 3) is layered in stack 314 such that unidirectional fiber orientation µ is angled relative to axis X of mold 304 (shown in Figure 3). Alternatively, at least one ply 302 may be layered in stack 314 such that unidirectional fiber orientation µ is parallel to axis X of mold 304.

    [0020] To form stack 314, structural plies 318 (shown in Figure 3) are layered in upward direction 309 in a predetermined directional sequence (hereinafter referred to as the "structural ply stacking sequence 602"). In the exemplary embodiment, structural ply stacking sequence 602 is repeated throughout stack 314. Alternatively, structural ply stacking sequence 602 may vary throughout stack 314. A set 604 of structural plies 318 forms structural ply stacking sequence 602. Set 604 may include any number of structural plies 318 that enables blade 200 to function as described herein. In the exemplary embodiment, set 604 includes a first structural ply 606, a second structural ply 608, a third structural ply 610, and a fourth structural ply 612, for example. First structural ply 606 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle α. Second structural ply 608 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle β. Third structural ply 610 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle e. Fourth structural ply 612 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle λ. Angles α, β, e, and λ may constitute any angular orientation that enables blade 200 to function as described herein. Angles α, β, e, and λ are different than one another in the exemplary embodiment. Alternatively, two or more of angles α, β, e, and λ are the same.

    [0021] To form stack 314, insert plies 320 (shown in Figure 3) are also layered in upward direction 309 in a predetermined directional sequence (hereinafter referred to as the "insert ply stacking sequence 614"). In the exemplary embodiment, insert ply stacking sequence 614 is repeated throughout stack 314. Alternatively, insert ply stacking sequence 614 may vary throughout stack 314. A set 616 of insert plies 320 forms insert ply stacking sequence 614. Set 616 may include any number of insert plies 320 that enables blade 200 to function as described herein. In the exemplary embodiment, set 616 includes a first insert ply 618, a second insert ply 620, a third insert ply 622, and a fourth insert ply 624, for example. First insert ply 618 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle ε. Second insert ply 620 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle ρ. Third insert ply 622 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle τ. Fourth insert ply 624 is layered in stack 314 such that unidirectional orientation µ is positioned relative to axis X at an angle ψ. Angles α, β, e, and λ may be any angular orientation that enables blade 200 to function as described herein. In the exemplary embodiment, angles ε, ρ, τ, and ψ are different than one another. Alternatively, two or more of angles ε, ρ, τ, and ψ are the same. In the exemplary embodiment, insert ply stacking sequence 614 is different than structural ply stacking sequence 602. In one embodiment, at least one of the following is true: angle α is different than angle ε; angle β is different than angle ρ; angle e is different than angle τ; and angle λ is different than angle ψ.

    [0022] The methods and systems described herein enable a blade to be manufactured in a manner that facilitates increasing a load carrying capacity of the blade. The methods and systems described herein further enable a blade to be manufactured to have a more uniform core structure that facilitates reducing the likelihood that the blade will crack or otherwise fail under thermal or mechanical stress applications. The methods and systems described herein further facilitate increasing a reliability of the blade and thus extending a useful life of the blade, while also reducing a cost associated with manufacturing the blade.

    [0023] While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the scope of the claims.


    Claims

    1. A system for manufacturing a blade (200), said system comprising:

    a mold (304);

    a plurality of first plies (318), each of said first plies sized to extend substantially the length of a span (218) of the blade;

    a plurality of second plies (320), each of said second plies sized to extend only partially the length of the span (218) of the blade, said plurality of first plies layered with said plurality of second plies in said mold such that said plurality of second plies is interspersed throughout said plurality of first plies to spread apart said plurality of first plies to facilitate increasing a cross-sectional area of the blade;

    characterised in that
    said plurality of second plies (320) are interspersed throughout said plurality of first plies (318) in groups (322) of adjacent second plies, each group comprising a tapered tip (501) that facilitates reducing a resin pocket (504) formation in the blade (200);
    and each of said first plies (318) comprises a first thickness, each of said second plies (320) comprising a second thickness, the first thickness being greater than the second thickness to facilitate reducing a resin pocket (504) formation in the blade (200).
     
    2. A system in accordance with claim 1, wherein each of said first plies (318) comprises an arrangement of composite fibers (402) oriented in the same direction relative to an axis of said first ply, each of said second plies (320) comprising an arrangement of composite fibers oriented in the same direction relative to an axis of said second ply.
     
    3. A system in accordance with claim 2, wherein said first plies (318) are layered in sets, each set of first plies comprising a first directional stacking sequence, said second plies layered in sets (604), wherein each set of second plies (320) comprises a second directional stacking sequence that is different than said first directional stacking sequence.
     
    4. A system in accordance with claim 3, wherein each set of first plies comprises at least two first plies (318) comprising composite fiber (402) orientations that differ from one another relative to an axis of said mold (304), each set (616) of second plies (320) comprising at least two second plies comprising composite fiber orientations that differ from one another relative to an axis of said mold.
     
    5. A system in accordance with claim 3, wherein said first directional stacking sequence is repeated throughout the blade (200) for every set of first plies (318), and wherein said second directional stacking sequence is repeated throughout the blade for every set (616) of second plies (320).
     
    6. A blade (200) comprising:

    a plurality of first plies (318), each of said first plies sized to extend substantially the length of a span (218) of said blade;

    a plurality of second plies (320), each of said second plies sized to extend only partially the length of the span (218) of said blade, said plurality of first plies layered with said plurality of second plies such that said plurality of second plies is interspersed throughout said plurality of first plies to spread apart said plurality of first plies to facilitate increasing a cross-sectional area of said blade, said plurality of first plies bonded to said plurality of second plies;

    characterised in that
    said plurality of second plies (320) are interspersed throughout said plurality of first plies in groups (322) of adjacent second plies, each group comprising a tapered tip (501);
    and each of said first plies (318) comprises a first thickness, each of said second plies (320) comprising a second thickness, the first thickness being greater than the second thickness.
     
    7. A method of manufacturing a blade (200), said method comprising:

    providing a plurality of first plies (318), each of the first plies sized to extend substantially the length of a span (218) of the blade (200);

    providing a plurality of second plies (320), each of the second plies sized to extend only partially the length of the span (218) of the blade;

    layering the plurality of first plies (318) and the plurality of second plies (320) such that the plurality of second plies is interspersed throughout the plurality of first plies to spread apart the plurality of first plies to facilitate increasing a cross-sectional area of the blade; and

    bonding the plurality of first plies to the plurality of second plies to facilitate forming a structural core of the blade;

    said method being characterised by

    providing a plurality of first plies (318) comprises providing each first ply with a first thickness, and by providing a plurality of second plies (320) comprises providing each second ply with a second thickness, the first thickness being greater than the second thickness to facilitate reducing a resin pocket formation (504) in the structural core of the blade (200);

    wherein said layering the plurality of first plies (318) and the plurality of second plies (320) comprises interspersing the plurality of second plies in groups (322) of adjacent second plies, each group having a tapered tip (501) that facilitates reducing a resin pocket formation (504) in the structural core of the blade (200).


     
    8. A method in accordance with claim 7, wherein providing a plurality of first plies (318) comprises providing each of the first plies with an arrangement of composite fibers oriented in the same direction relative to an axis of the first ply, and wherein providing a plurality of second plies (320) comprises providing each of the second plies with an arrangement of composite fibers oriented in the same direction relative to an axis of the second ply.
     
    9. A method in accordance with claim 8, wherein layering the plurality of first plies (318) and the plurality of second plies (320) comprises:

    layering the plurality of first plies (318) in sets, wherein each set of first plies has a first directional stacking sequence; and

    layering the plurality of second plies (320) in sets, wherein each set of second plies has a second directional stacking sequence that is different than the first directional stacking sequence.


     


    Ansprüche

    1. System zum Herstellen eines Blatts (200), das System umfassend :

    eine Form (304);

    mehrere erste Lagen (318), wobei jede der ersten Lagen derart bemessen ist, dass sie im Wesentlichen die Länge einer Spannweite (218) des Blatts entlang verlaufen;

    mehrere zweite Lagen (320), wobei jede der zweiten Lagen derart bemessen ist, dass sie nur teilweise die Länge der Spannweite (218) des Blatts entlang verlaufen, wobei die mehreren ersten Lagen derart mit den mehreren zweiten Lagen in der Form geschichtet sind, dass die mehreren zweiten Lagen die mehreren ersten Lagen zum Aufspreizen der mehreren ersten Lagen zum Ermöglichen des Erhöhens einer Querschnittsfläche des Blatts durchsetzen;

    dadurch gekennzeichnet, dass
    die mehreren zweiten Lagen (320) die mehreren ersten Lagen (318) in Gruppen (322) von benachbarten zweiten Lagen durchsetzen, wobei jede Gruppe eine sich verjüngende Spitze (501) umfasst, die das Reduzieren der Ausbildung einer Harztasche (504) im Blatt (200) ermöglicht;
    und jede der ersten Lagen (318) eine erste Stärke umfasst, wobei jede der zweiten Lagen (320) eine zweite Stärke umfasst, wobei die erste Stärke größer als die zweite Stärke ist, um das Reduzieren der Ausbildung einer Harztasche (504) im Blatt (200) zu ermöglichen.
     
    2. System nach Anspruch 1, wobei jede der ersten Lagen (318) eine Anordnung von Verbundfasern (402) umfasst, die in derselben Richtung bezüglich einer Achse der ersten Lage ausgerichtet sind, wobei jede der zweiten Lagen (320) eine Anordnung von Verbundfasern umfasst, die in derselben Richtung bezüglich einer Achse der zweiten Lage ausgerichtet sind.
     
    3. System nach Anspruch 2, wobei die ersten Lagen (318) in Sätzen geschichtet sind, wobei jeder Satz von ersten Lagen eine erste gerichtete Stapelfolge umfasst, wobei die zweiten Lagen in Sätzen (604) geschichtet sind, wobei jeder Satz von zweiten Lagen (320) eine zweite gerichtete Stapelfolge umfasst, die von der ersten gerichteten Stapelfolge abweicht.
     
    4. System nach Anspruch 3, wobei jeder Satz von ersten Lagen zumindest zwei erste Lagen (318) umfasst, die Ausrichtungen von Verbundfasern (402) aufweisen, welche bezüglich einer Achse der Form (304) voneinander abweichen, wobei jeder Satz (616) von zweiten Lagen (320) zumindest zwei zweite Lagen umfasst, die Ausrichtungen von Verbundfasern aufweisen, welche bezüglich einer Achse der Form voneinander abweichen.
     
    5. System nach Anspruch 3, wobei die erste gerichtete Stapelfolge im Blatt (200) durchwegs für jeden Satz von ersten Lagen (318) wiederholt ist, und wobei die zweite gerichtete Stapelfolge im Blatt durchwegs für jeden Satz (616) von zweiten Lagen (320) wiederholt ist.
     
    6. Blatt (200), umfassend:

    mehrere erste Lagen (318), wobei jede der ersten Lagen derart bemessen ist, dass sie im Wesentlichen die Länge einer Spannweite (218) des Blatts entlang verlaufen;

    mehrere zweite Lagen (320), wobei jede der zweiten Lagen derart bemessen ist, dass sie nur teilweise die Länge der Spannweite (218) des Blatts entlang verlaufen, wobei die mehreren ersten Lagen derart mit den mehreren zweiten Lagen in der Form geschichtet sind, dass die mehreren zweiten Lagen die mehreren ersten Lagen zum Aufspreizen der mehreren ersten Lagen zum Ermöglichen des Erhöhens einer Querschnittsfläche des Blatts durchsetzen, wobei die mehreren ersten Lagen mit den mehreren zweiten Lagen verbunden sind;

    dadurch gekennzeichnet, dass
    die mehreren zweiten Lagen (320) die mehreren ersten Lagen in Gruppen (322) von benachbarten zweiten Lagen durchsetzen, wobei jede Gruppe eine sich verjüngende Spitze (501) umfasst;
    und jede der ersten Lagen (318) eine erste Stärke umfasst, wobei jede der zweiten Lagen (320) eine zweite Stärke umfasst, wobei die erste Stärke größer als die zweite Stärke ist.
     
    7. Verfahren zum Herstellen eines Blatts (200), das Verfahren umfassend:

    Vorsehen von mehreren ersten Lagen (318), wobei jede der ersten Lagen derart bemessen ist, dass sie im Wesentlichen die Länge einer Spannweite (218) des Blatts (200) entlang verlaufen;

    Vorsehen von mehreren zweiten Lagen (320), wobei jede der zweiten Lagen derart bemessen ist, dass sie nur teilweise die Länge der Spannweite (218) des Blatts entlang verlaufen;

    derartiges Schichten der mehreren ersten Lagen (318) und der mehreren zweiten Lagen (320), dass die mehreren zweiten Lagen die mehreren ersten Lagen zum Aufspreizen der mehreren ersten Lagen zum Ermöglichen des Erhöhens einer Querschnittsfläche des Blatts durchsetzen; und

    Verbinden der mehreren ersten Lagen mit den mehreren zweiten Lagen zum Ermöglichen des Ausbildens eines strukturellen Kerns des Blatts;

    wobei das Verfahren dadurch gekennzeichnet ist, dass
    das Vorsehen von mehreren ersten Lagen (318) das Vorsehen jeder ersten Lage mit einer ersten Stärke umfasst, und dass das Vorsehen von mehreren zweiten Lagen (320) das Vorsehen jeder zweiten Lage mit einer zweiten Stärke umfasst,
    wobei die erste Stärke größer als die zweite Stärke ist, um das Reduzieren einer Ausbildung einer Harztasche (504) im strukturellen Kern des Blatts (200) zu ermöglichen;
    wobei das Schichten der mehreren ersten Lagen (318) und der mehreren zweiten Lagen (320) das Durchsetzen der mehreren zweiten Lagen in Gruppen (322) von benachbarten zweiten Lagen umfasst, wobei jede Gruppe eine sich verjüngende Spitze (501) umfasst, die das Reduzieren einer Ausbildung einer Harztasche (504) im strukturellen Kern des Blatts (200) ermöglicht.
     
    8. Verfahren nach Anspruch 7, wobei das Vorsehen von mehreren ersten Lagen (318) das Vorsehen von jeder der ersten Lagen mit einer Anordnung von Verbundfasern umfasst, die in derselben Richtung bezüglich einer Achse der ersten Lage ausgerichtet sind, und wobei das Vorsehen von mehreren zweiten Lagen (320) das Vorsehen von jeder der zweiten Lagen mit einer Anordnung von Verbundfasern umfasst, die in derselben Richtung bezüglich einer Achse der zweiten Lage ausgerichtet sind.
     
    9. Verfahren nach Anspruch 8, wobei das Schichten der mehreren ersten Lagen (318) und der mehreren zweiten Lagen (320) folgendes umfasst:

    Schichten der mehreren ersten Lagen (318) in Sätzen, wobei jeder Satz von ersten Lagen eine erste gerichtete Stapelfolge aufweist; und

    Schichten der mehreren zweiten Lagen (320) in Sätzen, wobei jeder Satz von zweiten Lagen eine zweite gerichtete Stapelfolge aufweist, die von der ersten gerichteten Stapelfolge abweicht.


     


    Revendications

    1. Système de fabrication d'une pale (200), ledit système comprenant :

    un moule (304) ;

    une pluralité de premiers plis (318), chacun desdits premiers plis étant calibré pour s'étendre sensiblement sur la longueur de l'envergure (218) de la pale ;

    une pluralité de seconds plis (320), chacun desdits seconds plis étant calibrés pour s'étendre seulement en partie sur la longueur de l'envergure (218) de la pale, ladite pluralité de premiers plis étant stratifiée avec ladite pluralité de seconds plis dans ledit moule de sorte que ladite pluralité de seconds plis soit intercalée dans ladite pluralité de premiers plis pour espacer ladite pluralité de premiers plis afin de faciliter l'augmentation de la surface en coupe transversale de la pale ;

    caractérisé en ce que :

    ladite pluralité de seconds plis (320) est intercalée à travers ladite pluralité de premiers plis (318) en groupes (322) de seconds plis adjacents, chaque groupe comprenant une pointe conique (501) qui facilite la réduction de la formation de poches de résine (504) dans la pale (200) ; et

    chacun desdits premiers plis (318) comprend une première épaisseur, chacun desdits seconds plis (320) comprenant une seconde épaisseur, la première épaisseur étant supérieure à la seconde épaisseur pour faciliter la réduction de la formation de poches de résine (504) dans la pale (200).


     
    2. Système selon la revendication 1, dans lequel chacun desdits premiers plis (318) comprend un agencement de fibres composites (402) orientées dans la même direction par rapport à l'axe dudit premier pli, chacun desdits seconds plis (320) comprenant un agencement de fibres composites orientées dans la même direction par rapport à un axe dudit second pli.
     
    3. Système selon la revendication 2, dans lequel lesdits premiers plis (318) sont stratifiés en ensembles, chaque ensemble de premiers plis comprenant une première séquence d'empilement directionnelle, lesdits seconds plis étant stratifiés en ensembles (604), dans lequel chaque ensemble de seconds plis (320) comprend une seconde séquence d'empilement directionnelle qui est différente de ladite première séquence d'empilement directionnelle.
     
    4. Système selon la revendication 3, dans lequel chaque ensemble de premiers plis comprend au moins deux premiers plis (318) comprenant des orientations de fibres composites (402) qui diffèrent l'une de l'autre par rapport à un axe dudit moule (304), chaque ensemble (616) de second pli (320) comprenant au moins deux seconds plis comprenant des orientations de fibres composites qui diffèrent l'une de l'autre par rapport à un axe dudit moule.
     
    5. Système selon la revendication 3, dans lequel ladite première séquence d'empilement directionnelle est répétée dans toute la pale (200) pour chaque ensemble de premier pli (318) et dans lequel ladite seconde séquence d'empilement directionnelle est répétée dans toute la pale pour chaque ensemble (616) de seconds plis (320).
     
    6. Pale (200) comprenant :

    une pluralité de premiers plis (318), chacun desdits premiers plis étant calibré pour s'étendre sensiblement sur la longueur de l'envergure (218) de la pale ;

    une pluralité de seconds plis (320), chacun desdits seconds plis étant calibrés pour s'étendre seulement en partie sur la longueur de l'envergure (218) de la pale, ladite pluralité de premiers plis étant stratifiée avec ladite pluralité de seconds plis dans ledit moule de sorte que ladite pluralité de seconds plis soit intercalée dans ladite pluralité de premiers plis pour espacer ladite pluralité de premiers plis afin de faciliter l'augmentation de la surface en coupe transversale de la pale, ladite pluralité de premiers plis étant liée à ladite pluralité de seconds plis ;

    caractérisé en ce que :

    ladite pluralité de seconds plis (320) est intercalée à travers ladite pluralité de premiers plis en groupes (322) de seconds plis adjacents, chaque groupe comprenant une pointe conique (501) ; et

    chacun desdits premiers plis (318) comprend une première épaisseur, chacun desdits seconds plis (320) comprenant une seconde épaisseur, la première épaisseur étant supérieure à la seconde épaisseur.


     
    7. Procédé de fabrication d'une pale (200), ledit procédé comprenant :

    la fourniture d'une pluralité de premiers plis (318), chacun des premiers plis étant calibré pour s'étendre sensiblement sur la longueur de l'envergure (218) de la pale (200) ;

    la fourniture d'une pluralité de seconds plis (320), chacun des seconds plis étant calibré pour ne s'étendre que partiellement sur la longueur de l'envergure (218) de la pale ;

    la stratification de la pluralité de premiers plis (318) et de la pluralité de seconds plis (320) de sorte que la pluralité de seconds plis soit intercalée dans toute la pluralité de premiers plis afin d'espacer la pluralité de premiers plis pour faciliter l'augmentation de la surface en coupe transversale de la pale ; et

    la liaison de la pluralité de premiers plis avec la pluralité de seconds plis pour faciliter la formation d'un noyau structurel de la pale ;

    ledit procédé étant caractérisé par :

    la fourniture d'une pluralité de premiers plis (318) qui comprend la fourniture de chaque premier pli avec une première épaisseur et la fourniture d'une pluralité de seconds plis (320) qui comprend la fourniture de chaque second pli avec une seconde épaisseur, la première épaisseur étant supérieure à la seconde épaisseur pour faciliter la réduction de la formation de poches de résine (504) dans le noyau structurel de la pale (200) ;

    dans lequel ladite stratification de la pluralité de premiers plis (318) et de la pluralité de seconds plis (320) comprend l'intercalage de la pluralité de seconds plis en groupes (322) de seconds plis adjacents, chaque groupe ayant une pointe conique (501) qui facilite la réduction d'une formation de poches de résine (504) dans le noyau structurel de la pale (200).


     
    8. Procédé selon la revendication 7, dans lequel la fourniture d'une pluralité de premiers plis (318) comprend la fourniture de chacun des premiers plis avec un agencement de fibres composites orientées dans la même direction par rapport à un axe du premier pli et dans lequel la fourniture d'une pluralité de seconds plis (320) comprend la fourniture de chacun des seconds plis avec un agencement de fibres composites orientées dans la même direction par rapport à un axe du second pli.
     
    9. Procédé selon la revendication 8, dans lequel la stratification de la pluralité de premiers plis (318) et de la pluralité de seconds plis (320) comprend :

    la stratification de la pluralité de premiers plis (318) en ensembles, dans lequel chaque ensemble de premiers plis a une première séquence d'empilement directionnelle ; et

    la stratification de la pluralité de seconds plis (320) en ensembles, dans lequel chaque ensemble de seconds plis a une seconde séquence d'empilement directionnelle qui est différente de la première séquence d'empilement directionnelle.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description