(19) |
 |
|
(11) |
EP 1 812 241 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
01.03.2017 Bulletin 2017/09 |
(22) |
Date of filing: 16.10.2005 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/IL2005/001087 |
(87) |
International publication number: |
|
WO 2006/043269 (27.04.2006 Gazette 2006/17) |
|
(54) |
A METHOD OF INK JET PRINTING WITH IMAGE QUALITY CONTROL
VERFAHREN ZUM TINTENSTRAHLDRUCKEN MIT BILDQUALITÄTSKONTROLLE
PROCEDE D'IMPRESSION A JET D'ENCRE AVEC REGULATION DE LA QUALITE D'IMAGE
|
(84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE
SI SK TR |
(30) |
Priority: |
19.10.2004 IL 16467904
|
(43) |
Date of publication of application: |
|
01.08.2007 Bulletin 2007/31 |
(73) |
Proprietor: Hewlett-Packard Industrial Printing Ltd. |
|
42505 Netanya (IL) |
|
(72) |
Inventor: |
|
- KOREM, Aharon
46055 HERZLIA (IL)
|
(74) |
Representative: EIP |
|
Fairfax House
15 Fulwood Place London WC1V 6HU London WC1V 6HU (GB) |
(56) |
References cited: :
EP-A- 0 385 417 US-A1- 2004 085 423
|
WO-A-01/38097 US-A1- 2004 122 106
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The invention relates to inkjet printing and in particular to printing with curable
inks.
BACKGROUND OF THE INVENTION
[0003] An ink-jet print head consists of an array or a matrix of ink nozzles, with each
nozzle selectively ejecting ink droplets. A given nozzle of the print head ejects
the droplet in a predefined print position on the media. An assembly of the adjacently
positioned on the media ink droplets creates a predetermined print pattern or image.
Each image typically consists of multiple image elements such as pictorial or continuous
tone elements, uniform tinted and solid elements, and line art and text elements.
Color is another image element. Faithful reproduction of each image element is characterized
by proper image sharpness, smoothness, spot size and other image quality parameters.
[0004] Inks used in the ink-jet printing industry are typically liquid solutions or emulsions.
Known types of ink are oil-based inks, non-aqueous solvent-based inks, water-based
inks, and solid inks. The deposited ink droplets are dried or cured. Recently, curing
of ink by radiation and in particular ultraviolet (UV) radiation has become popular.
In such cases, special radiation-curable ink is used and the image is cured by exposure
to a curing radiation source. Typically, curing is performed by simultaneously irradiating
all image elements with the same amount of curing radiation. The use of radiation-curable
inks and the curing process are rapidly becoming an alternative to the established
conventional drying process.
SUMMARY OF THE INVENTION
[0006] The invention provides a method and apparatus for improving printed image quality.
The image quality improvement is achieved by differentially curing different image
elements such as continuous tone elements, uniform tinted and solid elements, color
elements, line art and text elements. A delay in the activation or variation in the
intensity level of the curing radiation, duration of the image irradiation by the
curing radiation or a mix of them that follows the ink droplet on substrate deposition,
controls the ink droplet spread and accordingly the image quality. In the context
of the present invention, image quality among others includes image banding reduction
and image sharpness improvement. Banding is a phenomenon of clear visible irregular
lines and stripes of a contrasting color that are not present in the digital image
data.
[0007] According to the exemplary embodiments of the present invention, the quality improvement
may be achieved by a method of ink jet printing with radiation curable ink, comprising
ejecting droplets of ink onto a substrate to form an image, which includes one or
more image elements such as continuous tone, uniform tinted and solid elements, color,
line art and text image elements, and controlling the ink droplets spread magnitude
by irradiating the image elements by curing radiation. The type of the image element
irradiated sets the delay in the activation of the radiation source, the intensity
level of the source, duration of the source operation and the profile of the intensity
of the source or a mix of all or some of them.
[0008] In agreement with one exemplary embodiment of the method of the present invention
the delay in the radiation source activation following the ink droplet ejection is
determined by the type of the image element to be irradiated.
[0009] In agreement with another exemplary embodiment of the method of the present invention
the type of the image element to be irradiated determines the intensity level of the
radiation.
[0010] In agreement with a further exemplary embodiment of the method of the present invention
the type of the image element to be irradiated determines the duration of the operation
of the curing radiation source and the profile of the intensity of the curing radiation.
[0011] In agreement with the method of the present invention, the sources of the curing
radiation are selected from a group of ultraviolet, visible or infrared radiation
sources as the type of ink may require it.
[0012] According to the method of the present invention, the digital form (image data) of
the type of image element to be printed controls the radiation source to provide the
radiation only to printed portions of the respective image element.
[0013] The invention further provides a method of controlling image quality in ink jet printing.
A method comprising depositing droplets of ink onto a substrate to form at least one
row of pixels comprising different types of image elements, scanning with a scanning
radiation beam the row of pixels and controlling the image quality by operating the
radiation beam in agreement with the type of image element to be cured. The control
of image quality is achieved by delaying the activation of the radiation beam, varying
the intensity level of curing radiation and changing the profile of the intensity
of the curing radiation as a function of the type of image element to be cured. The
type of image element further sets the mix between the delay in the radiation source
activation, duration of the radiation source operation, the intensity level of the
source and the profile of the intensity.
[0014] The present invention provides an apparatus enabling implementation of the method
of the present invention. The apparatus includes an ink jet print head for ejecting
droplets of ink onto a substrate to form an image, which includes different types
of image elements; a radiation emitting source to irradiate the image by radiation
and a controller. The apparatus is characterized in that it includes a feature for
analyzing the digital form of the image (image data) to be printed and operate the
radiation source to differentially cure the ejected ink droplets.
[0015] According to the present invention the radiation source may move with the print head
and the source may be a linear or two-dimensional array of individually addressable
radiation sources as UV LEDs, Visible LEDs, UV or IR laser diodes. Alternatively,
the radiation source may be a combination of UV and IR radiation sources. The radiation
source may be or a combination of either UV or IR radiation sources only with each
of them having different wavelengths. According to an additional embodiment, the radiation
source may have a scanning laser beam.
[0016] Following the ink droplet deposition the radiation source provides the radiation
at a delay determined by the type of the image element to be cured. The delay controls
ink droplet spread and accordingly affects the image quality.
[0017] The image element to be cured further determines the duration of the radiation source
operation. The duration of the radiation source operation controls ink droplet spread
and accordingly affects the image quality.
[0018] Alternatively, the intensity level and the profile of the intensity provided by the
radiation source may be varied and the type of the image element to be cured determines
the variation in the radiation intensity. The variation in the radiation intensity
level controls ink droplet spread and accordingly the image quality. Additionally,
a mix of some or all of the source operational parameters such as the delay in the
radiation source operation, together with the duration of the source operation, the
intensity level of the radiation source and the profile of the intensity may be varied.
[0019] In agreement with the present invention, a feature for analyzing digital image analyzes
the digital form of the image elements and determines the delay, duration, intensity
level and the intensity profile of the radiation source operation. The feature, which
is a combination of software and hardware, analyzes the digital image data and controls
the operation of the radiation source.
[0020] The images printed by the apparatus of the present invention have better than images
printed by conventional inkjet printing technique quality. The images exhibit less
banding in continuous tone, uniform tinted and solid areas and are sharper than images
printed by conventional inkjet printing techniques in text and line art areas. Practically,
every image area containing a mix of image elements shows improvement in print quality.
[0021] The image quality is less dependent on the substrate properties since proper curing
sequences controlling ink droplet spread or contraction may be selected for different
substrates.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022] The subject matter regarded as the invention is particularly pointed out and distinctly
claimed in the concluding portion of the specification. The invention, however, both
as to organization and method of operation, together with objects, features and advantages
thereof, may best be understood by reference to the following detailed description
when read with the accompanied drawings, in which like reference characters refer
to the same parts throughout the different views. The drawings are not necessarily
to scale, emphasis instead being placed upon illustrating the principles of the invention.
Figures 1A and 1B (Prior Art) are simplified illustrations of a typical printed image
and an inkjet printer.
Figure 2 is a schematic illustration of ink spreading on a wettable substrate.
Figure 3 is a schematic illustration of ink contraction on a non-wettable substrate.
Figure 4 is a schematic illustration of ink drop behavior at different time intervals
following drop on substrate deposition.
Figure 5 is a schematic flow chart of the method of image quality improvement of the
present invention.
Figures 6A - 6C are schematic illustrations of the delay in the radiation source activation
for curing of different image elements, intensity variation and a combination of delay
and intensity profile changes respectively according to the present invention.
Figure 7 is a schematic illustration of an inkjet printing apparatus constructed according
to the present invention and an image printed by the apparatus.
Figure 8 is a schematic illustration of an inkjet printing apparatus with a scanning
curing radiation source according to the present invention.
Figure 9 is a schematic illustration of magnified spot sizes of different image elements
printed using differential curing timing according to the present invention.
Figure 10 is a schematic illustration of the operation of a curing radiation source
according to the present invention.
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODYMENTS
[0023] In the following detailed description, numerous specific details are set forth in
order to provide a thorough understanding of the invention. However, it will be understood
by those of ordinary skill in the art that the present invention may be practiced
without these specific details. In other instances, well-known methods and procedures
have not been described in detail so as not to obscure the present invention.
[0024] Some embodiments of the present invention are directed to curing of ink based on
the type of image element of the printed image. The term "curing" throughout the specification
and the claims refers to the process of converting a liquid such as, for example,
ink to a solid by exposing it to curing radiation. According to some embodiments of
the present invention, the curing radiation may be ultraviolet radiation and the ink
used for printing may be ultraviolet curable ink. According to other embodiments of
the present invention, the curing radiation may be infrared radiation and the ink
used for printing may be infrared curable ink. According to additional embodiments,
a combination of ultra violet and infrared radiation and respectively curable inks
may be used.
[0025] Figure 1A is a simplified illustration of a typical prior art image printed on substrate
50 and a prior art inkjet printer. Each image usually consists of some image elements
such as pictorial or continuous tone elements, uniform tinted and solid elements
52, line art
54 and text elements
56.
[0026] The image illustrated in Figure 1A is printed by a prior art inkjet printer that
in its simplest form would have a multi nozzle inkjet print head
70, a controller or a Raster Image Processor (RIP)
74 and a radiation source
76, such as a conventional UV lamp operating in flash or continuous mode. Controller
or RIP
74 may be such as a Personal Computer (PC) running appropriate software. During printing,
print head
70 moves in the direction indicated by arrow
80 and ejects ink droplets
86 to cover according to the image data a print head wide strip
78 on substrate
50. Radiation source
76 may move together with print head
70 and may cure the ink droplets deposited onto substrate
50.
[0027] For bidirectional printing as indicated by arrow
80, a second radiation source
76, shown in phantom lines, may be mounted on the other side of print head
70. The printing may be performed in a mode where each print head path results in a strip
of a single color (ink layer). Alternatively, each print head path may result in a
strip including a number of colors (ink layers).
[0028] Print head
70 ejects ink droplets
86 of essentially the same volume. Adjacently positioned on the media ink droplets typically
expand so, as to overlap and jointly cover certain area. As shown in Figure 1B each
of the image elements mentioned are printed by the same spot size
84. The term "spot" designates the size (diameter or area) of the deposited on the substrate
and cured ink droplet.
[0029] Controller
74 controls the operation and movement of inkjet print head
70 and may synchronize the operation of it with the movement of substrate
50 in the direction indicated by arrow
82. Radiation source
76 operates in flash or continuous operation mode to deliver an equal amount of radiation
simultaneously to all types of image elements printed onto substrate
50.
[0030] Depending on the ink substrate interaction properties, when an ink droplet
90 is deposited on substrate
92 that has good wetting properties, as shown in Figures 2, the droplet will over some
time expand and spread out to a spot
93 of a larger than droplet
92 size. In some instances that may involve poor wettable substrates
96, as shown in Figures 3, ink droplet
94 may contract to a spot
95 of a smaller than droplet
94 size. In one case there may be clear visible banding, especially in uniform areas
and in the other case there may be blurred or discontinued fine image elements such
as text and line art. A printed image in every portion of it usually includes a mix
of elements and accordingly the quality of all of them is affected.
[0031] Figure 4 is a schematic illustration of ink drop behavior at different time intervals
following droplet on substrate deposition. After deposition, if no curing radiation
is applied to it, droplet
90 may continue to spread on substrate
92. The spot size formed by the droplet may have different diameter at each time interval
and for the particular example described the relation of the spot diameter or surface
area is S
0<S
1<S
2.
[0032] Printing with radiation curable ink provides an opportunity of controlling ink droplet
spread differentially according to the type of the image element printed. The differential
ink droplet spread and associated with it spot overlap control may be achieved by
applying the curing radiation to different image elements at different time delays
as shown in Figure 6A, which is a schematic illustration of differential curing of
different image elements. The differential curing may be achieved; for example, by
making the delay in the activation of the curing radiation source t
1 following ink droplet ejection for curing the text image element shorter than the
delay t
3 in the operation of the curing radiation source for curing the continuous tone or
uniform area image element.
[0033] Radiation source intensity level, duration of the irradiation of the image and profile
of the irradiation intensity may also be used for differential control of ink droplet
spread. The type of the image element to be irradiated (continuous tone, uniform solid
etc.) may be used for setting the radiation intensity level, profile or duration.
Figure 6B is a schematic illustration of differential curing different image elements
where the radiation source intensity level is changed according to the image element
to be cured. For example, the intensity of the curing radiation source I
3 for curing the text image element may be lower than the intensity I
1 of the curing radiation source for curing the continuous tone or uniform area image
element.
[0034] Figure 6C is a schematic illustration of differential curing of different image elements
where the radiation intensity profile is changed in a ramp form according to the image
element cured. For example, the intensity of the curing radiation source
I3 for curing the text image element may start at a value higher than the intensity
I1 of the curing radiation source for curing the continuous tone or uniform area image
element. In some cases, a mix of the intensity level, delay in activation of the radiation
source, duration of the source operation or intensity profile may be present.
[0035] Printing by a droplet having larger spread or overlap allows reducing banding of
continuous tone, uniform tinted and solid image elements. Droplets with larger spread
or overlap mask the visible artifacts on uniform areas. Printing with droplets having
smaller spread or overlap may allow increasing the sharpness of the text and line
art image elements.
[0036] Figure 7 is a schematic illustration of an embodiment of an inkjet printing apparatus
of the present invention and an image printed by the apparatus. The inkjet printing
apparatus
98 may print with radiation curable ink. Print head
70 may eject droplets of ink
100 onto substrate
50 to form an image, which includes continuous tone, uniform tinted and solid areas
52, line art
54 and text
56 image elements. For the clarity of the explanation, the boundaries of each image
element are schematically shown as rectangles bounded by phantom lines, although in
practice different image elements are printed on common sections of the substrate.
[0037] Curing radiation source
116 cures ejected ink droplets. In one of the embodiments curing radiation source
116 may be a linear or two-dimensional array of individually addressable UV, Visible
or IR Light Emitting Diodes (LED) or UV or IR lasers or laser diodes (collectively
termed radiation emitters), depending on the type of ink used. Source
116 may be extended in the print head
70 scanning direction indicated by arrow
80 such as to enable sufficiently long delays and curing times of different image elements.
Source
116 may have some image forming optics enabling irradiation of image sections as small
as a single printed droplet or pixel spot size or any other spot size required.
[0038] In order to establish the required delay in the application of the curing radiation
or the intensity of the curing radiation prior to printing or concurrently with the
printing process the digital data of the image to be printed may be preprocessed as
shown in Figure 5. Controller
74 that serves as a Raster Image Processor (RIP) may have a feature
72 for analyzing the digital image data to be printed. Feature
72 may be software operating on the controller or a combination of software and dedicated
hardware. Feature
72 may scan the digital representation of the image (image data) to be printed (block
150) and divide it into print head wide strips (block
154). Each strip generally may contain continuous tone, line art and text elements, uniform
tinted and solid elements as well as distinct color (for example, Pantone colors)
areas to be printed.
[0039] The curing source operation may be adapted to the printing mode (block
156). Depending on the printing mode whether a strip of single color (ink layer) or a
number of colors (ink layers) are printed simultaneously the emphasis may be placed:
on the delay in the activation of the source; on the intensity level of the source;
on the profile of the intensity of the source; on the duration of the irradiation
of the printed image, or a mix of all or some of the above mentioned parameters. Accordingly,
the most appropriate type of curing may be selected.
[0040] Feature
72 may identify all of the pixels belonging to a specific image element (block
158) and included in the particular image strip (block
154). Feature
72 may set for each image element the delay (Figure 6A) in radiation source activation
following said ink droplet ejection (block
162) or droplet on substrate deposition. The delay in the activation of the radiation
source may be determined by analyzing the digital data of the image element to be
printed. The intensity level of the radiation source (block
166) may be set by analyzing the digital data of the image element to be printed. In
a similar way, analyzing the digital data of the image element to be printed, feature
72 may set the profile of the intensity of the source (Figure 6C) and the duration of
the irradiation of the printed image, or a mix of all or some of the above-mentioned
parameters.
[0041] The digital data pertaining to the image element to be printed may directly control
radiation source
116 (Figure 7) and operate the linear or two-dimensional array of radiation sources.
In addition to this, the digital data may be used to provide the radiation only to
printed portions of the respective image element. Image forming optics may be built
to facilitate supply of the radiation to the printed droplets of the respective image
element. The linear or two-dimensional array of radiation sources may be such radiation
emitters as UV LEDs, Visible LEDs, UV or IR laser diodes. Alternatively, radiation
source
116 may be a combination of UV and IR radiation sources. Source
116 may be a combination of UV (or IR) only radiation sources operating at different
wavelengths. Both the print head and the radiation source may be on the same carriage
and move together or each may have separate movement mechanism. In the case of a separate
movement mechanism, the print head movement and the movement of the source may be
synchronized.
[0042] In order to get proper curing it may be necessary to adjust in addition to the delay
the intensity level of the radiation source (block
166), the profile of the intensity of the source, the duration of the irradiation action
or all of the above together. Analysis of the digital data of the image element may
set each of the parameters or a mix of them. Figures 6A - 6C respectively illustrate
such cases. Following this, the printing process may begin and print head
70 prints first strip (block
170) and radiation source
116 cures it (block
172). The type of image element cured controls delay in the activation of radiation source
116 and the intensity of source
116 and if set other listed above parameters. Following completion of the first strip
printing substrate
50 is advanced in direction of arrow
82 and the next strip is printed (block
174). Although the printing (block
170) and curing (block
172) are shown as sequential steps it possible to envision an apparatus structure where
curing takes place almost simultaneously with printing.
[0043] In an alternative embodiment radiation source
116 may be replaced by a radiation source
126 (Figure 8) having one or more than one scanning laser beams
130. The scanning direction of beam
130 is across the array of pixels printed by each nozzle or orthogonal to the print head
70 movement direction
80. Both radiation source
126 and print head
70 may be placed on a common carriage
132. Alternatively, the laser sources may have independent drive systems. Depending on
the type of ink used and power required it may be an UV laser, a LED or an IR laser
diode (radiation emitters) with any scanning mechanism meeting the application requirements.
Methods of varying or delaying scanning laser beam activation and/or the intensity
of the beam, and/or the duration of the irradiation action as a function of the type
of image element printed are similar to the disclosed above.
[0044] As schematically illustrated in Figure 7 the method of printing by ink droplets
100 having substantially identical volume may result in printing continuous tone, uniform
tinted and solid image elements
52 with a spot size or overlap
108, shown in phantom lines, larger than the spot size (overlap)
110 of line art
54 and larger than spot size (overlap)
112 of text
56. It is necessary to mention that in a vast majority of cases two spot sizes, for example,
one for continuous tone, uniform tinted and solid image elements and another one for
line art could provide the desired improvement since the line art and text may be
printed by a similar spot size.
[0045] Figure 9, which is a schematic illustration of magnified spot sizes of different
image elements printed using differential curing according to the present invention,
illustrates the differences in the overlaps in detail.
[0046] Figure 10 shows an exemplary embodiment of curing radiation source
116. Source
116 may be a linear or a two-dimensional array of individually addressable radiation
emitters
140. Feature
72 (or controller
74) dedicated to the control of radiation source
116 may switch ON or OFF each of radiation emitters
140 setting the delay in the activation of an array and of each of radiation emitters
140, intensity level, intensity profile and irradiation action duration according to the
digital image data processed by feature
72. The feature may identify all of the pixels belonging to a specific image element
and included in the particular image strip. Controller
74 may set the intensity of each of radiation emitters
140 according to the digital image data processed by the feature or a mix of intensity
and delay and duration of the irradiation process. For exemplary purposes only, source
116 is shown as including 10 (ten) linear arrays of radiation emitters
140. Arrow
146 indicates the print head movement direction. Alternatively, as shown by arrow
146' the substrate may move. In order to simplify the explanation drop ejection may occur,
for example, at a time when first line
148 of radiation source passes over the corresponding line
148' of image
160 printed on substrate
50.
[0047] Hatched squares mark pixels of image
160 where droplets of ink were placed. Arrays 1, 2, 5, 6, 9 and 10 may cure corresponding
printed image lines marked by similar tagged numbers of text or line art image and
may have a delay schematically shown as two not operating radiation emitters
140 that pass over the printed image. (Slanted lines mark activated radiation emitters
144.) The delay in the operation of arrays 5, 6, 9 and 10 in addition to the required
delay (two radiation emitters) includes the delay caused by their position on the
substrate. Arrays 3, 4 and 7 may cure continuous tone or uniform tinted and solid
art areas and may have a delay in their activation schematically shown as five non-operating
radiation emitters. The delay in the operation of array 7 in addition to the required
delay (five radiation emitters) includes the delay caused by its position on the substrate.
Array 8 may be not operative and may be passing over image free area. Controller
74 synchronizes the delay, intensity, duration and profile or a mix of the delay, intensity,
duration and profile in operation of each individual radiation emitter
140 with the type of image and image on substrate position.
[0048] The images printed by the method of the present invention have banding free continuous
tone, uniform tinted and solid areas and much sharper text and line art images than
images printed by conventional inkjet techniques.
[0049] The image quality is less dependent on the substrate since proper curing sequences
controlling ink droplet spread or contraction may be selected for different substrates.
[0050] A number of embodiments have been described. Nevertheless, it will be understood
that various modifications may be made without departing from the scope of the invention.
1. A method of controlling printed image quality comprising ejecting droplets (100) of
ink onto a substrate (50) to form a plurality of image elements (52,54,56) comprising
image elements of at least two different types, said plurality of image elements forming
an image; characterized that said ink droplets (100) spread is controlled by irradiating
said image elements by a curing radiation, said curing radiation being controlled
by operational parameters set based on the type of a given image element (52, 54,
56) to be irradiated; wherein said radiation operational parameters comprise a delay
in curing radiation source activation following ink droplet (100) ejection, and at
least one of: intensity level of the curing radiation source (116, 126), profile of
the irradiation intensity, duration of the irradiation operation.
2. The method of claim 1, wherein said plurality of image elements (52, 54, 56) comprises
at least two different ones of: a continuous tone element (52), a uniform tinted and
solid element (52), a color element, a text element (56) and a line art element (56).
3. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated determines said delay in said source (116, 126) activation.
4. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated determines said intensity level of said source (116, 126).
5. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated determines said duration of irradiation action.
6. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated determines said intensity profile.
7. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated determines the delay in said source (116, 126) activation, an intensity
level of said source (116, 126), a duration of said irradiation operation, and an
intensity profile.
8. The method of claim 1, wherein the type of the given image element to be irradiated
sets the delay in said source (116, 126) activation, an intensity level of said source
(116, 126), a duration of said irradiation operation, and an intensity profile.
9. The method of claim 1, wherein the digital form (data) of said type of the given image
element (52, 54, 56) to be irradiated controls said source (116, 126) operational
parameters.
10. The method of claim 1, wherein said curing radiation source (116, 126) comprises one
or more of: at least one ultraviolet radiation emitter, at least one visible radiation
emitter, at least one infra-red radiation emitter.
11. The method of claims 1 and 9, wherein the at least one ultraviolet emitter comprises
at least two ultraviolet emitters having different wavelengths to each other.
12. The method of claims 1 and 9, wherein the at least one of infra-red emitter comprises
at least two infra-red emitters having different wavelengths to each other.
13. The method of claims 1 and 10-12, wherein said radiation source (116) is a linear
array of individually addressable radiation emitters (144).
14. The method of claims 1 and 10-12, wherein said radiation source (116) comprises a
two-dimensional array of individually addressable radiation emitters (144).
15. The method of claim 1, wherein said type of the given image element (52, 54, 56) to
be irradiated sets said radiation source (116, 126) to provide said curing radiation
only to the ink covered portions of said image.
16. A method of claim 1, comprising depositing droplets (100) of ink onto a substrate
(50) to form at least one row of pixels comprising different types of image elements
(52, 54, 56), characterized in that a curing radiation scanning beam (130) scans said row of pixels (52, 54, 56) to be
cured, and wherein analysis of the digital data of the image element to be printed
controls a selection of operational parameters of said radiation beam (130).
17. An apparatus (98) comprising: an inkjet print head (70) to eject droplets (100) of
ink onto a substrate to form an image comprising at least two different types of image
elements (52, 54, 56); a curing radiation source (116, 26) to irradiate said image
elements by radiation in accordance with operational parameters, characterized in that the apparatus further comprises a feature (72) to set the operational parameters
based on the type of a given image element (52, 54, 56) to be irradiated; wherein
said radiation operational parameters comprise delay in curing radiation source activation
following ink droplet (100) ejection, and at least one of: intensity level of the
curing radiation source (116, 126), profile of the irradiation intensity, duration
of the irradiation operation .
18. The apparatus (98) of claim 17, wherein said feature (72) is to analyze the digital
form (data) of said type of the image elements and to set the operational parameters
based on the digital form (data) of said type of the given image element to be irradiated.
19. The apparatus (98) of claim 17, wherein said feature (72) comprises one of: software
elements, hardware elements, and a combination of software elements and hardware elements.
20. The apparatus (98) of claim 17, wherein said source (116, 126) is rigidly connected
with said print head (70).
21. The apparatus (98) of claim 17, wherein said radiation source (116, 126) is configured
to move, and movement of the radiation source is synchronized with movement of said
print head (70).
22. The apparatus (98) of claims 17 and 20-21, wherein said radiation source (116, 126)
is one of: at least one UV LED, at least one Visible LED, at least one IR LED, a UV
laser diode, an IR laser diode, a combination of UV and IR radiation emitters;
wherein the at least one ultraviolet emitter comprises at least two ultraviolet emitters
having different wavelengths to each other, and
wherein the at least one infra-red emitter comprises at least two infra-red emitters
having different wavelengths to each other.
23. The apparatus (98) of claims 17 and 20-22, wherein said radiation source (116) comprises
a two-dimensional array of individually addressable radiation emitters (144), extended
along the print head (70) scanning direction, and has image forming optics, said optics
enabling irradiation of single droplet (100).
24. The apparatus (98) of claim 17, wherein said radiation source (126) comprises a scanning
beam (130).
25. The apparatus (98) of claim 17, wherein said feature (72) controls said radiation
source (116, 126).
26. A method of claim 1, characterized in that ink droplets (100) spread is controlled by curing radiation operational parameters
dependent on the type of said given image element (52, 54, 56) to be irradiated such
that said droplets (100) form on said substrate spots (108, 110, 112) having dimensions
and overlaps which are variable in dependence on image element type.
27. The method of claim 26, wherein said plurality of image elements (52, 54, 56) comprises
continuous tone elements (52), uniform tinted and solid elements (52), color elements,
text (56) and line art (54) elements and a combination of them.
28. The apparatus (98) of claim 17 comprising: a control computer (74).
29. The apparatus (98) of claim 28, wherein said source (116) of curing radiation is one
of a group of a linear array of radiation emitters and a two-dimensional array of
radiation emitters (144).
30. The apparatus (98) of claims 28 and 29, wherein each of the radiation emitters (144)
of said arrays is individually addressable.
31. The apparatus (98) of claims 28 and 29, wherein said feature (72) controls each of
said individually addressable radiation emitters (144) within said arrays.
32. The apparatus of claim 28, wherein said control of each of said individually addressable
radiation emitters (144) includes a plurality of said emitter (144) operational parameters.
1. Verfahren zum Steuern einer Druckbildqualität, umfassend ein Ausstoßen von Tröpfchen
(100) aus Tinte auf ein Substrat (50), um mehrere Bildelemente (52, 54, 56), umfassend
Bildelemente von wenigstens zwei verschiedenen Arten, auszubilden, wobei die mehreren
Bildelemente ein Bild ausbilden; dadurch gekennzeichnet, dass die Ausbreitung der Tintentröpfchen (100) durch Bestrahlen der Bildelemente durch
Aushärtungsstrahlung gesteuert wird, wobei die Aushärtungsstrahlung durch Betriebsparameter,
eingestellt auf der Grundlage der Art eines bestimmten zu bestrahlenden Bildelements
(52, 54, 56), gesteuert wird; wobei die Strahlungsbetriebsparameter Folgendes umfassen:
eine Verzögerung der Aktivierung einer Aushärtungsstrahlungsquelle nach dem Ausstoßen
eines Tintentröpfchens (100) sowie: eine Intensitätsstufe der Aushärtungsstrahlungsquelle
(116, 126), ein Profil der Strahlungsintensität und/oder eine Dauer des Bestrahlungsvorgangs.
2. Verfahren nach Anspruch 1, wobei die mehreren Bildelemente (52, 54, 56) wenigstens
zwei verschiedene der Folgenden umfassen: ein Halbtonelement (52), ein einheitlich
gefärbtes und durchgängiges Element (52), ein Farbelement, ein Textelement (56) und
ein Line-Art-Element (56).
3. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) die Verzögerung der Aktivierung der Quelle (116, 126) bestimmt.
4. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) die Intensitätsstufe der Quelle (116, 126) bestimmt.
5. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) die Dauer der Bestrahlungsmaßnahme bestimmt.
6. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) das Intensitätsprofil bestimmt.
7. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) die Verzögerung der Aktivierung der Quelle (116, 126), eine Intensitätsstufe
der Quelle (116, 126), eine Dauer des Bestrahlungsvorgangs und ein Intensitätsprofil
bestimmt.
8. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
die Verzögerung der Aktivierung der Quelle (116, 126), eine Intensitätsstufe der Quelle
(116, 126), eine Dauer des Bestrahlungsvorgangs und ein Intensitätsprofil einstellt.
9. Verfahren nach Anspruch 1, wobei die digitale Form (Daten) der Art des zu bestrahlenden
Bildelements (52, 54, 56) die Betriebsparameter der Quelle (116, 126) steuert.
10. Verfahren nach Anspruch 1, wobei die Aushärtungsstrahlungsquelle (116, 126) eines
oder mehrere der Folgenden umfasst: wenigstens einen Emitter für Ultraviolettstrahlung,
wenigstens einen Emitter für sichtbare Strahlung, wenigstens einen Emitter für Infrarotstrahlung.
11. Verfahren nach Anspruch 1 und 9, wobei der wenigstens eine Ultraviolettemitter wenigstens
zwei Ultraviolettemitter mit voneinander verschiedenen Wellenlängen umfasst.
12. Verfahren nach Anspruch 1 und 9, wobei der wenigstens eine Infrarotemitter wenigstens
zwei Infrarotemitter mit voneinander verschiedenen Wellenlängen umfasst.
13. Verfahren nach Anspruch 1 und 10-12, wobei es sich bei der Strahlungsquelle (116)
um eine lineare Anordnung von individuell adressierbaren Strahlungsemittern (144)
handelt.
14. Verfahren nach Anspruch 1 und 10-12, wobei die Strahlungsquelle (116) eine zweidimensionale
Anordnung von individuell adressierbaren Strahlungsemittern (144) umfasst.
15. Verfahren nach Anspruch 1, wobei die Art des bestimmten zu bestrahlenden Bildelements
(52, 54, 56) die Strahlungsquelle (116, 126) einstellt, um die Aushärtungsstrahlung
nur an die mit Tinte bedeckten Abschnitte des Bildes bereitzustellen.
16. Verfahren nach Anspruch 1, umfassend ein Ablagern von Tröpfchen (100) aus Tinte auf
ein Substrat (50), um wenigstens eine Reihe von Pixeln, umfassend unterschiedliche
Arten von Bildelementen (52, 54, 56), auszubilden, dadurch gekennzeichnet, dass ein Aushärtungsstrahlungsabtaststrahl (130) die Reihe von auszuhärtenden Pixeln (52,
54, 56) abtastet, und wobei eine Analyse der digitalen Daten des zu druckenden Bildelements
eine Auswahl von Betriebsparametern des Abtaststrahls (130) steuert.
17. Vorrichtung (98), umfassend: einen Tintenstrahldruckkopf (70), zum Ausstoßen von Tröpfchen
(100) aus Tinte auf ein Substrat, um ein Bild, das wenigstens zwei unterschiedliche
Arten von Bildelementen (52, 54, 56) umfasst, auszubilden; eine Aushärtungsstrahlungsquelle
(116, 26) zum Bestrahlen der Bildelemente durch Strahlung gemäß Betriebsparametern,
dadurch gekennzeichnet, dass die Vorrichtung ferner ein Merkmal (72) zum Einstellen der Betriebsparameter auf
der Grundlage der Art eines bestimmten zu bestrahlenden Bildelements (52, 54, 56)
umfasst; wobei die Strahlungsbetriebsparameter Folgendes umfassen: eine Verzögerung
der Aktivierung einer Aushärtungsstrahlungsquelle nach dem Ausstoßen eines Tintentröpfchens
(100) sowie: eine Intensitätsstufe der Aushärtungsstrahlungsquelle (116, 126), ein
Profil der Strahlungsintensität und/oder eine Dauer des Bestrahlungsvorgangs.
18. Vorrichtung (98) nach Anspruch 17, wobei das Merkmal (72) zum Analysieren der digitalen
Form (Daten) der Art der Bildelemente und zum Einstellen der Betriebsparameter auf
der Grundlage der digitalen Form (Daten) der Art des bestimmten zu bestrahlenden Bildelements
vorgesehen ist.
19. Vorrichtung (98) nach Anspruch 17, wobei das Merkmal (72) eines der Folgenden umfasst:
Softwareelemente, Hardwareelemente und eine Kombination aus Softwareelementen und
Hardwareelementen.
20. Vorrichtung (98) nach Anspruch 17, wobei die Quelle (116, 126) starr mit dem Druckkopf
(70) verbunden ist.
21. Vorrichtung (98) nach Anspruch 17, wobei die Strahlungsquelle (116, 126) konfiguriert
ist, sich zu bewegen, und eine Bewegung der Strahlungsquelle mit einer Bewegung des
Druckkopfs (70) synchronisiert ist.
22. Vorrichtung (98) nach Anspruch 17 und 20-21, wobei die Strahlungsquelle (116, 126)
eines der Folgenden ist: wenigstens eine Leuchtdiode für UV, wenigstens eine Leuchtdiode
für sichtbares Licht, wenigstens eine Leuchtdiode für IR, eine UV-Laserdiode, eine
IR-Laserdiode, eine Kombination aus UV- und IR-Strahlungsemittern;
wobei der wenigstens eine Ultraviolettemitter wenigstens zwei Ultraviolettemitter
mit voneinander verschiedenen Wellenlängen umfasst, und
wobei der wenigstens eine Infrarotemitter wenigstens zwei Infrarotemitter mit voneinander
verschiedenen Wellenlängen umfasst.
23. Vorrichtung (98) nach Anspruch 17 und 20-22, wobei die Strahlungsquelle (116) eine
zweidimensionale Anordnung aus individuell adressierbaren Strahlungsemittern (144)
umfasst, entlang der Abtastrichtung des Druckkopfs (70) erweitert ist und bilderzeugende
Optik aufweist, wobei die Optik eine Bestrahlung eines einzelnen Tröpfchens (100)
ermöglicht.
24. Vorrichtung (98) nach Anspruch 17, wobei die Bestrahlungsquelle (126) einen Abtaststrahl
(130) umfasst.
25. Vorrichtung (98) nach Anspruch 17, wobei das Merkmal (72) die Strahlungsquelle (116,
126) steuert.
26. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ausbreitung von Tintentröpfchen (100) durch Aushärtungsstrahlungsbetriebsparameter,
die von der Art des bestimmten zu bestrahlenden Bildelements (52, 54, 56) abhängig
sind, gesteuert wird, sodass die Tröpfchen (100) auf dem Substrat Punkte (108, 110,
112) mit Abmessungen und Überschneidungen, die abhängig von der Bildelementart unterschiedlich
sind, ausbilden.
27. Verfahren nach Anspruch 26, wobei die mehreren Bildelemente (52, 54, 56) Halbtonelemente
(52), einheitlich gefärbte und durchgängige Elemente (52), Farbelemente, Elemente
aus Text (56) und aus Line-Art (54) sowie eine Kombination daraus umfassen.
28. Vorrichtung (98) nach Anspruch 17, umfassend: einen Steuerrechner (74).
29. Vorrichtung (98) nach Anspruch 28, wobei die Quelle (116) der Aushärtungsstrahlung
eines aus einer Gruppe aus einer linearen Anordnung aus Strahlungsemittern und einer
zweidimensionalen Anordnung aus Strahlungsemittern (144) ist.
30. Vorrichtung (98) nach Anspruch 28 und 29, wobei jeder der Strahlungsemitter (144)
der Anordnungen individuell adressierbar ist.
31. Vorrichtung (98) nach Anspruch 28 und 29, wobei das Merkmal (72) jeden der individuell
adressierbaren Strahlungsemitter (144) in den Anordnungen steuert.
32. Vorrichtung nach Anspruch 28, wobei die Steuerung jedes der individuell adressierbaren
Strahlungsemitter (144) mehrere der Betriebsparameter des Emitters (144) enthält.
1. Procédé de contrôle de la qualité d'image imprimée comprenant l'éjection de gouttelettes
(100) d'encre sur un substrat (50) pour former une pluralité d'éléments d'image (52,
54, 56) comprenant des éléments d'image d'au moins deux types différents, ladite pluralité
d'éléments d'image formant une image ;
caractérisé en ce que l'étalement desdites gouttelettes d'encre (100) est commandé en irradiant lesdits
éléments d'image par un rayonnement de durcissement, ledit rayonnement de durcissement
étant commandé par des paramètres opérationnels établis sur la base du type d'un élément
d'image donné (52, 54, 56) à irradier ;
dans lequel lesdits paramètres opérationnels de rayonnement comprennent un retard
dans l'activation de la source de rayonnement de durcissement après l'éjection de
gouttelettes d'encre (100), et au moins l'un des éléments parmi : le niveau d'intensité
de la source de rayonnement de durcissement (116, 126), le profil de l'intensité d'irradiation,
la durée de l'opération d'irradiation.
2. Procédé selon la revendication 1, dans lequel ladite pluralité d'éléments d'image
(52, 54, 56) comprend au moins deux éléments différents parmi : un élément à tons
continus (52), un élément plein et uniformément teinté (52), un élément en couleur,
un élément de texte (56) et un élément de dessin au trait (56).
3. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier détermine ledit retard dans l'activation de ladite source
(116, 126).
4. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier détermine ledit niveau d'intensité de ladite source (116,
126).
5. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier détermine ladite durée de l'action d'irradiation.
6. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier détermine ledit profil d'intensité.
7. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier détermine le retard dans l'activation de ladite source (116,
126), un niveau d'intensité de ladite source (116, 126), une durée de ladite opération
d'irradiation, et un profil d'intensité.
8. Procédé selon la revendication 1, dans lequel le type de l'élément d'image donné à
irradier établit le retard dans l'activation de ladite source (116, 126), un niveau
d'intensité de ladite source (116, 126), une durée de ladite opération d'irradiation,
et un profil d'intensité.
9. Procédé selon la revendication 1, dans lequel la forme numérique (données) dudit type
de l'élément d'image donné (52, 54, 56) à irradier commande les paramètres opérationnels
de ladite source (116, 126).
10. Procédé selon la revendication 1, dans lequel ladite source de rayonnement de durcissement
(116, 126) comprend l'un ou plusieurs des éléments parmi : au moins un émetteur de
rayonnement ultraviolet, au moins un émetteur de rayonnement visible, au moins un
émetteur de rayonnement infrarouge.
11. Procédé selon les revendications 1 et 9, dans lequel ledit émetteur d'ultraviolets
comprend au moins deux émetteurs d'ultraviolets ayant différentes longueurs d'onde
l'un par rapport à l'autre.
12. Procédé selon les revendications 1 et 9, dans lequel ledit émetteur d'infrarouges
comprend au moins deux émetteurs d'infrarouges ayant différentes longueurs d'onde
l'un par rapport à l'autre.
13. Procédé selon les revendications 1 et 10 à 12, dans lequel ladite source de rayonnement
(116) est un réseau linéaire d'émetteurs de rayonnement adressables individuellement
(144).
14. Procédé selon les revendications 1 et 10 à 12, dans lequel ladite source de rayonnement
(116) comprend un réseau bidimensionnel d'émetteurs de rayonnement adressables individuellement
(144).
15. Procédé selon la revendication 1, dans lequel ledit type de l'élément d'image donné
(52, 54, 56) à irradier établit ladite source de rayonnement (116, 126) pour fournir
ledit rayonnement de durcissement uniquement aux parties recouvertes d'encre de ladite
image.
16. Procédé selon la revendication 1, comprenant le dépôt de gouttelettes (100) d'encre
sur un substrat (50) pour former au moins une rangée de pixels comprenant différents
types d'éléments d'image (52, 54, 56), caractérisé en ce qu'un faisceau de balayage de rayonnement de durcissement (130) balaie ladite rangée
de pixels (52, 54, 56) à durcir, et dans lequel l'analyse des données numériques de
l'élément d'image à imprimer commande une sélection de paramètres opérationnels dudit
faisceau de rayonnement (130).
17. Appareil (98) comprenant : une tête d'impression à jet d'encre (70) pour éjecter des
gouttelettes (100) d'encre sur un substrat pour former une image comprenant au moins
deux types différents d'éléments d'image (52, 54, 56) ; une source de rayonnement
de durcissement (116, 26) pour irradier lesdits éléments d'image par rayonnement conformément
à des paramètres opérationnels, caractérisé en ce que l'appareil comprend en outre une caractéristique (72) pour établir les paramètres
opérationnels sur la base du type d'un élément d'image donné (52, 54, 56) à irradier
; dans lequel lesdits paramètres opérationnels de rayonnement comprennent un retard
dans l'activation de la source de rayonnement de durcissement après l'éjection de
gouttelettes d'encre (100), et au moins l'un des éléments parmi : le niveau d'intensité
de la source de rayonnement de durcissement (116, 126), le profil de l'intensité d'irradiation,
la durée de l'opération d'irradiation.
18. Appareil (98) selon la revendication 17, dans lequel ladite caractéristique (72) consiste
à analyser la forme numérique (données) dudit type des éléments d'image et à établir
les paramètres opérationnels sur la base de la forme numérique (données) dudit type
d'élément d'image donné à irradier.
19. Appareil (98) selon la revendication 17, dans lequel ladite caractéristique (72) comprend
l'un des éléments parmi : des éléments logiciels, des éléments matériels, et une combinaison
d'éléments logiciels et d'éléments matériels.
20. Appareil (98) selon la revendication 17, dans lequel ladite source (116, 126) est
reliée rigidement à ladite tête d'impression (70).
21. Appareil (98) selon la revendication 17, dans lequel ladite source de rayonnement
(116, 126) est conçue pour se déplacer, et le mouvement de la source de rayonnement
est synchronisé avec le mouvement de ladite tête d'impression (70).
22. Appareil (98) selon les revendications 17 et 20 à 21, dans lequel ladite source de
rayonnement (116, 126) est l'un des éléments parmi : au moins une LED UV, au moins
une LED visible, au moins une LED IR, une diode laser UV, une diode laser IR, une
combinaison d'émetteurs de rayonnement UV et IR ;
dans lequel ledit émetteur d'ultraviolets comprend au moins deux émetteurs d'ultraviolets
ayant différentes longueurs d'onde l'un par rapport à l'autre, et
dans lequel ledit émetteur d'infrarouges comprend au moins deux émetteurs d'infrarouges
ayant différentes longueurs d'onde l'un par rapport à l'autre.
23. Appareil (98) selon les revendications 17 et 20 à 22, dans lequel ladite source de
rayonnement (116) comprend un réseau bidimensionnel d'émetteurs de rayonnement adressables
individuellement (144), étendu le long de la direction de balayage de la tête d'impression
(70), et a une optique de formation d'image, ladite optique permettant l'irradiation
de gouttelettes uniques (100).
24. Appareil (98) selon la revendication 17, dans lequel ladite source de rayonnement
(126) comprend un faisceau de balayage (130).
25. Appareil (98) selon la revendication 17, dans lequel ladite caractéristique (72) commande
ladite source de rayonnement (116, 126).
26. Procédé selon la revendication 1, caractérisé en ce que l'étalement de gouttelettes d'encre (100) est commandé par des paramètres opérationnels
de rayonnement de durcissement selon le type dudit élément d'image donné (52, 54,
56) à irradier de sorte que lesdites gouttelettes (100) forment sur ledit substrat
des points (108, 110, 112) ayant des dimensions et des chevauchements variables en
fonction du type d'élément d'image.
27. Procédé selon la revendication 26, dans lequel ladite pluralité d'éléments d'image
(52, 54, 56) comprend des éléments à tons continus (52), des éléments pleins et uniformément
teintés (52), des éléments en couleur, des éléments de texte (56) et de dessin au
trait (54) et une combinaison de ceux-ci.
28. Appareil (98) selon la revendication 17 comprenant : un ordinateur de commande (74).
29. Appareil (98) selon la revendication 28, dans lequel ladite source (116) de rayonnement
de durcissement est l'un des éléments parmi un groupe constitué d'un réseau linéaire
d'émetteurs de rayonnement et d'un réseau bidimensionnel d'émetteurs de rayonnement
(144).
30. Appareil (98) selon les revendications 28 et 29, dans lequel chacun des émetteurs
de rayonnement (144) desdits réseaux est adressable individuellement.
31. Appareil (98) selon les revendications 28 et 29, dans lequel ladite caractéristique
(72) commande chacun desdits émetteurs de rayonnement adressables individuellement
(144) dans lesdits réseaux.
32. Appareil selon la revendication 28, dans lequel ladite commande de chacun desdits
émetteurs de rayonnement adressables individuellement (144) comprend une pluralité
de paramètres opérationnels dudit émetteur (144).
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description
Non-patent literature cited in the description
- JEROME L. JOHNSONPrinciples of Nonimpact PrintingPalatino Press19920000302-336 [0002]