[0001] The present invention relates to a method for controlling a drying cycle of a laundry
dryer in dependence of the amount of load inside a laundry drum. Further, the present
invention relates to a corresponding laundry dryer.
[0002] Often the full capacity of a laundry drum in a laundry dryer is not exploited. It
is not unusual that only about the half of the maximum load capacity is loaded in
the laundry drum of the laundry dryer. Thus, it would be advantageous to adapt the
drying cycle of the laundry dryer to the reduced load inside the laundry drum in order
to avoid consumption of energy, which is not required, and/or to reduce drying cycle
time.
[0003] EP 1 688 532 A2 discloses a method for controlling the drying operation in a dryer. The dryer has
a drum, a motor for driving the drum, a fan for circulating drying air through the
laundry drum, which is driven by a motor, and a control unit for controlling the operation
of the dryer. The air flow may be dependent on the dryness of the clothes load in
the dryer or may be dependent on the mass of the clothes in the dryer. A control method
is provided in which the motor for the air flow fan is controlled such that a predetermined
flow speed through the drum is achieved. The deviation of the actual air flow speed
from the set point flow speed is detected and the motor speed is accordingly adjusted.
The motor speed can be adjusted for increasing or decreasing the flow speed in dependency
of the mass of the clothes. With increasing dryness of the laundry, the flow rate
is increased to avoid overheating of the clothes.
[0004] EP 1 988 209 A2 suggests a method for controlling a laundry dryer which uses stationary electrodes
at the loading opening of the dryer for determining the electrical resistance/conductivity
between the electrodes caused by the humidity of the laundry. As the resulting signal
of the electrodes is dependent on the weight of laundry loaded into the drum, the
signal from the electrodes is used to estimate the weight of the laundry. Specifically
the noise of the electrical signal is indicative for the laundry weight, wherein a
high laundry weight results in lower noise and a lower weight of laundry causes more
noise of the signal. The estimated weight of the laundry is then used to stop the
drying process for optimizing the drying result.
[0005] It is an object of the present invention to provide a method for controlling a drying
cycle of a laundry dryer in dependence of the amount of load inside a laundry drum,
wherein said method maximises the performance of the machine. It is further an object
of the present invention to provide a corresponding laundry dryer.
[0006] The invention is defined in claims 1 and 11, respectively. Particular embodiments
are set out in the dependent claims.
[0007] The method according to the present invention is provided for controlling a drying
cycle of a laundry dryer in dependence of the amount of load inside a laundry drum,
comprising the steps of:
- detecting an electric resistance and/or an electric conductivity between two or more
electrodes (12, 14) at least partly contacting the laundry inside the laundry drum
(16) and,
- estimating the amount of load inside the laundry drum (16) by evaluating the noise
and/or fluctuation of the detected electric resistance and/or conductivity, and
- controlling a rotation speed (v) of a drying air stream fan (30) for conveying a drying
air stream through the laundry drum (16) in response to the estimated amount of load
inside the laundry drum (16), wherein the rotation speed (v) of the drying air stream
fan increases with a decreasing amount of load in the laundry drum (16).
[0008] One aspect of the present invention bases on the fact that it has been found a correlation
between the electric signal and the amount of load in the laundry drum. Another aspect
of the present invention is that the rotation speed of an drying air stream fan for
conveying a drying air stream through the laundry drum is made dependent on the amount
of load inside the laundry to improve the drying performances of the laundry dryer.
Particularly, the rotation speed of the drying air stream fan increases with a decreasing
amount of load in the laundry drum.
[0009] Noise and/or fluctuations of a electric signal corresponding to the electric resistance
and/or an electric conductivity between the electrodes are used for estimating the
amount of load in the laundry drum.
[0010] It has been found that the value of peaks, and/or the number of peaks within a time
span and/or the area subtended by peaks of an electric signal corresponding to the
detected electric resistance and/or conductivity is/are related to the amount of laundry
load inside the laundry drum.
[0011] For example the number of peaks within a time span of said electric signal increases
with a decreasing amount of load in said laundry drum. The smaller is the load inside
the laundry drum, the higher is the number or frequency of the detected peaks, and
the higher is an electrical noise measured by the conductimetric system.
[0012] Further, it has been found that the area subtended by peaks of an electric signal
corresponding to the detected electric resistance and/or conductivity increases with
a decreasing amount of load in said laundry drum and similarly the value of peaks
of an electric signal corresponding to the detected electric resistance and/or conductivity
increases with a decreasing amount of load in said laundry drum
[0013] Evaluating the noise and/or fluctuation of the detected electric resistance and/or
conductivity comprises:
- measuring the value of peaks of an electric signal corresponding to the detected electric
resistance and/or conductivity, and/or
- measuring the number of peaks within a time span of an electric signal corresponding
to the detected electric resistance and/or conductivity, and/or
- measuring the area subtended by peaks of an electric signal corresponding to the detected
electric resistance and/or conductivity.
[0014] Preferably, the rotation speed of the drying air stream fan increases when the estimated
amount of load inside the laundry drum is above a predetermined threshold.
[0015] Preferably, a rotation speed of the laundry drum is controlled, wherein the rotation
speed of the laundry drum is proportional to the rotation speed of the drying air
stream fan. In this case, only one motor is required for the drying air stream fan
and the laundry drum.
[0016] Further, the electric resistance and/or electric conductivity between the electrodes
may be detected within a predetermined time interval at the beginning of the drying
cycle after the laundry starts to rotate
[0017] For example, the time interval takes between two minutes and ten minutes, in particular
five minutes.
[0018] In particular, before the amount of load inside the laundry drum has been estimated,
the drying air stream fan is driven with an average rotation speed.
[0019] According to one embodiment, the drying air stream fan is activated with a constant
rotation speed, after the amount of load inside the laundry drum has been estimated.
[0020] Alternatively, the drying air stream fan is activated with a rotation speed oscillating
around a mean value, after the amount of load inside the laundry drum has been estimated,
wherein said mean value depends on the amount of load inside the laundry drum.
[0021] According to a further embodiment, the drying air stream fan and the laundry drum
change periodically the sense of rotation, after the amount of load inside the laundry
drum has been estimated.
[0022] Preferably, the method includes the step of controlling the speed of a heat pump
compressor motor of the laundry dryer, wherein the speed of the heat pump compressor
motor increases in response to an increasing of the rotation speed of the drying air
stream fan.
[0023] A laundry dryer of the present invention comprises a laundry drum, a drying air stream
fan for conveying a drying air stream through the laundry drum and
- at least two electrodes provided for detecting an electric resistance and/or an electric
conductivity of the laundry inside the laundry drum,
- a control unit is provided for estimating the amount of load inside the laundry drum
by evaluating electric resistance and/or an electric conductivity, wherein
- the control unit is provided for controlling a rotation speed of the drying air stream
fan in response to the estimated amount of load inside the laundry drum, and wherein
- the control unit is adapted to drive the drying air stream fan to a first rotation
speed corresponding with a first amount of load in the laundry drum and to a second
rotation speed corresponding with a second amount of load in said laundry drum, wherein
the first rotation speed is higher than the second rotation speed and the first amount
is smaller than the second amount.
[0024] The laundry dryer of the present invention uses the fact that it has been found a
correlation between the electric signal and the amount of load in the laundry drum.
Another aspect of the laundry dryer of the present invention is that the rotation
speed of an drying air stream fan for conveying an air stream through the laundry
drum is made dependent on the amount of load inside the laundry to increase the drying
performance of the laundry dryer. A higher rotation speed corresponds with the smaller
amount of load and a lower rotation speed corresponds with the bigger amount of load
in the laundry drum.
[0025] Noise and/or fluctuations of the electric signal are used for estimating the amount
of load in the laundry drum, wherein the frequency of the electric signal and/or the
number of peaks within a time span of said electric signal increases with a decreasing
amount of load in said laundry drum. The smaller is the load inside the laundry drum,
the higher is the number or frequency of the detected peaks, and the higher is an
electrical noise measured by the conductimetric system.
[0026] Further, it has been found that the area subtended by peaks of an electric signal
corresponding to the detected electric resistance and/or conductivity increases with
a decreasing amount of load in said laundry drum and similarly the value of peaks
of an electric signal corresponding to the detected electric resistance and/or conductivity
increases with a decreasing amount of load in said laundry drum
[0027] Preferably, the control unit is provided for controlling the rotation speed of the
laundry drum.
[0028] Preferably a single motor is provided for driving into rotation both the laundry
drum and the drying air stream fan.
[0029] Preferably a first motor is provide for driving into rotation the laundry drum and
a second motor independent from the first motor is provided for driving into rotation
the drying air stream fan.
[0030] In particular, the electrodes are arranged at a rear side of a front frame of the
laundry dryer and at an opening of said laundry dryer.
[0031] For example, the electrodes are elongated and arranged in parallel.
[0032] According to a preferred embodiment of the present invention, the laundry dryer comprises
a heat pump system. In this case, additionally the rotation speed of a compressor
motor of said heat pump system may be controlled by the control unit so that the control
unit is adapted to increase the rotation speed of the compressor motor in response
to the rotation speed variation of the drying air stream fan.
[0033] Alternatively, the laundry dryer may comprise an air-to-air heat exchanger thermally
connected to an air stream circuit of the laundry dryer.
[0034] At last, the laundry dryer is provided for the method for controlling a drying cycle
mentioned above.
[0035] The novel and inventive features believed to be the characteristic of the present
invention are set forth in the appended claims.
[0036] The invention will be described in further detail with reference to the drawings,
in which
- FIG 1
- illustrates a schematic sectional side view of a laundry dryer with two electrodes
according to a preferred embodiment of the present invention,
- FIG 2
- illustrates a detailed sectional side view of the electrodes of the laundry dryer
according to the preferred embodiment of the present invention,
- FIG 3
- illustrates a schematic perspective rear view of a front frame of the laundry dryer
with the electrodes according to the preferred embodiment of the present invention,
- FIG 4
- illustrates a schematic diagram of a first embodiment of the laundry dryer with a
heat pump system according to the present invention,
- FIG 5
- illustrates a schematic diagram of a second embodiment of the laundry dryer with the
heat pump system according to the present invention,
- FIG 6
- illustrates a schematic diagram of a first embodiment of the laundry dryer with an
air-to-air condenser according to the present invention,
- FIG 7
- illustrates a schematic diagram of a second embodiment of the laundry dryer with the
air-to-air condenser according to the present invention,
- FIG 8
- illustrates three diagrams of rotation speeds of an drying air stream fan as function
of the time according to a first example of the present invention,
- FIG 9
- illustrates three diagrams of rotation speeds of the drying air stream fan as function
of the time according to a second example of the present invention,
- FIG 10
- illustrates a diagram of the rotation speed of the drying air stream as function of
the time according to a third example of the present invention,
- FIG 11
- illustrates a diagram of the rotation speed of the drying air stream fan as function
of the time according to a fourth example of the present invention, and
- FIG 12
- illustrates a diagram of the rotation speed of the drying air stream fan as function
of the time according to a fifth example of the present invention.
[0037] FIG 1 illustrates a schematic sectional side view of a laundry dryer 10 with two
electrodes 12 and 14 according to a preferred embodiment of the present invention.
The laundry dryer 10 includes a laundry drum 16, a front door 18 and a front frame
20. A front free end 17 of the laundry drum 16 is rotatably connected to a rear side
of the front frame 20 via a sealing member 21 interposed between the front free end
17 of the laundry drum 16 and the rear side of the front frame 20 as shown in figure
2.
[0038] The electrodes 12 and 14 are attached at the rear side of the front frame 20. Further,
the electrodes 12 and 14 are arranged at a lower portion of a laundry loading front
opening of the laundry drum 12 and below the front door 18. A first electrode 12 is
arranged above a second electrode 14.
[0039] FIG 2 illustrates a detailed sectional side view of the electrodes 12 and 14 of the
laundry dryer 10 according to the preferred embodiment of the present invention. FIG
2 shows that the distance between the electrodes 12 and 14 is relative small.
[0040] FIG 3 illustrates a schematic perspective rear view of a front frame 20 of the laundry
dryer with the electrodes 12 and 14 according to the preferred embodiment of the present
invention. The electrodes 12 and 14 are elongated and arranged in parallel to each
other. The electrodes 12 and 14 extend substantially horizontally.
[0041] The electrodes 12 and 14 are parts of a conductimetric system. Said conductimetric
system is provided for detecting the dryness degree of the laundry inside the drum
and for estimating the amount of load in the laundry drum 16. For this purpose a level
of electrical noise and/or fluctuation during the first minutes of a drying cycle
is used. The wet load can connect electrically the first electrode 12 to the second
electrode 14, when a part of the wet load touches simultaneously the first electrode
12 and the second electrode 14. If the wet load in the laundry drum 16 does not touch
simultaneously the first electrode 12 and the second electrode 14, then a peak is
detected by the conductimetric system.
[0042] It has been found that there is a correlation between the number or frequency of
peaks of the electric signal and the amount of load in the laundry drum 16. The smaller
the load is inside the laundry drum 16, the higher is the number or frequency of the
detected peaks, and the higher is an electrical noise measured by the conductimetric
system.
[0043] Further, it has been found that also the value of peaks of an electric signal corresponding
to the detected electric resistance and/or conductivity, and also the area subtended
by peaks of an electric signal corresponding to the detected electric resistance and/or
conductivity are related to the amount of load inside the laundry drum 16.
[0044] FIG 4 illustrates a schematic diagram of a first embodiment of the laundry dryer
10 with a heat pump system according to the present invention.
[0045] The heat pump system comprises an air stream circuit 22, preferably closed, and a
closed refrigerant circuit 24. The air stream circuit is formed by the laundry drum
16, an evaporator or gas heater 26, a condenser or gas cooler 28 and a drying air
stream fan 30. The refrigerant circuit 24 is formed by a compressor 32, the condenser
28, an expansion device 34 and the evaporator 26. For example, the expansion device
34 is an expansion valve. The evaporator 26 and the condenser 28 are heat exchangers
and form the thermal interconnections between the air stream circuit 22 and the refrigerant
circuit 24.
[0046] Further, the heat pump system comprises a motor 36 and a control unit 40. The motor
36 is connected to the control unit 40 by a motor control line 44. The drying air
stream fan 30 and the laundry drum 16 are driven by the motor 36. The first electrode
12 and the second electrode 14 are arranged inside the laundry drum 16. The first
electrode 12 and the second electrode 14 are connected to the control unit 40 by a
detection line 42. The first electrode 12, the second electrode 14, the detection
line 42 and the control unit 40 form the conductimetric system.
[0047] In the air stream circuit 22, the evaporator 26 cools down and dehumidifies an air
stream, after the air stream has passed the laundry drum 16. Then, the condenser 28
heats up the air stream, before the air stream is re-inserted into the laundry drum
16 again. The air stream is driven by the drying air stream fan 30 arranged preferably
but not necessarily between the condenser 28 and laundry drum 16. In the refrigerant
circuit 24, a refrigerant is compressed and heated up by the compressor 32, cooled
down and condensed in the condenser 28, expanded in the expansion device 34 and then
vaporised in the evaporator 26.
[0048] The first electrode 12, the second electrode 14, the detection line 42 and the control
unit 40 form the conductimetric system for estimating the amount of load inside the
laundry drum 16. In dependence of the amount of the load the rotation speed of the
motor 36 and thereby the rotation speed of the drying air stream fan 30 and the laundry
drum 16 are controlled by the control unit 40. The rotation speed of the drying air
stream fan 30 is proportional to the rotation speed of the laundry drum 16. For example,
the air stream drying 30 is directly driven by the motor 36, while the laundry drum
16 is indirectly driven by the motor 36 via a belt-pulley system. If the conductimetric
system estimates a reduced load in the laundry drum 16, which is lower than the maximum
load of said laundry drum 16, then the control unit sets the motor 36 and thereby
the drying air stream fan 30 and the laundry drum 16 to a rotation speed higher than
the rotation speed for the maximum load.
[0049] Preferably, the estimation of the load in the laundry drum 16 is performed during
the first few minutes of the drying cycle, for example during the first five minutes.
[0050] FIG 5 illustrates a schematic diagram of a second embodiment of the laundry dryer
10 with the heat pump system according to the present invention.
[0051] The heat pump system for the laundry dryer 10 of the second embodiment comprises
substantially the same components as the first embodiment. Instead of the motor 36
for driving the drying air stream fan 30 and the laundry drum 16, the second embodiment
comprises a fan motor 37 for driving the drying air stream fan 30 and a drum motor
38 for driving the laundry drum 16. Instead of the motor control line 44, the second
embodiment comprises a fan control line 45 and a drum control line 46. The fan control
line 45 connects the control unit 40 to the fan motor 37. In a similar way, the drum
control line 46 connects the control unit 40 to the drum motor 38.
[0052] The conductimetric system includes the first electrode 12, the second electrode 14,
the detection line 42 and the control unit 40. If the conductimetric system estimates
a reduced load in the laundry drum 16, which is lower than the maximum load of said
laundry drum 16, then the control unit sets the fan motor 37 and thereby the drying
air stream fan 30 to a rotation speed higher than the rotation speed for the maximum
load. Preferably, the estimation of the load in the laundry drum 16 is performed during
the first few minutes of the drying cycle, for example during the first five minutes.
[0053] In the second embodiment of the laundry dryer 10 with the heat pump system, the rotation
speed of the drying air stream fan 30 and the rotation speed of the laundry drum 16
are independent of each other.
[0054] In both the embodiment shown in figure 4 and 5, the laundry dyer can comprise a variable
speed compressor 32 and the control unit 40 is adapted to increase the rotational
speed of the compressor motor in response to an increasing of the rotational speed
of the drying air stream fan 30.
[0055] FIG 6 illustrates a schematic diagram of a first embodiment of the laundry dryer
10 with an air-to-air condenser 48 according to the present invention.
[0056] The laundry dryer 10 comprises a closed air stream circuit 22 formed by the laundry
drum 16, the air-to-air condenser 48, the drying air stream fan 30 and a condenser
fan 50. The air-to-air condenser 48 is an air-to-air heat exchanger and forms a thermal
interconnection between the air stream circuit 22 and the ambient air. The air-to-air
condenser 48 includes two separate channels. A first channel is provided for the air
stream of the air stream circuit 22. A second channel is provided for the ambient
air. The ambient air is blown through the second channel by the condenser fan 50.
[0057] Further, the laundry dryer 10 comprises the motor 36 and the control unit 40. The
motor 36 is connected to the control unit 40 by the motor control line 44. The drying
air stream fan 30 and the laundry drum 16 are driven by the motor 36. The first electrode
12 and the second electrode 14 are associated to a rear portion of the front frame
20. Said rear portion of the front frame 20 is substantially arranged face to face
with the front opening of the laundry drum 16. The first electrode 12 and the second
electrode 14 are connected to the control unit 40 by a detection line 42. The first
electrode 12, the second electrode 14, the detection line 42 and the control unit
40 form the conductimetric system.
[0058] The air-to-air condenser 48 cools down and dehumidifies the air stream by ambient
air, after the air stream has passed the laundry drum 16. Then, the air stream is
heated up by a heating device, for example by an electric heating element, before
the air stream is re-inserted into the laundry drum 16 again. The heating device is
not shown. The drying air stream is driven by the drying air stream fan 30 arranged
between the air-to air condenser 48 and the laundry drum 16.
[0059] If the conductimetric system estimates the reduced load in the laundry drum 16, which
is lower than the maximum load of said laundry drum 16, then the control unit sets
the motor 36 and thereby the drying air stream fan 30 and the laundry drum 16 to a
rotation speed higher than the rotation speed for the maximum load. Preferably, the
estimation of the load in the laundry drum 16 is performed during the first few minutes
of the drying cycle, for example during the first five minutes.
[0060] FIG 7 illustrates a schematic diagram of a second embodiment of the laundry dryer
10 with the air-to-air condenser 48 according to the present invention.
[0061] The laundry dryer 10 with the air-to-air condenser 48 of the second embodiment comprises
substantially the same components as the first embodiment in FIG 6. Instead of the
motor 36 for driving the drying air stream fan 30 and the laundry drum 16, the second
embodiment comprises a fan motor 37 and a drum motor 38. The fan motor 37 is provided
for driving the drying air stream fan 30. The drum motor 38 is provided for driving
the laundry drum 16. Instead of the motor control line 46 in FIG 6, the second embodiment
comprises a fan control line 45 and a drum control line 46. The fan control line 45
connects the control unit 40 to the fan motor 37. In a similar way, the drum control
line 46 connects the control unit 40 to the drum motor 38.
[0062] If the conductimetric system estimates a reduced load in the laundry drum 16, which
is lower than the maximum load of said laundry drum 16, then the control unit sets
the fan motor 37 and thereby the drying air stream fan 30 to a rotation speed higher
than the rotation speed for the maximum load. Preferably, the estimation of the load
in the laundry drum 16 is performed during the first few minutes of the drying cycle,
for example during the first five minutes.
[0063] In the second embodiment of the laundry dryer 10 with the air-to-air condenser 48
in FIG 7, the rotation speed of the drying air stream fan 30 and the rotation speed
of the laundry drum 16 are independent of each other.
[0064] FIG 8 illustrates three diagrams of rotation speeds v of an drying air stream fan
30 as function of the time t according to a first example of the present invention.
[0065] In the beginning of the drying cycle an average rotation speed v of the drying air
stream fan 30 is set for a few minutes, for example about five minutes. During this
time interval the load inside the laundry drum 16 is estimated. In dependence of the
estimated load inside the laundry drum 16 the rotation speed v is set. In FIG 8 three
examples of constant rotation speeds v are shown. A lower rotation speed v is provided
for the maximum load inside the laundry drum 16. A medium rotation speed v is provided
for a reduced load inside the laundry drum 16. A higher rotation speed v is provided
for a more reduced load inside the laundry drum 16.
[0066] FIG 9 illustrates three diagrams of rotation speeds v of the drying air stream fan
30 as function of the time t according to a second example of the present invention.
[0067] In the beginning of the drying cycle the average rotation speed v of the drying air
stream fan 30 is set for a few minutes, for example about five minutes. During this
time interval the load inside the laundry drum 16 is estimated. Then, the rotation
speed v is set in dependence of the estimated load inside the laundry drum 16. The
three examples of rotation speeds v oscillate around corresponding mean values shown
by dashed lines. The lower rotation speed v is provided for the maximum load inside
the laundry drum 16. The medium rotation speed v is provided for the reduced load
inside the laundry drum 16. The higher rotation speed v is provided for the more reduced
load inside the laundry drum 16.
[0068] FIG 10 illustrates a diagram of the rotation speed v of the drying air stream fan
30 as function of the time t according to a third example of the present invention.
In this example, the constant rotation speed v of the drying air stream fan 30 is
set. The rotation speed v of the drying air stream fan 30 may be coupled to the rotation
speed of the laundry drum 16, wherein the rotation speed v of the drying air stream
fan 30 is proportional to the rotation speed of the laundry drum 16. Further, the
rotation speed v of the drying air stream fan 30 may be independent of the rotation
speed of the laundry drum 16.
[0069] FIG 11 illustrates a diagram of the rotation speed v of the drying air stream fan
30 as function of the time t according to a fourth example of the present invention.
In this example, the rotation speed v of the drying air stream fan 30 is coupled to
the rotation speed of the laundry drum 16, so that the rotation speed v of the drying
air stream fan 30 is proportional to the rotation speed of the laundry drum 16. The
drying air stream fan 30 and the laundry drum 16 change periodically the sense of
rotation.
[0070] FIG 12 illustrates a diagram of the rotation speed of the drying air stream fan as
function of the time according to a fifth example of the present invention. In this
example, the rotation speed v of the drying air stream fan 30 oscillates around a
corresponding mean value shown by the dashed line. Also in this example, the rotation
speed v of the drying air stream fan 30 may be coupled to the rotation speed of the
laundry drum 16. In this case, the rotation speed v of the drying air stream fan 30
is proportional to the rotation speed of the laundry drum 16. Alternatively, the rotation
speed v of the drying air stream fan 30 may be independent of the rotation speed of
the laundry drum 16.
[0071] Although illustrative embodiments of the present invention have been described herein
with reference to the accompanying drawings, it is to be understood that the present
invention is not limited to those precise embodiments, and that various other changes
and modifications may be affected therein by one skilled in the art without departing
from the scope or spirit of the invention. All such changes and modifications are
intended to be included within the scope of the invention as defined by the appended
claims.
List of reference numerals
[0072]
- 10
- laundry dryer
- 12
- first electrode
- 14
- second electrode
- 16
- laundry drum
- 17
- front free end of laundry drum
- 18
- front door
- 20
- front frame
- 21
- sealing member
- 22
- air stream circuit
- 24
- refrigerant circuit
- 26
- evaporator
- 28
- condenser
- 30
- drying air stream fan
- 32
- compressor
- 34
- expansion device
- 36
- motor
- 37
- fan motor
- 38
- drum motor
- 40
- control unit
- 42
- detection line
- 44
- motor control line
- 45
- fan control line
- 46
- drum control line
- 48
- air-to-air condenser
- 50
- ambient air fan
- v
- rotation speed
- t
- time
1. A method for controlling a drying cycle of a laundry dryer (10) in dependence of the
amount of load inside a laundry drum (16), comprising the steps of:
- detecting an electric resistance and/or an electric conductivity between two or
more electrodes (12, 14) at least partly contacting the laundry inside the laundry
drum (16) and,
- estimating the amount of load inside the laundry drum (16) by evaluating the noise
and/or fluctuation of the detected electric resistance and/or conductivity, and
- controlling a rotation speed (v) of a drying air stream fan (30) for conveying a
drying air stream through the laundry drum (16) in response to the estimated amount
of load inside the laundry drum (16),
wherein the rotation speed (v) of the drying air stream fan increases with a decreasing
amount of load in the laundry drum (16), and
wherein evaluating the noise and/or fluctuation of the detected electric resistance
and/or conductivity comprises:
measuring the value of peaks of an electric signal corresponding to the detected electric
resistance and/or conductivity, and/or
measuring the number of peaks within a time span of an electric signal corresponding
to the detected electric resistance and/or conductivity, and/or
measuring the area subtended by peaks of an electric signal corresponding to the detected
electric resistance and/or conductivity.
2. The method according to claim 1, characterized in that the rotation speed (v) of the drying air stream fan (30) increases when the estimated
amount of load inside the laundry drum (16) is above a predetermined threshold.
3. The method according to claim 1 or 2, characterized in, that a rotation speed of the laundry drum (16) is controlled, wherein the rotation speed
of the laundry drum (16) is proportional to the rotation speed (v) of the drying air
stream fan (30).
4. The method according to any one of the preceding claims, characterized in that the electric resistance and/or electric conductivity between the electrodes (12,
14) are detected within a predetermined time interval at the beginning of the drying
cycle after the laundry drum starts to rotate.
5. The method according to any one of the preceding claims, characterized in that before the amount of load inside the laundry drum (16) has been estimated, the drying
air stream fan (30) is driven with an average rotation speed (v).
6. The method according to any one of the preceding claims, characterized in that the drying air stream fan (30) is driven with a constant rotation speed (v), after
the amount of load inside the laundry drum (16) has been estimated.
7. The method according to any one of the claims 1 to 5, characterized in that the drying air stream fan (30) is driven with a rotation speed (v) oscillating around
a mean value, after the amount of load inside the laundry drum (16) has been estimated,
wherein said mean value depends on the amount of load inside the laundry drum (16).
8. The method according to any one of the preceding claims, characterized in that the drying air stream fan (30) and the laundry drum (16) change periodically the
sense of rotation, after the amount of load inside the laundry drum (16) has been
estimated.
9. The method according to any one of the preceding claims, characterized in that the number of peaks within a time span of said electric signal increases with a decreasing
amount of load in said laundry drum (16).
10. The method according to any one of the preceding claims, characterized in that controlling the speed of a heat pump compressor motor of the laundry dryer (10),
wherein the speed of the heat pump compressor motor increases in response to an increasing
of the rotation speed (v) of the drying air stream fan (30)
11. A laundry dryer (10) comprising:
a laundry drum (16),
a drying air stream fan (30) for conveying a drying air stream through the laundry
drum (16), and
a control unit (40) is provided for estimating the amount of load inside the laundry
drum (16),
wherein the control unit (40) is provided for controlling a rotation speed (v) of
the drying air stream fan (30) in response to the estimated amount of load inside
the laundry drum (16), and
wherein the control unit (40) is adapted to drive the drying air stream fan (30) to
a first rotation speed corresponding with a first amount of load in the laundry drum
(16) and to a second rotation speed corresponding with a second amount of load in
said laundry drum (16), wherein the first rotation speed is higher than the second
rotation speed and the first amount is smaller than the second amount;
characterized by
at least two electrodes (12, 14) provided for detecting an electric resistance and/or
an electric conductivity of the laundry inside the laundry drum (16),
wherein the control unit (40) is provided for estimating the amount of load inside
the laundry drum (16) by evaluating electric resistance and/or an electric conductivity,
and
wherein the noise and/or fluctuations of the electric resistance and/or the electric
conductivity are used for estimating the amount of load in the laundry drum, wherein:
the frequency of the electric signal and/or the number of peaks within a time span
of said electric signal increases with a decreasing amount of load in said laundry
drum, and/or
the area subtended by peaks of an electric signal corresponding to the detected electric
resistance and/or conductivity increases with a decreasing amount of load in said
laundry drum, and/or
the value of peaks of an electric signal corresponding to the detected electric resistance
and/or conductivity increases with a decreasing amount of load in said laundry drum.
12. The laundry dryer (10) according to claim 11, characterized in that a motor is provided to drive into rotation both the laundry drum (16) and the drying
air stream fan (30).
13. The laundry dryer (10) according to claim 11 or 12, characterized in that the electrodes (12, 14) are arranged at a rear side of a front frame (20) of the
laundry dryer (10) and at an opening of said laundry dryer (10).
14. The laundry dryer (10) according to any one of the claims 11 to 13, characterized in that the laundry dryer (10) comprises a heat pump system with a variable speed compressor
motor, wherein the control unit (40) is adapted to increase the rotation speed of
the variable speed compressor motor in response to an increasing of the rotation speed
of the drying air stream fan (30).
1. Verfahren zur Steuerung eines Trocknungszyklus eines Wäschetrockners (10) in Abhängigkeit
von der Ladungsmenge in der Wäschetrommel (16), umfassend die Schritte des:
- Feststellens eines elektrischen Widerstands und/oder einer elektrischen Leitfähigkeit
zwischen zwei oder mehreren Elektroden (12, 14), die die Wäsche in der Wäschetrommel
(16) zumindest teilweise kontaktieren, und
- Schätzens der Ladungsmenge in der Wäschetrommel (16) durch Beurteilen des Geräuschs
und/oder der Schwankung des festgestellten elektrischen Widerstands und/oder der festgestellten
elektrischen Leitfähigkeit und
- Steuerns der Rotationsgeschwindigkeit (v) eines Trocknungsluftstromgebläses (30)
zum Befördern eines Trocknungsluftstroms durch die Wäschetrommel (16) als Reaktion
auf die geschätzte Ladungsmenge in der Wäschetrommel (16),
wobei die Rotationsgeschwindigkeit (v) des Trocknungsluftstromgebläses mit einer abnehmenden
Ladungsmenge in der Wäschetrommel (16) zunimmt und
wobei das Beurteilen des Geräuschs und/oder der Schwankung des festgestellten elektrischen
Widerstands und/oder der festgestellten elektrischen Leitfähigkeit Folgendes umfasst:
das Messen des Werts von Höchstwerten eines elektrischen Signals, das dem festgestellten
elektrischen Widerstand und/oder der festgestellten elektrischen Leitfähigkeit entspricht,
und/oder
das Messen der Anzahl von Höchstwerten innerhalb einer Zeitspanne eines elektrischen
Signals, das dem festgestellten elektrischen Widerstand und/oder der festgestellten
elektrischen Leitfähigkeit entspricht, und/oder
das Messen des Bereichs, der von den Höchstwerten eines elektrischen Signals durchschnitten
wird, das dem festgestellten elektrischen Widerstand und/oder der festgestellten elektrischen
Leitfähigkeit entspricht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rotationsgeschwindigkeit (v) des Trocknungsluftstromgebläses (30) zunimmt, wenn
die geschätzte Ladungsmenge in der Wäschetrommel (16) über einem vorbestimmten Grenzwert
liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Rotationsgeschwindigkeit der Wäschetrommel (16) gesteuert wird, wobei die Rotationsgeschwindigkeit
der Wäschetrommel (16) zur Rotationsgeschwindigkeit (v) des Trocknungsluftstromgebläses
(30) proportional ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Widerstand und/oder die elektrische Leitfähigkeit zwischen den Elektroden
(12,14) innerhalb einer vorbestimmten Zeitspanne zu Beginn des Trocknungszyklus, nachdem
die Wäschetrommel zu rotieren beginnt, festgestellt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bevor die Ladungsmenge in der Wäschetrommel (16) geschätzt worden ist, das Trocknungsluftstromgebläse
(30) mit einer durchschnittlichen Rotationsgeschwindigkeit (v) getrieben wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trocknungsluftstromgebläse (30) mit einer konstanten Rotationsgeschwindigkeit
(v) getrieben wird, nachdem die Ladungsmenge in der Wäschetrommel (16) geschätzt worden
ist.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Trocknungsluftstromgebläse (30) mit einer Rotationsgeschwindigkeit (v) getrieben
wird, die um einen Mittelwert schwankt, nachdem die Ladungsmenge in der Wäschetrommel
(16) geschätzt worden ist, wobei der Mittelwert von der Ladungsmenge in der Wäschetrommel
(16) abhängt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trocknungsluftstromgebläse (30) und die Wäschetrommel (16) in regelmäßigen Zeitabständen
die Rotationsrichtung ändern, nachdem die Ladungsmenge in der Wäschetrommel (16) geschätzt
worden ist.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl von Höchstwerten innerhalb einer Zeitspanne des elektrischen Signals mit
abnehmender Ladungsmange in der Wäschetrommel (16) zunimmt.
10. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Steuern der Geschwindigkeit eines Wärmepumpenkompressormotors des Wäschetrockners
(10), wobei die Geschwindigkeit des Wärmepumpenkompressormotors als Reaktion auf ein
Zunehmen der Rotationsgeschwindigkeit (v) des Trocknungsluftstromgebläses (30) zunimmt.
11. Wäschetrockner (10), umfassend:
eine Wäschetrommel (16),
ein Trocknungsluftstromgebläse (30) zum Befördern eines Trocknungsluftstroms durch
die Wäschetrommel (16) und
eine Steuereinheit (40), die zum Schätzen der Ladungsmenge in der Wäschetrommel (16)
bereitgestellt ist,
wobei die Steuereinheit (40) zum Steuern einer Rotationsgeschwindigkeit (v) des Trocknungsluftstromgebläses
(30) als Reaktion auf die geschätzte Ladungsmenge in der Wäschetrommel (16) bereitgestellt
wird und
wobei die Steuereinheit (40) geeignet ist, das Trocknungsluftstromgebläse (30) mit
einer ersten Rotationsgeschwindigkeit (v), die einer ersten Ladungsmenge in der Wäschetrommel
(16) entspricht, und einer zweiten Rotationsgeschwindigkeit, die einer zweiten Ladungsmenge
in der Wäschetrommel (16) entspricht, zu treiben, wobei die erste Rotationsgeschwindigkeit
höher ist als die zweite Rotationsgeschwindigkeit und die erste Menge geringer ist
als die zweite Menge;
gekennzeichnet durch
mindestens zwei Elektroden (12, 14), die zum Feststellen eines elektrischen Widerstands
und/oder einer elektrischen Leitfähigkeit der Wäsche in der Wäschetrommel (16) bereitgestellt
sind,
wobei die Steuereinheit (40) zum Schätzen der Ladungsmenge in der Wäschetrommel (16)
durch Beurteilen des elektrischen Widerstands und/oder der elektrischen Leitfähigkeit bereitgestellt
ist, und
wobei das Geräusch und/oder die Schwankungen des elektrischen Widerstands und/oder
der elektrischen Leitfähigkeit zum Schätzen der Ladungsmenge in der Wäschetrommel
(16) benutzt werden, wobei:
die Frequenz des elektrischen Signals und/oder die Anzahl von Höchstwerten innerhalb
einer Zeitspanne des elektrischen Signals mit abnehmender Ladungsmenge in der Wäschetrommel
zunehmen und/oder
der Bereich, der durch Höchstwerte eines elektrischen Signals durchschnitten wird, das dem festgestellten
elektrischen Widerstand und/oder der festgestellten elektrischen Leitfähigkeit entspricht,
mit abnehmender Ladungsmenge in der Wäschetrommel zunimmt und/oder der Wert von Höchstwerten
eines elektrischen Signals, das dem festgestellten elektrischen Widerstand und/oder
der festgestellten elektrischen Leitfähigkeit entspricht, mit einer abnehmenden Ladungsmenge
in der Wäschetrommel zunimmt.
12. Wäschetrockner (10) nach Anspruch 11, dadurch gekennzeichnet, dass ein Motor bereitgestellt wird, sowohl die Wäschetrommel (16) als auch das Trocknungsluftstromgebläse
(30) zum Rotieren antreibt.
13. Wäschetrockner (10) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Elektroden (12, 14) auf einer Rückseite eines vorderen Rahmens (20) des Wäschetrockners
(10) und an einer Öffnung des Wäschetrockners (10) angeordnet sind.
14. Wäschetrockner (10) nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Wäschetrockner (10) ein Wärmepumpensystem mit einem drehzahlvariablen Kompressormotor
umfasst, wobei die Steuereinheit (40) geeignet ist, die Rotationsgeschwindigkeit des
drehzahlvariablen Kompressormotors als Reaktion auf ein Zunehmen der Rotationsgeschwindigkeit
des Trocknungsluftstromgebläses (30) zu erhöhen.
1. Procédé pour commander un cycle de séchage d'un sèche-linge (10) en fonction de la
quantité de charge à l'intérieur d'un tambour de lavage (16), comprenant les étapes
consistant à :
- détecter une résistance électrique et/ou une conductivité électrique entre au moins
deux électrodes (12, 14) qui sont au moins partiellement en contact avec le linge
à l'intérieur du tambour de lavage (16) et
- estimer la quantité de charge à l'intérieur du tambour de lavage (16) en évaluant
le bruit et/ou la fluctuation de la résistance électrique détectée et/ou de la conductivité
électrique détectée, et
- commander une vitesse de rotation (v) d'un ventilateur de flux d'air de séchage
(30) pour transporter un flux d'air de séchage à travers le tambour de lavage (16)
à la suite de la quantité estimée de charge à l'intérieur du tambour de lavage (16),
dans lequel la vitesse de rotation (v) du flux d'air de séchage augmente avec une
baisse de la quantité de charge dans le tambour de lavage (16), et
dans lequel l'évaluation du bruit et/ou de la fluctuation de la résistance électrique
détectée et/ou de la conductivité électrique détectée consiste à :
mesurer la valeur de crêtes d'un signal électrique correspondant à la résistance électrique
détectée et/ou à la conductivité électrique détectée, et/ou
mesurer le nombre de crêtes pendant un intervalle de temps d'un signal électrique
correspondant à la résistance électrique détectée et/ou à la conductivité électrique
détectée, et/ou
mesurer l'aire sous-tendue par des crêtes d'un signal électrique correspondant à la
résistance électrique détectée et/ou à la conductivité électrique détectée.
2. Procédé selon la revendication 1, caractérisé en ce que la vitesse de rotation (v) du ventilateur de flux d'air de séchage (30) augmente
lorsque la quantité estimée de charge à l'intérieur du tambour de lavage (16) est
supérieure à un seuil prédéterminé.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une vitesse de rotation du tambour de lavage (16) est régulée, dans lequel la vitesse
de rotation du tambour de lavage (16) est proportionnelle à la vitesse de rotation
(v) du ventilateur de flux d'air de séchage (30) .
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la résistance électrique et/ou la conductivité électrique entre les électrodes (12,
14) sont détectées pendant un intervalle de temps prédéterminé au début du cycle de
séchage après que le tambour de lavage commence à tourner.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, avant que la quantité de charge à l'intérieur du tambour de lavage (16) n'ait été
estimée, le ventilateur de flux d'air de séchage (30) est entraîné avec une vitesse
de rotation (v) moyenne.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le ventilateur de flux d'air de séchage (30) est entraîné avec une vitesse de rotation
(v) constante après que la quantité de charge à l'intérieur du tambour de lavage (16)
a été estimée.
7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le ventilateur de flux d'air de séchage (30) est entraîné avec une vitesse de rotation
(v) qui oscille autour d'une valeur moyenne après que la quantité de charge à l'intérieur
du tambour de lavage (16) a été estimée, dans lequel ladite valeur moyenne dépend
de la quantité de charge à l'intérieur du tambour de lavage (16).
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le ventilateur de flux d'air de séchage (30) et le tambour de lavage (16) changent
périodiquement le sens de rotation après que la quantité de charge à l'intérieur du
tambour de lavage (16) a été estimée.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le nombre de crêtes pendant un intervalle de temps dudit signal électrique augmente
avec une baisse de la quantité de charge dans ledit tambour de lavage (16).
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la régulation de la vitesse d'un moteur de compresseur de pompe à chaleur du sèche-linge
(10), dans lequel la vitesse du moteur de compresseur de pompe à chaleur augmente
à la suite d'une augmentation de la vitesse de rotation (v) du ventilateur de flux
d'air de séchage (30).
11. Sèche-linge (10) comprenant :
un tambour de lavage (16),
un ventilateur de flux d'air de séchage (30) pour transporter un flux d'air de séchage
à travers le tambour de lavage (16), et
une unité de commande (40) est prévue pour estimer la quantité de charge à l'intérieur
du tambour de lavage (16),
dans lequel l'unité de commande (40) est prévue pour réguler une vitesse de rotation
(v) du ventilateur de flux d'air de séchage (30) à la suite de la quantité estimée
de charge à l'intérieur du tambour de lavage (16), et
dans lequel l'unité de commande (40) est conçue pour entraîner le ventilateur de flux
d'air de séchage (30) à une première vitesse de rotation correspondant à une première
quantité de charge dans le tambour de lavage (16) et à une seconde vitesse de rotation
correspondant à une seconde quantité de charge dans ledit tambour de lavage (16),
dans lequel la première vitesse de rotation est supérieure à la seconde vitesse de
rotation et la première quantité est inférieure à la seconde quantité ;
caractérisé par
au moins deux électrodes (12, 14) prévues pour détecter une résistance électrique
et/ou une conductivité électrique du linge à l'intérieur du tambour de lavage (16),
dans lequel l'unité de commande (40) est prévue pour estimer la quantité de charge
à l'intérieur du tambour de lavage (16) en évaluant une résistance électrique et/ou
une conductivité électrique, et
dans lequel le bruit et/ou les fluctuations de la résistance électrique et/ou de la
conductivité électrique sont utilisés pour estimer la quantité de charge dans le tambour
de lavage, dans lequel :
la fréquence du signal électrique et/ou le nombre de crêtes pendant un intervalle
de temps dudit signal électrique augmentent avec une baisse de la quantité de charge
dans ledit tambour de lavage, et/ou
l'aire sous-tendue par des crêtes d'un signal électrique correspondant à la résistance
électrique détectée et/ou à la conductivité électrique détectée augmente avec une
baisse de la quantité de charge dans ledit tambour de lavage, et/ou
la valeur de crêtes d'un signal électrique correspondant à la résistance électrique
détectée et/ou à la conductivité électrique détectée augmente avec une baisse de la
quantité de charge dans ledit tambour de lavage.
12. Sèche-linge (10) selon la revendication 11, caractérisé en ce qu'un moteur est prévu pour entraîner en rotation à la fois le tambour de lavage (16)
et le ventilateur de flux d'air de séchage (30).
13. Sèche-linge (10) selon la revendication 11 ou 12, caractérisé en ce que les électrodes (12, 14) sont disposées au niveau d'un côté arrière d'un cadre avant
(20) du sèche-linge (10) et au niveau d'une ouverture dudit sèche-linge (10).
14. Sèche-linge (10) selon l'une quelconque des revendications 11 à 13, caractérisé en ce que le sèche-linge (10) comprend un système de pompe à chaleur ayant un moteur de compresseur
à vitesse variable, dans lequel l'unité de commande (40) est conçue pour augmenter
la vitesse de rotation du moteur de compresseur à vitesse variable à la suite d'une
augmentation de la vitesse de rotation du ventilateur de flux d'air de séchage (30).