Technical Field
[0001] The present invention relates to a biological information measurement device, e.g.,
for measuring a blood glucose level and a biological information measurement method
using the biological information measurement device.
Background Art
[0002] A conventional biological information measurement device, e.g., for measuring a blood
glucose level has the following configuration.
[0003] The conventional biological information measurement device to which a biosensor is
to be attached, the biosensor including a first electrode, a second electrode, a third
electrode, and a reagent portion provided between the second electrode and the third
electrode, includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a determination portion that is connected to the first input
terminal, the second input terminal, and the third input terminal; a control portion
that is connected to the determination portion and the voltage application portion;
and a display portion that is connected to the control portion (see, e.g., Patent
Document 1).
Prior Art Documents
Patent Documents
[0005] Patent document
US2010283488 discloses a measuring device with three input terminals to which a biosensor having
the corresponding electrodes is to be mounted, the measuring device having a control
portion and a display portion, where a hematocrit measurement is carried out in order
to select or set the suitable voltage for the analyte measurement. Also the measurement
time can be adapted based on the measured hematocrit value.
Disclosure of Invention
Problem to be Solved by the Invention
[0006] In the above conventional example, the biosensor is attached to the biological information
measurement device, and then a drop of blood (i.e., a biological sample) is placed
on the biosensor. Subsequently, a blood glucose level is measured as biological information.
[0007] In this case, the blood glucose level to be measured varies depending on hematocrit
of the blood. Therefore, in the conventional example, a hematocrit value is measured
after measuring the blood glucose level, and then the blood glucose level is corrected
in accordance with the hematocrit value and displayed on the display portion.
[0008] However, such a measurement may reduce the measurement accuracy of the blood glucose
level due to the hematocrit value.
[0009] The blood glucose level is significantly affected by the hematocrit value even while
it is being measured. After that, if the significantly affected blood glucose level
is tried to be corrected in accordance with the hematocrit value, the amount of correction
to the final blood glucose level is increased. This results in low measurement accuracy
of the corrected blood glucose level.
[0010] With the foregoing in mind, it is an object of the present invention to improve the
measurement accuracy of the biological information.
Means for Solving Problem
[0011] To achieve the above object, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a control portion that is connected to the voltage application
portion; and a display portion that is connected to the control portion. The control
portion is configured to perform a first biological information measurement mode in
which first biological information is measured based on a current flowing through
the first input terminal a pre-processing application mode in which a voltage is applied
to the second input terminal and the third input terminal after the first biological
information measurement mode, a voltage application stop mode in which the application
of the voltage to the second input terminal and the third input terminal is stopped
after the pre-processing application mode, and a second biological information measurement
mode in which second biological information is measured by applying a voltage to the
second input terminal and the third input terminal after the voltage application stop
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change at least one of i) a voltage
value to be applied to the second input terminal and the third input terminal in the
second biological information measurement mode and ii) a voltage application time
during which a voltage is applied to the second input terminal and the third input
terminal in the second biological information measurement mode based on the first
biological information in the first biological information measurement mode.
[0012] Moreover, the present invention is directed to a biological information measurement
device to which a biosensor is to be attached. The biosensor includes a first electrode,
a second electrode, a third electrode, and a reagent portion provided between the
second electrode and the third electrode. The biological information measurement device
includes the following: a first input terminal to be connected to the first electrode;
a second input terminal to be connected to the second electrode; a third input terminal
to be connected to the third electrode; a voltage application portion that applies
a voltage to the first input terminal, the second input terminal, and the third input
terminal a control portion that is connected to the voltage application portion; and
a display portion that is connected to the control portion. The control portion is
configured to perform a first biological information measurement mode in which first
biological information is measured based on a current flowing through the first input
terminal, a pre-processing application mode in which a voltage is applied to the second
input terminal and the third input terminal after the first biological information
measurement mode, a voltage application stop mode in which the application of the
voltage to the second input terminal and the third input terminal is stopped after
the pre-processing application mode, and a second biological information measurement
mode in which second biological information is measured by applying a voltage to the
second input terminal and the third input terminal after the voltage application stop
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change a voltage value to be applied
to the second input terminal and the third input terminal in the pre-processing application
mode based on the first biological information in the first biological information
measurement mode.
[0013] Further, the present invention is directed to a biological information measurement
device to which a biosensor is to be attached. The biosensor includes a first electrode,
a second electrode, a third electrode, and a reagent portion provided between the
second electrode and the third electrode. The biological information measurement device
includes the following: a first input terminal to be connected to the first electrode;
a second input terminal to be connected to the second electrode; a third input terminal
to be connected to the third electrode; a voltage application portion that applies
a voltage to the first input terminal, the second input terminal, and the third input
terminal; a control portion that is connected to the voltage application portion;
and a display portion that is connected to the control portion. The control portion
is configured to perform a first biological information measurement mode in which
first biological information is measured based on a current flowing through the first
input terminal, a pre-processing application mode in which a voltage is applied to
the second input terminal and the third input terminal after the first biological
information measurement mode, a voltage application stop mode in which the application
of the voltage to the second input terminal and the third input terminal is stopped
after the pre-processing application mode, and a second biological information measurement
mode in which second biological information is measured by applying a voltage to the
second input terminal and the third input terminal after the voltage application stop
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change a voltage value to be applied
to the second input terminal and the third input terminal in the pre-processing application
mode based on the first biological information in the first biological information
measurement mode. The control portion is configured to be able to change a voltage
application time during which a voltage is applied to the second input terminal and
the third input terminal in the second biological information measurement mode based
on the first biological information in the first biological information measurement
mode.
[0014] With these configurations, the present invention can achieve the intended purpose
of improving the measurement accuracy of the biological information.
Effects of the Invention
[0015] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a control portion that is connected to the voltage application
portion; and a display portion that is connected to the control portion. The control
portion is configured to perform a first biological information measurement mode in
which first biological information is measured based on a current flowing through
the first input terminal and a second biological information measurement mode in which
second biological information is measured by applying a voltage to the second input
terminal and the third input terminal after the first biological information measurement
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change at least one of i) a voltage
value to be applied to the second input terminal and the third input terminal in the
second biological information measurement mode and ii) a voltage application time
during which a voltage is applied to the second input terminal and the third input
terminal in the second biological information measurement mode based on the first
biological information in the first biological information measurement mode. Thus,
the present invention can improve the measurement accuracy
[0016] According to the present invention, at least one of the voltage value to be applied
to the second input terminal and the third input terminal in the second biological
information measurement mode and the voltage application time during which a voltage
is applied to the second input terminal and the third input terminal in the second
biological information measurement mode can be changed based on the first biological
information in the first biological information measurement mode. The first biological
information, e.g., a hematocrit value is measured in the first biological information
measurement mode, and the second biological information, e.g., a blood glucose level
is measured based on this hematocrit value in the second biological information measurement
mode.
[0017] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a control portion that is connected to the voltage application
portion; and a display portion that is connected to the control portion. The control
portion is configured to perform a first biological information measurement mode in
which first biological information is measured based on a current flowing through
the first input terminal, a pre-processing application mode in which a voltage is
applied to the second input terminal and the third input terminal after the first
biological information measurement mode, a voltage application stop mode in which
the application of the voltage to the second input terminal and the third input terminal
is stopped after the pre-processing application mode, and a second biological information
measurement mode in which second biological information is measured by applying a
voltage to the second input terminal and the third input terminal after the voltage
application stop mode. The display portion is configured to display the second biological
information. The control portion is configured to be able to change a voltage value
to be applied to the second input terminal and the third input terminal in the pre-processing
application mode based on the first biological information in the first biological
information measurement mode. Thus, the present invention can improve the measurement
accuracy
[0018] According to the present invention, the voltage value to be applied to the second
input terminal and the third input terminal in the pre-processing application mode
can be changed based on the first biological information in the first biological information
measurement mode. The first biological information, e.g., a hematocrit value is measured
in the first biological information measurement mode, and the second biological information,
e.g., a blood glucose level is measured based on this hematocrit value in the second
biological information measurement mode.
[0019] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a control portion that is connected to the voltage application
portion; and a display portion that is connected to the control portion. The control
portion is configured to perform a first biological information measurement mode in
which first biological information is measured based on a current flowing through
the first input terminal, a pre-processing application mode in which a voltage is
applied to the second input terminal and the third input terminal after the first
biological information measurement mode, a voltage application stop mode in which
the application of the voltage to the second input terminal and the third input terminal
is stopped after the pre-processing application mode, and a second biological information
measurement mode in which second biological information is measured by applying a
voltage to the second input terminal and the third input terminal after the voltage
application stop mode. The display portion is configured to display the second biological
information. The control portion is configured to be able to change a voltage value
to be applied to the second input terminal and the third input terminal in the pre-processing
application mode based on the first biological information in the first biological
information measurement mode. The control portion is configured to be able to change
a voltage application time during which a voltage is applied to the second input terminal
and the third input terminal in the second biological information measurement mode
based on the first biological information in the first biological information measurement
mode. Thus, the present invention can improve the measurement accuracy
[0020] According to the present invention, the voltage value to be applied to the second
input terminal and the third input terminal in the pre-processing application mode
can be changed based on the first biological information in the first biological information
measurement mode, and the voltage application time during which a voltage is applied
to the second input terminal and the third input terminal in the second biological
information measurement mode can be changed based on the first biological information
in the first biological information measurement mode. The first biological information,
e.g., a hematocrit value is measured in the first biological information measurement
mode, and the second biological information, e.g., a blood glucose level is measured
based on this hematocrit value in the second biological information measurement mode.
[0021] Therefore, according to the present invention, since the second biological information
(e.g., the blood glucose level) itself is measured under the conditions that are not
much affected by the first biological information (e.g., the hematocrit value), the
measurement accuracy can be improved.
Brief Description of Drawings
[0022]
[FIG. 1] FIG. 1 is an electrical block diagram of a biological information measurement
device of an embodiment of the present invention.
[FIG. 2] FIG. 2A is an exploded perspective view of a biosensor used for a biological
information measurement device of an embodiment of the present invention.
FIG. 2B is a cross-sectional view of a biosensor used for a biological information
measurement device of an embodiment of the present invention.
[FIG. 3] FIG. 3 is an operational flowchart of a biological information measurement
device of an embodiment of the present invention.
[FIG. 4] FIG. 4 is a diagram showing the state of a voltage applied over time in a
biological information measurement device of an embodiment of the present invention.
[FIG. 5] FIG. 5 is a graph showing a change in a response current value (µA) over
time in accordance with the application of a voltage in a biological information measurement
device of an embodiment of the present invention.
[FIG. 6] FIG. 6 is a graph showing a change in a response current value (µA) over
time in accordance with the application of a voltage in a biological information measurement
device of an embodiment of the present invention.
[FIG. 7] FIG. 7 is a graph showing a change in an output voltage (mV) with a blood
glucose level in a biological information measurement device of an embodiment of the
present invention.
[FIG. 8] FIG. 8 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of an embodiment of the present invention.
[FIG. 9] FIG. 9 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of an embodiment of the present invention.
[FIG. 10] FIG. 10 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of an embodiment of the present invention.
[FIG. 11] FIG. 11 is a graph showing a change in an output voltage (mV) with a blood
glucose level in a biological information measurement device of a conventional example.
[FIG. 12] FIG. 12 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of a conventional example.
[FIG. 13] FIG. 13 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of a conventional example.
[FIG. 14] FIG. 14 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of a conventional example.
[FIG. 15] FIG. 15 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of another embodiment of the present invention.
[FIG. 16] FIG. 16 is a graph showing a change in a response current value (µA) over
time in accordance with the application of a voltage in a biological information measurement
device of another embodiment of the present invention.
[FIG. 17] FIG. 17 is a graph showing a change in a response current value (µA) over
time in accordance with the application of a voltage in a biological information measurement
device of another embodiment of the present invention.
[FIG. 18] FIG. 18 is a graph showing a change in an output voltage (mV) with a blood
glucose level in a biological information measurement device of another embodiment
of the present invention.
[FIG. 19] FIG. 19 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of another embodiment of the present invention.
[FIG. 20] FIG. 20 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of another embodiment of the present invention.
[FIG. 21] FIG. 21 is a graph showing a difference in sensitivity of an output voltage
(mV) with respect to a hematocrit value in a biological information measurement device
of another embodiment of the present invention.
[FIG. 22] FIG. 22 is an operational flowchart of a biological information measurement
device of another embodiment of the present invention.
[FIG. 23] FIG. 23 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of yet another embodiment of the present
invention.
[FIG. 24] FIG. 24 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of yet another embodiment of the present
invention.
[FIG. 25] FIG. 25 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of yet another embodiment of the present
invention.
[FIG. 26] FIG. 26 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of yet another embodiment of the present
invention.
[FIG. 27] FIG. 27 is a diagram showing the state of a voltage applied over time in
a biological information measurement device of yet another embodiment of the present
invention.
Description of the Invention
[0023] Hereinafter, an embodiment of the present invention that is applied to a biological
information measurement device for measuring a blood glucose level will be described
with reference to the accompanying drawings.
(Embodiment 1)
[0024] FIG. 1 is an electrical block diagram of a biological information measurement device
of an embodiment of the present invention. FIG. 2A is an exploded perspective view
of a biosensor used for a biological information measurement device of an embodiment
of the present invention. FIG. 2B is a cross-sectional view of a biosensor used for
a biological information measurement device of an embodiment of the present invention.
As shown in FIG. 1, an insertion port 3 for a biosensor 2 is provided at one end of
a main body case 1 of the biological information measurement device.
[0025] As shown in an example of FIG. 2A, the biosensor 2 includes a rectangular insulating
substrate 4 and four electrodes formed on the insulating substrate 4. The four electrodes,
i.e., a hematocrit measurement working electrode (an example of a first electrode)
5, a blood component measurement working electrode (an example of a third electrode)
6, a blood component measurement counter electrode (an example of a second electrode)
7, and a blood component introduction detecting electrode 8 are arranged opposite
each other with a predetermined space between them. Examples of the biological information
to be measured by the biological information measurement device of the present invention
include a glucose value, a lactic acid value, a uric acid value, a bilirubin value,
and a cholesterol value. Biological samples used to obtain the biological information
may be, e.g., blood, urine, and sweat. The biosensor 2 is an example when the biological
sample is blood.
[0026] In the biosensor 2, each of the hematocrit measurement working electrode 5, the blood
component measurement working electrode 6, the blood component measurement counter
electrode 7, and the blood component introduction detecting electrode 8 at one end
of the insulating substrate 4 (i.e., at the right end of FIG. 2) comes into contact
with an input terminal portion 9 shown in FIG. 1, so that the biosensor 2 is electrically
connected to the biological information measurement device.
[0027] The biosensor 2 further includes a reagent portion 10 provided on an electrode portion
that is formed of the blood component measurement working electrode 6, the blood component
measurement counter electrode 7, and the blood component introduction detecting electrode
8.
[0028] In the biosensor 2, a reagent 11 is placed in the reagent portion 10. The reagent
11 contains an oxidoreductase such as glucose dehydrogenase and a mediator (electron
carrier), and selectively contains a polymeric material, an enzyme stabilizer, and
a crystal homogenizing agent as optional components. In the biosensor 2, a cover 13
is disposed on the insulating substrate 4 and the reagent 11 via a spacer 12, while
leaving one end of the insulating substrate 4 uncovered.
[0029] The spacer 12 of the biosensor 2 has a blood supply path 14 for introducing blood.
The blood supply path 14 extends from the other end of the biosensor 2 (i.e., the
left end of FIG. 2) to the position above the reagent 11. The other end of the blood
supply path 14 is open to the outside and serves as a blood inlet 15.
[0030] The hematocrit measurement working electrode 5, the blood component measurement working
electrode 6, the blood component measurement counter electrode 7, and the blood component
introduction detecting electrode 8 extend to one end of the biosensor 2 (i.e., the
right end of FIG. 2), where the portions of the hematocrit measurement working electrode
5, the blood component measurement working electrode 6, the blood component measurement
counter electrode 7, and the blood component introduction detecting electrode 8 are
not covered with the cover 13 and exposed.
[0031] Moreover, one end of each of these electrodes is connected to the input terminal
portion 9 shown in FIG. 1.
[0032] Specifically, in the biosensor 2, the hematocrit measurement working electrode 5
is connected to a first input terminal (not shown) of the input terminal portion 9,
the blood component measurement working electrode 6 is connected to a third input
terminal (not shown) of the input terminal portion 9, the blood component measurement
counter electrode 7 is connected to a second input terminal (not shown) of the input
terminal portion 9, and the blood component introduction detecting electrode 8 is
connected to a fourth input terminal (not shown) of the input terminal portion 9.
[0033] As can also be seen from FIG. 2, in the biosensor 2, the hematocrit measurement working
electrode 5 is located closest to the blood inlet 15, followed by the blood component
measurement counter electrode 7, the blood component measurement working electrode
6, and the blood component introduction detecting electrode 8.
[0034] That is, in the biosensor 2, the hematocrit measurement working electrode (an example
of the first electrode) 5, the blood component measurement counter electrode (an example
of the second electrode) 7, the blood component measurement working electrode (an
example of the third electrode) 6, and the blood component introduction detecting
electrode 8 are arranged in this order from the blood inlet 15 side.
[0035] The cover 13 of the biosensor 2 has an air hole 16 in order to promote a capillary
action when a drop of blood is placed on the blood inlet 15 and to allow the blood
to come into the blood component introduction detecting electrode 8.
[0036] Next, the configuration of the biosensor 2 will be described in more detail.
[0037] In the present invention, the material of the insulating substrate 4 is not particularly
limited and may be, e.g., polyethylene terephthalate (PET), polycarbonate (PC), polyimide
(PI), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride
(PVC), polyoxymethylene (POM), monomer-cast nylon (MC), polybutylene terephthalate
(PBT), methacrylate resin (PMMA), ABS resin (ABS), or glass. Among them, polyethylene
terephthalate (PET), polycarbonate (PC), polyimide (PI) are preferred, and polyethylene
terephthalate (PET) is more preferred.
[0038] The size of the insulating substrate 4 is not particularly limited. For example,
the insulating substrate 4 has a total length of 5 to 100 mm, a width of 2 to 50 mm,
and a thickness of 0.05 to 2 mm, preferably has a total length of 7 to 50 mm, a width
of 3 to 20 mm, and a thickness of 0.1 to 1 mm, and more preferably has a total length
of 10 to 30 mm, a width of 3 to 10 mm, and a thickness of 0.1 to 0.6 mm.
[0039] The electrodes on the insulating substrate 4 can be produced, e.g., using a material
such as gold, platinum, or palladium, forming a conductive layer by sputtering or
evaporation, and processing the conductive layer into a particular electrode pattern
with a laser. The laser may be, e.g., a YAG laser, a CO
2 laser, or an excimer laser. The electrode pattern is not limited to that disclosed
in the present invention, and any electrode pattern is available as long as it can
achieve the effects of the present invention. The electrodes of the biosensor 2 used
in the present invention may be coated with a polymeric material in order to prevent
adhesion of impurities, oxidation, or the like. The coating on the surface of the
electrodes can be performed, e.g., by preparing a solution of the polymeric material,
dropping or applying the solution to the surface of the electrodes, and drying the
solution. The drying process may be, e.g., natural drying, air drying, hot air drying,
or drying by heating.
[0040] The electron carrier of the biosensor 2 is not particularly limited and may be, e.g.,
ferricyanide, p-benzoquinone, p-benzoquinone derivative, phenazine methosulfate, methylene
blue, ferrocene, or ferrocene derivative. Among them, ferricyanide is preferred, and
potassium ferricyanide is more preferred. The amount of the electron carrier to be
mixed is not particularly limited and may be, e.g., 0.1 to 1000 mM, preferably 1 to
500 mM, and more preferably 10 to 200 mM per one measurement or one biosensor.
[0041] In the present invention, the first biological information is, e.g., a hematocrit
value, and the second biological information is, e.g., a glucose value, a lactic acid
value, a uric acid value, a bilirubin value, or a cholesterol value. The oxidoreductase
of the present invention may be appropriately selected according to the type of the
second biological information. Examples of the oxidoreductase include glucose oxidase,
lactate oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, and
lactate dehydrogenase. The amount of the oxidoreductase is, e.g., 0.01 to 100 U, preferably
0.05 to 10 U, and more preferably 0.1 to 5 U per one sensor or one measurement. In
particular, the glucose value is preferred as the second biological information, and
the glucose oxidase and the glucose dehydrogenase are preferred as the oxidoreductase.
[0042] The reagent 11 of the present invention can be produced in the following manner.
For example, 0.1 to 5.0 U per sensor of flavin adenosine dinucleotide-dependent glucose
dehydrogenase (FAD-GDH), 10 to 200 mM of potassium ferricyanide, 1 to 50 mM of maltitol,
and 20 to 200 mM of taurine are added to and dissolved in a 0.01 to 2.0 wt% carboxymethyl
cellulose (CMC) aqueous solution to prepare a reagent solution. Then, the reagent
solution is dropped onto the electrodes of the insulating substrate 4 and dried.
[0043] Next, in the present invention, the material of the spacer 12 is not particularly
limited and may be, e.g., the same as that of the insulating substrate 4. The size
of the spacer 12 is not particularly limited. For example, the spacer 12 has a total
length of 5 to 100 mm, a width of 2 to 50 mm, and a thickness of 0.01 to 1 mm, preferably
has a total length of 7 to 50 mm, a width of 3 to 20 mm, and a thickness of 0.05 to
0.5 mm, and more preferably has a total length of 10 to 30 mm, a width of 3 to 10
mm, and a thickness of 0.05 to 0.25 mm. The spacer 12 has an I-shaped notch that serves
as the blood supply path 14 for introducing blood. The blood supply path 14 may be,
e.g., in the form of a T-shaped notch. In such a case, the present invention can also
be carried out by appropriately providing a reagent portion and an electrode portion
at each end of the blood supply path to perform a hematocrit measurement and a glucose
measurement separately.
[0044] In the present invention, the material of the cover 13 is not particularly limited
and may be, e.g., the same as that of the insulating substrate 4. It is more preferable
that a portion of the cover 13 that forms the ceiling of the blood supply path 14
is subjected to a hydrophilic treatment. The hydrophilic treatment may be, e.g., a
method for applying a surface active agent or a method for introducing a hydrophilic
functional group such as a hydroxyl group, a carbonyl group, or a carboxyl group into
the surface of the cover 13 by plasma processing. The size of the cover 13 is not
particularly limited. For example, the cover 13 has a total length of 5 to 100 mm,
a width of 3 to 50 mm, and a thickness of 0.01 to 0.5 mm, preferably has a total length
of 10 to 50 mm, a width of 3 to 20 mm, and a thickness of 0.05 to 0.25 mm, and more
preferably has a total length of 15 to 30 mm, a width of 5 to 10 mm, and a thickness
of 0.05 to 0.1 mm. The cover 13 preferably has the air hole 16, e.g., in the form
of a circle, ellipse, or polygon. The air hole 16 may have, e.g., a maximum diameter
of 0.01 to 10 mm, preferably a maximum diameter of 0.05 to 5 mm, and more preferably
a maximum diameter of 0.1 to 2 mm. The air hole 16 may be formed, e.g., by punching
through the cover 13 with a laser or drill, or by using a die that enables an air
vent to be provided during the formation of the cover 13.
[0045] Next, as shown in FIG. 2, the insulating substrate 4, the spacer 12, and the cover
13 are laminated in this order and integrated into one component, thereby producing
the biosensor 2. For the integration, the three members may be joined using an adhesive
or thermally fused together. Examples of the adhesive include an epoxy adhesive, an
acrylic adhesive, a polyurethane adhesive, a thermosetting adhesive (such as a hot-melt
adhesive), and a UV curable adhesive.
[0046] Referring back to FIG. 1 again, a voltage application portion 17 for applying a voltage
and a current-voltage converter 18 are connected to the input terminal portion 9 of
the biological information measurement device of an embodiment of the present invention.
[0047] A voltage is supplied from a control portion 19 to the voltage application portion
17, and this voltage is then applied via the input terminal portion 9 to a desired
electrode among the hematocrit measurement working electrode 5, the blood component
measurement working electrode 6, the blood component measurement counter electrode
7, and the blood component introduction detecting electrode 8 of the biosensor 2 for
a predetermined time. The current flowing between the electrodes of the biosensor
2 as a result of this voltage application is converted to a voltage by the current-voltage
converter 18, and subsequently the voltage is converted to a digital value by an analog-digital
(A/D) converter 20. Thereafter, a determination portion 21 compares the digitized
voltage value with a threshold value.
[0048] A display portion 22 is connected to the control portion 19 and displays the glucose
value detected by the biosensor 2 and the results of the determination made by the
determination portion 21.
[0049] In FIG. 1, reference numeral 23 denotes a power source that supplies power to each
portion. Reference numeral 24 denotes a memory that stores a table containing hematocrit
values (the first biological information) and applied voltages, application times,
etc. for measuring the glucose, or a calibration curve and a calibration table that
have been previously prepared from the ambient temperature.
[0050] A clock 25 is connected to the control portion 19. The control portion 19 makes use
of the hour and the time of the clock 25 to perform various control operations.
[0051] The control portion 19 further includes a correction portion 26 that corrects the
measured blood glucose level with the hematocrit value to improve the measurement
accuracy of the blood glucose level.
[0052] One of the characteristics of this embodiment is that the control portion 19 performs
a first biological information measurement mode A, a pre-processing application mode
B, a voltage application stop mode C, and a second biological information measurement
mode D, as shown in FIG. 4. FIG. 4 is a diagram showing the state of a voltage applied
over time in a biological information measurement device of an embodiment of the present
invention.
[0053] In the first biological information measurement mode A of this embodiment, the first
biological information (the hematocrit value) is measured based on the current flowing
through the first input terminal (not shown) of the input terminal portion 9, i.e.,
the hematocrit measurement working electrode 5.
[0054] In the pre-processing application mode B of this embodiment, a voltage is applied
to the second input terminal (not shown) and the third input terminal (not shown)
of the input terminal portion 9 in FIG. 1, i.e., the blood component measurement counter
electrode 7 and the blood component measurement working electrode 6 after the first
biological information measurement mode A.
[0055] In the voltage application stop mode C of this embodiment, the application of the
voltage to the second input terminal (not shown) and the third input terminal (not
shown) of the input terminal portion 9, i.e., the blood component measurement counter
electrode 7 and the blood component measurement working electrode 6 is stopped after
the pre-processing application mode B.
[0056] In the second biological information measurement mode D of this embodiment, the second
biological information (the glucose value) is measured by applying a voltage to the
second input terminal (not shown) and the third input terminal (not shown) of the
input terminal portion 9, i.e., the blood component measurement counter electrode
7 and the blood component measurement working electrode 6 after the voltage application
stop mode C.
[0057] In this embodiment, the control portion 19 is configured to be able to change the
voltage to be applied to the second input terminal (not shown) and the third input
terminal (not shown) of the input terminal portion 9, i.e., the blood component measurement
counter electrode 7 and the blood component measurement working electrode 6 in the
pre-processing application mode B based on the first biological information (the hematocrit
value) in the first biological information measurement mode A.
[0058] FIG. 5 is a graph showing a change in a response current value (µA) over time in
accordance with the application of a voltage in a biological information measurement
device of this embodiment. Specifically, FIG. 5 illustrates the properties of the
first biological information measurement mode A, the pre-processing application mode
B, the voltage application stop mode C, and the second biological information measurement
mode D when the hematocrit values (the first biological information) are 20%, 45%,
and 60% in the above configuration. FIG. 5 shows the response current value (µA) in
each mode. As shown in FIG. 5, the response current value is low when the hematocrit
value is high (e.g., 60%), and the response current value is high when the hematocrit
value is low (e.g., 20%).
[0059] This is because if blood has a high hematocrit value (high Hct value), the viscosity
of the blood is increased and the current response is relatively reduced; if blood
has a low hematocrit value (low Hct value), the viscosity of the blood is reduced
and the current response is relatively increased.
[0060] In FIG. 5, it may be difficult to understand the response current changes in the
pre-processing application mode B and the second biological information measurement
mode D. FIG. 6 is an enlarged view of the response current changes in these modes.
As can be sheen from FIG. 6, the pre-processing application mode B and the second
biological information measurement mode D also have the properties similar to those
of the first biological information measurement mode A. That is, if blood has a high
hematocrit value (high Hct value), the viscosity of the blood is increased and the
current response is relatively reduced; if blood has a low hematocrit value (low Hct
value), the viscosity of the blood is reduced and the current response is relatively
increased.
[0061] Next, referring to FIGS. 2 and 3, the measurement flow in the first biological information
measurement mode A, the pre-processing application mode B, the voltage application
stop mode C, and the second biological information measurement mode D will be described
in more detail. FIG. 3 is an operational flowchart of a biological information measurement
device of this embodiment.
[0062] Before use, a plurality of biosensors 2 (shown in FIG. 2) are stored in a dry container
(not shown). The biosensors 2 are taken out of the dry container one by one every
time the glucose value (i.e., the blood glucose level or the second biological information)
is measured. Then, as shown in FIG. 1, one end of the biosensor 2 is inserted into
the insertion port 3 (S1: "Attach biosensor" in FIG. 3) and electrically connected
to the input terminal portion 9. Consequently, the control portion 19 recognizes that
the biosensor 2 has been attached to the input terminal portion 9, and starts a measuring
operation (S2: "Activate power source of measurement device" in FIG. 3).
[0063] In this state, a drop of blood of a user has not been placed on the blood inlet 15
yet.
[0064] With the start of the measuring operation, the control portion 19 allows an applied
voltage to be supplied to each of the blood component measurement working electrode
6, the blood component measurement counter electrode 7, and the blood component introduction
detecting electrode 8 of the biosensor 2 via the voltage application portion 17 and
the input terminal portion 9 (S3: "Apply voltage to measurement working electrode,
measurement counter electrode, and detecting electrode" in FIG. 3).
[0065] In this embodiment, the applied voltage supplied to each of the blood component measurement
working electrode 6, the blood component measurement counter electrode 7, and the
blood component introduction detecting electrode 8 is, e.g., 0.5 V.
[0066] Next, a user pricks their finger or the like with a lancet to draw blood and places
a drop of blood on the blood inlet 15 of the biosensor 2 (S4: "Place drop of blood
on inlet of biosensor" in FIG. 3).
[0067] Then, a current begins to flow between the blood component measurement working electrode
6 and the blood component measurement counter electrode 7 and between the blood component
measurement working electrode 6 and the blood component introduction detecting electrode
8. This current is converted to a voltage by the current-voltage converter 18, and
subsequently the voltage is converted to a digital value by the A/D converter 20.
Thereafter, the determination portion 21 of the control portion 19 makes a determination.
[0068] Specifically, the control portion 19 measures a value of the current flowing between
the blood component measurement working electrode 6 and the blood component measurement
counter electrode 7, and compares a voltage value that is proportional to the current
value with a predetermined threshold value (e.g., 10 mV). If the voltage value is
not less than the threshold value, then the control portion 19 measures a value of
the current flowing between the blood component measurement working electrode 6 and
the blood component introduction detecting electrode 8.
[0069] If the voltage value that is proportional to the value of the current flowing between
the blood component measurement working electrode 6 and the blood component measurement
counter electrode 7 is less than the threshold value, the determination portion 21
of the control portion 19 determines that the drop of blood still has not sufficiently
permeated the reagent 11, and repeats the above comparison until the value of the
current flowing between the blood component measurement working electrode 6 and the
blood component measurement counter electrode 7 is not less than the threshold value
(S5: "Current flowing between measurement working electrode and measurement counter
electrode ≥ Threshold value" in FIG. 3).
[0070] Similarly, the control portion 19 measures a value of the current flowing between
the blood component measurement working electrode 6 and the blood component introduction
detecting electrode 8, compares a voltage value that is proportional to the current
value with a predetermined threshold value (e.g., 10 mV), and determines whether the
voltage value is not less than the threshold value. If the current value is less than
the threshold value, it is determined that the drop of blood still has not sufficiently
permeated the reagent 11 and the blood component introduction detecting electrode
8, and the above comparison is repeated until the current value is not less than the
threshold value (S6: "Current flowing between measurement working electrode and detecting
electrode ≥ Threshold value" in FIG. 3).
[0071] Then, if the current value is not less than the threshold value in the step S5 and
the following step S6 in FIG. 3, the determination portion 21 of the control portion
19 determines that the amount of the blood that has been introduced is large enough
to be measured.
[0072] Next, when it is determined that the amount of the blood that has been introduced
is large enough to be measured, the control portion 19 applies, e.g., a voltage of
1.0 to 3.0 V (the applied voltage is 2.5 V in this embodiment) between the hematocrit
measurement working electrode 5 and the blood component measurement counter electrode
7 for an application time of 0.01 to 3.0 seconds (the application time is 0.5 seconds
in this embodiment) in the first biological information measurement mode A (S7: "Apply
voltage between hematocrit working electrode and measurement counter electrode to
calculate hematocrit value" in FIG. 3).
[0073] As can be seen from FIG. 2, there is a certain space (e.g., 0.01 mm to 10 mm) between
the hematocrit measurement working electrode 5 and the blood component measurement
counter electrode 7, and no reagent such as an electron carrier is present in this
space.
[0074] Therefore, an oxidation current that depends on the hematocrit value (the first biological
information) can be detected without the influence of the reagent 11 between the hematocrit
measurement working electrode 5 and the blood component measurement counter electrode
7.
[0075] The oxidation current is recognized as a voltage value by the control portion 19
via the current-voltage converter 18 and the A/D converter 20.
[0076] One of the characteristics of this embodiment is that the voltage to be applied in
the pre-processing application mode B can be changed based on the oxidation current
(which has been converted to a voltage value) that depends on the hematocrit value
(the first biological information) and is recognized by the control portion 19.
[0077] Specifically, in this embodiment, the voltage to be applied in the pre-processing
application mode B can be determined according to the oxidation current (which has
been converted to a voltage value) that depends on the detected hematocrit value (the
first biological information), using a management table containing hematocrit values
(the first biological information) and applied voltages, application times, etc. for
measuring the glucose, which has been previously stored in the memory 24.
[0078] In other words, if blood has a high hematocrit value (high Hct value), the viscosity
of the blood is increased and the current response is relatively reduced during the
measurement of the glucose. Therefore, the high-Hct blood requires a voltage to achieve
a high current response. If blood has a low hematocrit value (low Hct value), the
viscosity of the blood is reduced and the current response is relatively increased
during the measurement of the glucose. Therefore, the low-Hct blood requires a voltage
to achieve a low current response.
[0079] In this embodiment, e.g., the memory 24 stores settings of 0.75 V for a hematocrit
value (the first biological information) of 20%, 0.35 V for a hematocrit value of
45%, and 0.15 V for a hematocrit value of 60%. The control portion 19 appropriately
selects the voltage to be applied according to these hematocrit values (S8: "Determine
pre-processing voltage to be applied according to hematocrit value" in FIG. 3). In
this embodiment, the voltage to be applied according to the above hematocrit values
may be modified by the ambient temperature. The ambient temperature can be measured
by a conventionally known method for measuring the ambient temperature, which will
be described later. Such a modification is made because the reaction between the glucose
in the blood and the oxidoreductase is an enzyme reaction that is affected by the
ambient temperature. Similarly, the predetermined time during which a voltage is applied
may also be modified by the ambient temperature.
[0080] In this embodiment, when the hematocrit value (the first biological information)
represents a first hematocrit value in the memory 24, a first voltage is applied to
the second input terminal and the third input terminal in the pre-processing application
mode, and when the hematocrit value represents a second hematocrit value in the memory
24, a second voltage is applied to the second input terminal and the third input terminal
in the pre-processing application mode. The first hematocrit value may be selected
to be larger than the second hematocrit value, and the first voltage may be selected
to be smaller than the second voltage.
[0081] Alternatively, in this embodiment, when the hematocrit value (the first biological
information) represents a first hematocrit value in the memory 24, a first voltage
is applied to the second input terminal and the third input terminal in the pre-processing
application mode, when the hematocrit value represents a second hematocrit value in
the memory 24, a second voltage is applied to the second input terminal and the third
input terminal in the pre-processing application mode, and when the hematocrit value
represents a third hematocrit value in the memory 24, a third voltage is applied to
the second input terminal and the third input terminal in the pre-processing application
mode. The first hematocrit value may be selected to be larger than the second hematocrit
value and the third hematocrit value, and the second hematocrit value may be selected
to be larger than the third hematocrit value. The first voltage may be selected to
be smaller than the second voltage and the third voltage, and the second voltage may
be selected to be smaller than the third voltage.
[0082] Next, in this embodiment, the control portion 19 applies the voltage that has been
determined according to the measured hematocrit value (the first biological information)
between the blood component measurement working electrode 6 and the blood component
measurement counter electrode 7, e.g., for a predetermined time of 0.5 to 4.0 seconds
(for 2.0 seconds in this embodiment) in the pre-processing application mode B (S9:
"Apply determined voltage between measurement working electrode and measurement counter
electrode" in FIG. 3).
[0083] Thereafter, in this embodiment, the control portion 19 stops the application of the
voltage to all the electrodes (the hematocrit measurement working electrode 5, the
blood component measurement working electrode 6, the blood component measurement counter
electrode 7, and the blood component introduction detecting electrode 8) of the biosensor
2 for about 0.1 to 5.0 seconds (for 1.0 second in this embodiment) in order to further
accelerate the reaction between the glucose in the blood and the reagent 11 containing
the oxidoreductase and the electron carrier in the voltage application stop mode C
(S10: "Stop voltage application" in FIG. 3).
[0084] Then, in the voltage application stop mode C, the glucose in the blood reacts with
the oxidoreductase for a certain period of time.
[0085] In the next second biological information measurement mode D, the control portion
19 applies a voltage between the blood component measurement working electrode 6 and
the blood component measurement counter electrode 7, oxidizes the reduced electron
carrier that is generated on the blood component measurement working electrode 6 by
the enzyme reaction, and detects the oxidation current, thereby measuring a glucose
(blood glucose) value (the second biological information).
[0086] The reaction time between the glucose and the oxidoreductase in the second biological
information measurement mode D is, e.g., 0.5 to 20 seconds, and more preferably 0.5
to 10 seconds. In this embodiment, a voltage of 0.05 to 1.0 V, and more preferably
a voltage of 0.1 to 0.8 V (0.25 V in this embodiment) is applied between the blood
component measurement working electrode 6 and the blood component measurement counter
electrode 7 for 1.5 seconds.
[0087] In this embodiment, the control portion 19 calculates the glucose value (the second
biological information) after an application time of 1.5 seconds has elapsed (S11:
"Apply voltage finally between measurement working electrode and measurement counter
electrode" in FIG. 3).
[0088] In this embodiment, the calculated glucose value (the second biological information)
is subjected to a conventionally known temperature correction (S12: "Measure and correct
glucose value" in FIG. 3).
[0089] The temperature correction is performed because the enzyme reaction for measuring
the glucose value is affected by the ambient temperature. However, in the step S8
of determining a pre-processing voltage to be applied according to the hematocrit
value, as shown in FIG. 3, if the voltage to be applied and/or the application time
according to the hematocrit value are modified by the ambient temperature, the glucose
value may be either corrected or not corrected at this stage. On the other hand, in
the step S8 of determining a pre-processing voltage to be applied according to the
hematocrit value, as shown in FIG. 3, if the voltage to be applied and the application
time according to the hematocrit value are not modified by the ambient temperature,
the glucose value needs to be corrected at this stage.
[0090] The glucose value thus corrected is displayed on the display portion 22 as a final
glucose (blood glucose) value (the second biological information) (S13: "Display glucose
value" in FIG. 3).
[0091] One of the characteristics of this embodiment is that the voltage to be applied in
the pre-processing application mode B can be changed based on the oxidation current
(which has been converted to a voltage value) that depends on the hematocrit value
(the first biological information) and is recognized by the control portion 19. Consequently,
the blood glucose level displayed on the display portion 22 can achieve extremely
high accuracy
[0092] Hereinafter, this point will be described with reference to FIGS. 7 to 14.
[0093] FIG. 7 is a graph showing a change in an output voltage (mV) with a blood glucose
level in a biological information measurement device of an embodiment of the present
invention. Specifically, in this embodiment, FIG. 7 illustrates how the output of
the A/D converter 20 (FIG. 1) is changed with the blood glucose level in the second
biological information measurement mode D when the hematocrit values are 20%, 45%,
and 60% (corresponding to the state before the correction in the step S12 in FIG.
3). As can be seen from FIG. 7, the output voltage increases with increasing the blood
glucose level no matter whether the hematocrit value is 20%, 45%, or 60%.
[0094] On the other hand, FIG. 11 is a graph showing a change in an output voltage (mV)
with a blood glucose level in a biological information measurement device of a conventional
example. Specifically, in the conventional example, FIG. 11 illustrates how the output
of the A/D converter 20 (FIG. 1) is changed with the blood glucose level in the second
biological information measurement mode D when the hematocrit values are 20%, 45%,
and 60%. As can be seen from FIG. 11, similarly to FIG. 7, the output voltage increases
with increasing the blood glucose level no matter whether the hematocrit value is
20%, 45%, or 60%.
[0095] Comparing FIG. 7 (this embodiment) and FIG. 11 (the conventional example) shows that
a variation in the detected blood glucose level (the second biological information)
is small even if the hematocrit values (the first biological information) differ in
this embodiment. For example, in FIG. 11 (the conventional example), when the blood
glucose level is 350 mg/dl, the output voltage is 280 mV for a hematocrit value of
45%, but the output voltage is increased to 390 mV for a hematocrit value of 20%,
resulting in a difference of 110 mV.
[0096] Moreover, in FIG. 11 (the conventional example), while the output voltage is 280
mV for a hematocrit value of 45%, the output voltage is reduced to 200 mV for a hematocrit
value of 60%, resulting in a difference of 80 mV.
[0097] On the other hand, in FIG. 7 (this embodiment), when the blood glucose level is 350
mg/dl, the output voltage is 290 mV for a hematocrit value of 45%, and the output
voltage is 360 mV for a hematocrit value of 20%, making only a difference of 70 mV.
[0098] Moreover, in FIG. 7 (this embodiment), while the output voltage is 290 mV for a hematocrit
value of 45%, the output voltage is 250 mV for a hematocrit value of 60%, making only
a difference of 40 mV.
[0099] As a result of changing the voltage to be applied between the blood component measurement
working electrode 6 and the blood component measurement counter electrode 7 in the
pre-processing application mode B, as shown in FIG. 4, this embodiment can reduce
a difference in the output voltage between the hematocrit values.
[0100] In other words, this embodiment deals with the following points. As described above,
if blood has a high hematocrit value (high Hct value), the viscosity of the blood
is increased and the current response is relatively reduced during the measurement
of the glucose. Therefore, the high-Hct blood requires a voltage to achieve a high
current response. If blood has a low hematocrit value (low Hct value), the viscosity
of the blood is reduced and the current response is relatively increased during the
measurement of the glucose. Therefore, the low-Hct blood requires a voltage to achieve
a low current response.
[0101] In contrast, the conventional example applies the same voltage between the blood
component measurement working electrode 6 and the blood component measurement counter
electrode 7 in the pre-processing application mode B regardless of the hematocrit
value (FIG. 11), so that the output voltage varies greatly FIG. 11 is a graph showing
a change in an output voltage (mV) with a blood glucose level in a biological information
measurement device of the conventional example.
[0102] FIG. 12 is a graph showing a difference in sensitivity of an output voltage (mV)
with respect to a hematocrit value in a biological information measurement device
of the conventional example. Specifically, FIG. 12 illustrates a difference (the degree
of influence) in each of the samples with blood glucose levels of 100 mg/dl and 350
mg/dl when their hematocrit values are 20% and 60% as compared to 45% in the conventional
example.
[0103] FIG. 12 (the conventional example) shows that both the samples with blood glucose
levels of 100 mg/dl and 350 mg/dl have a difference of 35% or more on the hematocrit
20% side and a difference of 20% or more on the hematocrit 60% side from the hematocrit
value 45%.
[0104] Thus, in the conventional example, the output voltage of the A/D converter 20 varies
greatly depending on the hematocrit value, as can be seen from FIGS. 11 and 12.
[0105] The conventional example also has made an attempt to calculate the final blood glucose
level by correcting the output voltage of the A/D converter 20 in accordance with
the subsequently detected hematocrit value.
[0106] However, in this conventional example, as shown in FIG. 13, the sample with a blood
glucose level of 100 mg/dl has a variation of + 7.5% to - 4.0% when the hematocrit
value is 20%, a variation of + 9.0% to - 5.0% when the hematocrit value is 45%, and
a variation of + 9.5% to - 7.0% when the hematocrit value is 60%. FIG. 13 is a graph
showing a difference in sensitivity of an output voltage (mV) with respect to a hematocrit
value in a biological information measurement device of the conventional example.
[0107] As shown in FIG. 14, the sample with a blood glucose level of 350 mg/dl has a variation
of + 8.0% to - 4.0% when the hematocrit value is 20%, a variation of + 10.0% to -
6.0% when the hematocrit value is 45%, and a variation of + 11.0% to - 7.5% when the
hematocrit value is 60%. FIG. 14 is a graph showing a difference in sensitivity of
an output voltage (mV) with respect to a hematocrit value in a biological information
measurement device of the conventional example.
[0108] Even if subsequent corrections are performed while there is such a great variation,
the final blood glucose level will still vary significantly
[0109] Thus, the measurement accuracy is low in the conventional biological information
measurement device.
[0110] Contrary to the conventional example, FIG. 8 is a graph showing a difference in sensitivity
of an output voltage (mV) with respect to a hematocrit value in a biological information
measurement device of this embodiment. Specifically, FIG. 8 illustrates a difference
(the degree of influence) in each of the samples with blood glucose levels of 100
mg/dl and 350 mg/dl when their hematocrit values are 20% and 60% as compared to 45%
in this embodiment.
[0111] FIG. 8 (this embodiment) shows that both the samples with blood glucose levels of
100 mg/dl and 350 mg/dl have only a difference of about 20% on the hematocrit 20%
side and only a difference of about 10% on the hematocrit 60% side from the hematocrit
value 45%.
[0112] Thus, in this embodiment, the output voltage of the A/D converter 20 varies slightly
depending on the hematocrit value, as can be seen from FIGS. 7 and 8.
[0113] Therefore, this embodiment shows only a small variation when the final blood glucose
level is calculated from the output voltage of the A/D converter 20.
[0114] This point will be further described with reference to FIGS. 9 and 10. FIGS. 9 and
10 are graphs showing a difference in sensitivity of an output voltage (mV) with respect
to a hematocrit value in a biological information measurement device of this embodiment.
As shown in FIG. 9, the sample with a blood glucose level of 100 mg/dl has only a
variation of + 3.0% to - 3.0% when the hematocrit value is 20%, only a variation of
+ 2.0% to - 3.0% when the hematocrit value is 45%, and only a variation of + 5.0%
to - 2.0% when the hematocrit value is 60%.
[0115] As shown in FIG. 10, the sample with a blood glucose level of 350 mg/dl has only
a variation of + 4.5% to - 3.0% when the hematocrit value is 20%, only a variation
of + 4.0% to - 4.0% when the hematocrit value is 45%, and only a variation of + 6.0%
to - 4.0% when the hematocrit value is 60%.
[0116] Therefore, in this embodiment, since the blood glucose level itself is measured under
the conditions that are not much affected by the hematocrit value, the measurement
accuracy can be improved.
[0117] This embodiment performs a temperature correction in the step S12 in FIG. 3 in order
to reduce the influence of the temperature, so that the measurement accuracy can be
improved further.
[0118] In this embodiment, if the resultant hematocrit value (the first biological information)
is a standard value (e.g., the hematocrit value is 42), it is not necessary to change
the voltage to be applied in the pre-processing application mode B and the voltage
application time during which a voltage is applied between the blood component measurement
counter electrode 7 and the blood component measurement working electrode 6 in the
second biological information measurement mode D.
(Embodiment 2)
[0119] FIGS. 15 to 22 show Embodiment 2 of the present invention. Similarly to Embodiment
1, Embodiment 2 can change a voltage to be applied between the blood component measurement
counter electrode 7 and the blood component measurement working electrode 6 in the
pre-processing application mode B based on the hematocrit value (the first biological
information) measured in the first biological information measurement mode A. Moreover,
Embodiment 2 can change a voltage application time during which a voltage is applied
between the blood component measurement counter electrode 7 and the blood component
measurement working electrode 6 in the second biological information measurement mode
D based on the first biological information (the hematocrit value) in the first biological
information measurement mode A.
[0120] FIG. 15 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of this embodiment. In the first biological information
measurement mode A of FIG. 15, the first biological information (the hematocrit value)
is measured based on the current flowing through the first input terminal (not shown)
of the input terminal portion 9, i.e., the hematocrit measurement working electrode
5.
[0121] In the pre-processing application mode B of this embodiment, a voltage is applied
to the second input terminal (not shown) and the third input terminal (not shown)
of the input terminal portion 9 in FIG. 1, i.e., the blood component measurement counter
electrode 7 and the blood component measurement working electrode 6 after the first
biological information measurement mode A.
[0122] In the voltage application stop mode C of this embodiment, the application of the
voltage to the second input terminal (not shown) and the third input terminal (not
shown) of the input terminal portion 9, i.e., the blood component measurement counter
electrode 7 and the blood component measurement working electrode 6 is stopped after
the pre-processing application mode B.
[0123] In the second biological information measurement mode D of this embodiment, the second
biological information (the glucose value) is measured by applying a voltage to the
second input terminal (not shown) and the third input terminal (not shown) of the
input terminal portion 9, i.e., the blood component measurement counter electrode
7 and the blood component measurement working electrode 6 after the voltage application
stop mode C.
[0124] In this embodiment, the control portion 19 is configured to be able to change the
voltage to be applied to the second input terminal (not shown) and the third input
terminal (not shown) of the input terminal portion 9, i.e., the blood component measurement
counter electrode 7 and the blood component measurement working electrode 6 in the
pre-processing application mode B based on the first biological information (the hematocrit
value) in the first biological information measurement mode A.
[0125] FIG. 16 is a graph showing a change in a response current value (µA) over time in
accordance with the application of a voltage in a biological information measurement
device of another embodiment of the present invention. Specifically, FIG. 16 illustrates
the properties of the first biological information measurement mode A, the pre-processing
application mode B, the voltage application stop mode C, and the second biological
information measurement mode D when the hematocrit values are 20%, 45%, and 60% in
the above configuration. FIG. 16 shows the response current value (µA) in each mode.
As shown in FIG. 16, the response current value is low when the hematocrit value is
high (e.g., 60%), and the response current value is high when the hematocrit value
is low (e.g., 20%).
[0126] This is because if blood has a high hematocrit value (high Hct value), the viscosity
of the blood is increased and the current response is relatively reduced; if blood
has a low hematocrit value (low Hct value), the viscosity of the blood is reduced
and the current response is relatively increased.
[0127] In FIG. 16, it may be difficult to understand the response current changes in the
pre-processing application mode B and the second biological information measurement
mode D. FIG. 17 is an enlarged view of the response current changes in these modes.
As can be seen from FIG. 17, the pre-processing application mode B and the second
biological information measurement mode D also have the properties similar to those
of the first biological information measurement mode A. That is, if blood has a high
hematocrit value (high Hct value), the viscosity of the blood is increased and the
current response is relatively reduced; if blood has a low hematocrit value (low Hct
value), the viscosity of the blood is reduced and the current response is relatively
increased.
[0128] Next, referring to FIGS. 2 and 22, the measurement flow in the first biological information
measurement mode A, the pre-processing application mode B, the voltage application
stop mode C, and the second biological information measurement mode D will be described
in more detail. FIG. 22 is an operational flowchart of a biological information measurement
device of this embodiment.
[0129] Before use, a plurality of biosensors 2 (shown in FIG. 2) are stored in a dry container
(not shown). The biosensors 2 are taken out of the dry container one by one every
time the glucose value (i.e., the blood glucose level or the second biological information)
is measured. Then, as shown in FIG. 1, one end of the biosensor 2 is inserted into
the insertion port 3 (S1: "Attach biosensor" in FIG. 22) and electrically connected
to the input terminal portion 9. Consequently, the control portion 19 recognizes that
the biosensor 2 has been attached to the input terminal portion 9, and starts a measuring
operation (S2: "Activate power source of measurement device" in FIG. 22).
[0130] In this state, a drop of blood of a user has not been placed on the blood inlet 15
yet.
[0131] With the start of the measuring operation, the control portion 19 allows an applied
voltage to be supplied to each of the blood component measurement working electrode
6, the blood component measurement counter electrode 7, and the blood component introduction
detecting electrode 8 of the biosensor 2 via the voltage application portion 17 and
the input terminal portion 9 (S3: "Apply voltage to measurement working electrode,
measurement counter electrode, and detecting electrode" in FIG. 22).
[0132] In this embodiment, the applied voltage supplied to each of the blood component measurement
working electrode 6, the blood component measurement counter electrode 7, and the
blood component introduction detecting electrode 8 is, e.g., 0.5 V.
[0133] Next, a user pricks their finger or the like with a lancet to draw blood and places
a drop of blood on the blood inlet 15 of the biosensor 2 (S4: "Place drop of blood
on inlet of biosensor" in FIG. 22).
[0134] Then, a current begins to flow between the blood component measurement working electrode
6 and the blood component measurement counter electrode 7 and between the blood component
measurement working electrode 6 and the blood component introduction detecting electrode
8. This current is converted to a voltage by the current-voltage converter 18, and
subsequently the voltage is converted to a digital value by the A/D converter 20.
Thereafter, the determination portion 21 of the control portion 19 makes a determination.
[0135] Specifically, the control portion 19 measures a value of the current flowing between
the blood component measurement working electrode 6 and the blood component measurement
counter electrode 7, and compares a voltage value that is proportional to the current
value with a predetermined threshold value (e.g., 10 mV). If the voltage value is
not less than the threshold value, then the control portion 19 measures a value of
the current flowing between the blood component measurement working electrode 6 and
the blood component introduction detecting electrode 8.
[0136] If the voltage value that is proportional to the value of the current flowing between
the blood component measurement working electrode 6 and the blood component measurement
counter electrode 7 is less than the threshold value, the determination portion 21
of the control portion 19 determines that the drop of blood still has not sufficiently
permeated the reagent 11, and repeats the above comparison until the value of the
current flowing between the blood component measurement working electrode 6 and the
blood component measurement counter electrode 7 is not less than the threshold value
(S5: "Current flowing between measurement working electrode and measurement counter
electrode ≥ Threshold value" in FIG. 22).
[0137] Similarly, the control portion 19 measures a value of the current flowing between
the blood component measurement working electrode 6 and the blood component introduction
detecting electrode 8, compares a voltage value that is proportional to the current
value with a predetermined threshold value (e.g., 10 mV), and determines whether the
voltage value is not less than the threshold value. If the value is less than the
threshold value, it is determined that the drop of blood still has not sufficiently
permeated the reagent 11 and the blood component introduction detecting electrode
8, and the above comparison is repeated until the value is not less than the threshold
value (S6: "Current flowing between measurement working electrode and detecting electrode
≥ Threshold value" in FIG. 22).
[0138] Then, if the current value is not less than the threshold value in the step S5 and
the following step S6 in FIG. 22, the determination portion 21 of the control portion
19 determines that the amount of the blood that has been introduced is large enough
to be measured.
[0139] Next, when it is determined that the amount of the blood that has been introduced
is large enough to be measured, the control portion 19 applies, e.g., a voltage of
1.0 to 3.0 V (the applied voltage is 2.5 V in this embodiment) between the hematocrit
measurement working electrode 5 and the blood component measurement counter electrode
7 for an application time of 0.01 to 3.0 seconds (the application time is 0.5 seconds
in this embodiment) in the first biological information measurement mode A (S7: "Apply
voltage between hematocrit working electrode and measurement counter electrode to
calculate hematocrit value" in FIG. 22).
[0140] As can be seen from FIG. 2, there is a certain space (e.g., 0.01 mm to 10 mm) between
the hematocrit measurement working electrode 5 and the blood component measurement
counter electrode 7, and no reagent such as an electron carrier is present in this
space.
[0141] Therefore, only the blood flowing into the space between the hematocrit measurement
working electrode 5 and the blood component measurement counter electrode 7 serves
as an electron carrier. Consequently, an oxidation current that depends on the hematocrit
value (the first biological information) can be detected without the influence of
the reagent 11.
[0142] The oxidation current is recognized as a voltage value by the control portion 19
via the current-voltage converter 18 and the A/D converter 20.
[0143] One of the characteristics of this embodiment is that the voltage to be applied in
the pre-processing application mode B and the voltage application time during which
a voltage is applied between the blood component measurement counter electrode 7 and
the blood component measurement working electrode 6 in the second biological information
measurement mode D can be changed based on the oxidation current (which has been converted
to a voltage value) that depends on the hematocrit value (the first biological information)
and is recognized by the control portion 19.
[0144] Specifically, in this embodiment, the voltage to be applied in the pre-processing
application mode B can be determined according to the oxidation current (which has
been converted to a voltage value) that depends on the detected hematocrit value (the
first biological information), using a management table containing hematocrit values
(the first biological information) and applied voltages, application times, etc. for
measuring the glucose, which has been previously stored in the memory 24.
[0145] In other words, if blood has a high hematocrit value (high Hct value), the viscosity
of the blood is increased and the current response is relatively reduced during the
measurement of the glucose. Therefore, the high-Hct blood requires a voltage to achieve
a high current response. If blood has a low hematocrit value (low Hct value), the
viscosity of the blood is reduced and the current response is relatively increased
during the measurement of the glucose. Therefore, the low-Hct blood requires a voltage
to achieve a low current response.
[0146] In this embodiment, e.g., the memory 24 stores settings of 0.75 V for a hematocrit
value (the first biological information) of 20%, 0.35 V for a hematocrit value of
45%, and 0.15 V for a hematocrit value of 60%. The control portion 19 appropriately
selects the voltage to be applied according to these hematocrit values (S8: "Determine
pre-processing voltage to be applied and final application time according to hematocrit
value" in FIG. 22). In this embodiment, the voltage to be applied according to the
above hematocrit values may be modified by the ambient temperature. The ambient temperature
can be measured by a conventionally known method for measuring the ambient temperature,
which will be described later. Such a modification is made because the reaction between
the glucose in the blood and the oxidoreductase is an enzyme reaction that is affected
by the ambient temperature. Similarly, the predetermined time during which a voltage
is applied may also be modified by the ambient temperature.
[0147] In this embodiment, when the hematocrit value (the first biological information)
represents a first hematocrit value in the memory 24, a first voltage is applied to
the second input terminal and the third input terminal in the pre-processing application
mode, and when the hematocrit value represents a second hematocrit value in the memory
24, a second voltage is applied to the second input terminal and the third input terminal
in the pre-processing application mode. The first hematocrit value may be selected
to be larger than the second hematocrit value, and the first voltage may be selected
to be smaller than the second voltage.
[0148] Alternatively, in this embodiment, when the hematocrit value (the first biological
information) represents a first hematocrit value in the memory 24, a first voltage
is applied to the second input terminal and the third input terminal in the pre-processing
application mode, when the hematocrit value represents a second hematocrit value in
the memory 24, a second voltage is applied to the second input terminal and the third
input terminal in the pre-processing application mode, and when the hematocrit value
represents a third hematocrit value in the memory 24, a third voltage is applied to
the second input terminal and the third input terminal in the pre-processing application
mode. The first hematocrit value may be selected to be larger than the second hematocrit
value and the third hematocrit value, and the second hematocrit value may be selected
to be larger than the third hematocrit value. The first voltage may be selected to
be smaller than the second voltage and the third voltage, and the second voltage may
be selected to be smaller than the third voltage.
[0149] Next, in this embodiment, the control portion 19 applies the voltage that has been
determined according to the measured hematocrit value (the first biological information)
between the blood component measurement working electrode 6 and the blood component
measurement counter electrode 7, e.g., for a predetermined time of 0.5 to 4.0 seconds
(for 2.0 seconds in this embodiment) in the pre-processing application mode B (S9:
"Apply determined voltage between measurement working electrode and measurement counter
electrode" in FIG. 22).
[0150] Thereafter, in this embodiment, the control portion 19 stops the application of the
voltage to all the electrodes (the hematocrit measurement working electrode 5, the
blood component measurement working electrode 6, the blood component measurement counter
electrode 7, and the blood component introduction detecting electrode 8) of the biosensor
2 for about 0.1 to 5.0 seconds (for 1.0 second in this embodiment) in order to further
accelerate the reaction between the glucose in the blood and the reagent 11 containing
the oxidoreductase and the electron carrier in the voltage application stop mode C
(S10: "Stop voltage application" in FIG. 22).
[0151] Then, in the voltage application stop mode C, the glucose in the blood reacts with
the oxidoreductase for a certain period of time.
[0152] In the next second biological information measurement mode D, the control portion
19 applies a voltage between the blood component measurement working electrode 6 and
the blood component measurement counter electrode 7, oxidizes the reduced electron
carrier that is generated on the blood component measurement working electrode 6 by
the enzyme reaction, and detects the oxidation current, thereby measuring a glucose
(blood glucose) value (the second biological information).
[0153] The reaction time between the glucose and the oxidoreductase in the second biological
information measurement mode D is, e.g., 0.5 to 20 seconds, and more preferably 0.5
to 10 seconds. In this embodiment, the voltage application time during which a voltage
is applied between the blood component measurement counter electrode 7 and the blood
component measurement working electrode 6 in the second biological information measurement
mode D can be changed based on the first biological information (the hematocrit value)
in the first biological information measurement mode A.
[0154] Specifically, in this embodiment, a voltage of 0.05 to 1.0 V, and more preferably
a voltage of 0.1 to 0.8 V (0.25 V in this embodiment) is applied between the blood
component measurement working electrode 6 and the blood component measurement counter
electrode 7 while the voltage application time can be changed based on the first biological
information (the hematocrit value) in the first biological information measurement
mode A (S11: "Apply voltage finally between measurement working electrode and measurement
counter electrode" in FIG. 22).
[0155] Specifically, when the first biological information, i.e., the hematocrit value is
20% in the first biological information measurement mode A, the voltage application
time is 2.0 seconds, during which a voltage is applied between the blood component
measurement counter electrode 7 and the blood component measurement working electrode
6 in the second biological information measurement mode D.
[0156] When the hematocrit value is 45%, the voltage application time is 1.0 second, during
which a voltage is applied between the blood component measurement counter electrode
7 and the blood component measurement working electrode 6 in the second biological
information measurement mode D.
[0157] When the hematocrit value is 60%, the voltage application time is 0.8 seconds, during
which a voltage is applied between the blood component measurement counter electrode
7 and the blood component measurement working electrode 6 in the second biological
information measurement mode D.
[0158] In this embodiment, when the hematocrit value (the first biological information)
represents a first hematocrit value in the memory 24, a fourth voltage is applied
to the second input terminal and the third input terminal for a first period of time
in the second biological information measurement mode, and when the hematocrit value
represents a second hematocrit value in the memory 24, a fourth voltage is applied
to the second input terminal and the third input terminal for a second period of time
in the second biological information measurement mode. The first hematocrit value
may be selected to be larger than the second hematocrit value, and the second period
of time may be selected to be longer than the first period of time.
[0159] Alternatively, in this embodiment, when the hematocrit value (the first biological
information) represents a first hematocrit value in the memory 24, a fourth voltage
is applied to the second input terminal and the third input terminal for a first period
of time in the second biological information measurement mode, when the hematocrit
value represents a second hematocrit value in the memory 24, a fourth voltage is applied
to the second input terminal and the third input terminal for a second period of time
in the second biological information measurement mode, and when the hematocrit value
represents a third hematocrit value in the memory 24, a fourth voltage is applied
to the second input terminal and the third input terminal for a third period of time
in the second biological information measurement mode. The first hematocrit value
may be selected to be larger than the second hematocrit value and the third hematocrit
value, and the second hematocrit value may be selected to be larger than the third
hematocrit value. The second period of time and the third period of time may be selected
to be longer than the first period of time, and the third period of time may be selected
to be longer than the second period of time.
[0160] Thereafter, in this embodiment, the control portion 19 calculates the glucose value
(the second biological information).
[0161] The calculated glucose value (the second biological information) is subjected to
a conventionally known temperature correction (S12: "Measure and Correct glucose value
in determined final application time" in FIG. 22).
[0162] The temperature correction is performed because the enzyme reaction for measuring
the glucose value is affected by the ambient temperature. However, in the step S8
of determining a pre-processing voltage to be applied according to the hematocrit
value, as shown in FIG. 3, if the voltage to be applied and/or the application time
according to the hematocrit value are modified by the ambient temperature, the glucose
value may be either corrected or not corrected at this stage. On the other hand, in
the step S8 of determining a pre-processing voltage to be applied according to the
hematocrit value, as shown in FIG. 3, if the voltage to be applied and the application
time according to the hematocrit value are not modified by the ambient temperature,
the glucose value needs to be corrected at this stage.
[0163] The glucose value thus corrected is displayed on the display portion 22 as a final
glucose (blood glucose) value (the second biological information) (S13: "Display glucose
value" in FIG. 22).
[0164] One of the characteristics of this embodiment is that the voltage to be applied in
the pre-processing application mode B can be changed based on the oxidation current
(which has been converted to a voltage value) that depends on the hematocrit value
(the first biological information) and is recognized by the control portion 19, and
that the voltage application time in the second biological information measurement
mode D can be changed based on the first biological information (the hematocrit value)
in the first biological information measurement mode A. Consequently, the blood glucose
level displayed on the display portion 22 can achieve extremely high accuracy.
[0165] Hereinafter, this point will be described with reference to FIGS. 11 to 21.
[0166] FIG. 18 is a graph showing a change in an output voltage (mV) with a blood glucose
level in a biological information measurement device of another embodiment of the
present invention. Specifically, in this embodiment, FIG. 18 illustrates how the output
of the A/D converter 20 (FIG. 1) is changed with the blood glucose level in the second
biological information measurement mode D when the hematocrit values are 20%, 45%,
and 60% (corresponding to the state before the correction in the step S12 in FIG.
22). As can be seen from FIG. 18, the output voltage increases with increasing the
blood glucose level no matter whether the hematocrit value is 20%, 45%, or 60%.
[0167] On the other hand, FIG. 11 is a graph showing a change in an output voltage (mV)
with a blood glucose level in a biological information measurement device of a conventional
example. Specifically, in the conventional example, FIG. 11 illustrates how the output
of the A/D converter 20 (FIG. 1) is changed with the blood glucose level in the second
biological information measurement mode D when the hematocrit values are 20%, 45%,
and 60%. As can be seen from FIG. 11, similarly to FIG. 18, the output voltage increases
with increasing the blood glucose level no matter whether the hematocrit value is
20%, 45%, or 60%.
[0168] Comparing FIG. 18 (this embodiment) and FIG. 11 (the conventional example) shows
that a variation in the detected blood glucose level (the second biological information)
is small even if the hematocrit values (the first biological information) differ in
this embodiment. For example, in FIG. 11 (the conventional example), when the blood
glucose level is 350 mg/dl, the output voltage is 280 mV for a hematocrit value of
45%, but the output voltage is increased to 390 mV for a hematocrit value of 20%,
resulting in a difference of 110 mV.
[0169] Moreover, in FIG. 11 (the conventional example), while the output voltage is 280
mV for a hematocrit value of 45%, the output voltage is reduced to 200 mV for a hematocrit
value of 60%, resulting in a difference of 80 mV.
[0170] On the other hand, in FIG. 18 (this embodiment), when the blood glucose level is
350 mg/dl, the output voltage is 330 mV for a hematocrit value of 45%, and the output
voltage is 330 mV for a hematocrit value of 20%, making no difference.
[0171] Moreover, in FIG. 18 (this embodiment), while the output voltage is 330 mV for a
hematocrit value of 45%, the output voltage is 300 mV for a hematocrit value of 60%,
making only a difference of 30 mV.
[0172] As a result of not only changing the voltage to be applied between the blood component
measurement working electrode 6 and the blood component measurement counter electrode
7 in the pre-processing application mode B, as shown in FIG. 15, but also changing
the voltage application time in the second biological information measurement mode
D, this embodiment can reduce a difference in the output voltage between the hematocrit
values.
[0173] In other words, this embodiment deals with the following points. As described above,
if blood has a high hematocrit value (high Hct value), the viscosity of the blood
is increased and the current response is relatively reduced during the measurement
of the glucose. Therefore, the high-Hct blood requires a voltage to achieve a high
current response. If blood has a low hematocrit value (low Hct value), the viscosity
of the blood is reduced and the current response is relatively increased during the
measurement of the glucose. Therefore, the low-Hct blood requires a voltage to achieve
a low current response.
[0174] In contrast, the conventional example applies the same voltage between the blood
component measurement working electrode 6 and the blood component measurement counter
electrode 7 in the pre-processing application mode B regardless of the hematocrit
value (FIG. 11), so that the output voltage varies greatly FIG. 11 is a graph showing
a change in an output voltage (mV) with a blood glucose level in a biological information
measurement device of the conventional example.
[0175] FIG. 12 is a graph showing a difference in sensitivity of an output voltage (mV)
with respect to a hematocrit value in a biological information measurement device
of the conventional example. Specifically, FIG. 12 illustrates a difference (the degree
of influence) in each of the samples with blood glucose levels of 100 mg/dl and 350
mg/dl when their hematocrit values are 20% and 60% as compared to 45% in the conventional
example.
[0176] FIG. 12 (the conventional example) shows that both the samples with blood glucose
levels of 100 mg/dl and 350 mg/dl have a difference of 35% or more on the hematocrit
20% side and a difference of 20% or more on the hematocrit 60% side from the hematocrit
value 45%.
[0177] Thus, in the conventional example, the output voltage of the A/D converter 20 varies
greatly depending on the hematocrit value, as can be seen from FIGS. 11 and 12.
[0178] The conventional example also has made an attempt to calculate the final blood glucose
level by correcting the output voltage of the A/D converter 20 in accordance with
the subsequently detected hematocrit value.
[0179] However, in this conventional example, as shown in FIG. 13, the sample with a blood
glucose level of 100 mg/dl has a variation of + 7.5% to - 4.0% when the hematocrit
value is 20%, a variation of + 9.0% to - 5.0% when the hematocrit value is 45%, and
a variation of + 9.5% to - 7.0% when the hematocrit value is 60%. FIG. 13 is a graph
showing a difference in sensitivity of an output voltage (mV) with respect to a hematocrit
value in a biological information measurement device of the conventional example.
[0180] As shown in FIG. 14, the sample with a blood glucose level of 350 mg/dl has a variation
of + 8.0% to - 4.0% when the hematocrit value is 20%, a variation of + 10.0% to -
6.0% when the hematocrit value is 45%, and a variation of + 11.0% to - 7.5% when the
hematocrit value is 60%. FIG. 14 is a graph showing a difference in sensitivity of
an output voltage (mV) with respect to a hematocrit value in a biological information
measurement device of the conventional example.
[0181] Even if subsequent corrections are performed while there is such a great variation,
the final blood glucose level will still vary significantly
[0182] Thus, the measurement accuracy is low in the conventional biological information
measurement device.
[0183] Contrary to the conventional example, FIG. 19 is a graph showing a difference in
sensitivity of an output voltage (mV) with respect to a hematocrit value in a biological
information measurement device of this embodiment. Specifically, FIG. 19 illustrates
a difference (the degree of influence) in each of the samples with blood glucose levels
of 100 mg/dl and 350 mg/dl when their hematocrit values are 20% and 60% as compared
to 45% in this embodiment.
[0184] FIG. 19 (this embodiment) shows that both the samples with blood glucose levels of
100 mg/dl and 350 mg/dl have only a difference of about 2% on the hematocrit 20% side
and only a difference of about 9% on the hematocrit 60% side from the hematocrit value
45%.
[0185] Thus, in this embodiment, the output voltage of the A/D converter 20 varies slightly
depending on the hematocrit value, as can be seen from FIGS. 18 and 19.
[0186] Therefore, this embodiment shows only a small variation when the final blood glucose
level is calculated from the output voltage of the A/D converter 20.
[0187] This point will be further described with reference to FIGS. 20 and 21. FIGS. 20
and 21 are graphs showing a difference in sensitivity of an output voltage (mV) with
respect to a hematocrit value in a biological information measurement device of this
embodiment. As shown in FIG. 20, the sample with a blood glucose level of 100 mg/dl
has substantially no variation when the hematocrit value is 20%, only a variation
of + 2.5% to 0.0% when the hematocrit value is 45%, and only a variation of + 2.5%
to - 2.5% when the hematocrit value is 60%.
[0188] As shown in FIG. 21, the sample with a blood glucose level of 350 mg/dl has substantially
no variation when the hematocrit value is 20%, only a variation of + 3.0% to 0.0%
when the hematocrit value is 45%, and only a variation of + 0.0% to - 3.0% when the
hematocrit value is 60%.
[0189] Therefore, in this embodiment, since the blood glucose level itself is measured under
the conditions that are not much affected by the hematocrit value, the measurement
accuracy can be improved.
[0190] This embodiment performs a temperature correction in the step S12 in FIG. 22 in order
to reduce the influence of the temperature, so that the measurement accuracy can be
improved further.
[0191] In this embodiment, if the resultant hematocrit value (the first biological information)
is a standard value (e.g., the hematocrit value is 42), it is not necessary to change
the voltage to be applied in the pre-processing application mode B and the voltage
application time in the second biological information measurement mode D.
(Embodiment 3)
[0192] Embodiment 1 can change a voltage to be applied in the pre-processing application
mode B, and Embodiment 2 can change a voltage to be applied in the pre-processing
application mode B and an application time in the second biological information measurement
mode D. Using the configurations shown in FIGS. 1 and 2, the control portion 19 may
perform a control operation as shown in FIG. 23.
[0193] FIG. 23 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of yet another embodiment of the present invention.
The control operation shown in FIG. 23 mainly performs the first biological information
measurement mode A and the second biological information measurement mode D.
[0194] Specifically, in this embodiment, a hematocrit value (the first biological information)
is measured in the first biological information measurement mode A, and then the second
biological information measurement mode D is performed immediately after a short interval
(which is shorter than the stop time of the voltage application stop mode C in Embodiments
1 and 2). In performing the second biological information measurement mode D, based
on the hematocrit value (the first biological information) measured in the first biological
information measurement mode A, the control portion 19 can change a voltage value
to be applied to the blood component measurement counter electrode 7 and the blood
component measurement working electrode 6 in the second biological information measurement
mode D, or further can change a voltage application time during which a voltage is
applied to the blood component measurement counter electrode 7 and the blood component
measurement working electrode 6 in the second biological information measurement mode
D.
[0195] FIG. 24 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of yet another embodiment of the present invention.
The control operation shown in FIG. 24, which is yet another embodiment of the present
invention, performs the first biological information measurement mode A, the voltage
application stop mode C, and the second biological information measurement mode D.
[0196] Specifically, in this embodiment, a hematocrit value (the first biological information)
is measured in the first biological information measurement mode A, and then the voltage
application stop mode C is performed to stop the application of the voltage to the
blood component measurement counter electrode 7 and the blood component measurement
working electrode 6, and subsequently the second biological information measurement
mode D is performed. In performing the second biological information measurement mode
D, based on the hematocrit value (the first biological information) measured in the
first biological information measurement mode A, the control portion 19 can change
a voltage value to be applied to the blood component measurement counter electrode
7 and the blood component measurement working electrode 6 in the second biological
information measurement mode D, or further can change a voltage application time during
which a voltage is applied to the blood component measurement counter electrode 7
and the blood component measurement working electrode 6 in the second biological information
measurement mode D, or still further can change a stop time during which the application
of the voltage to all the electrodes (the hematocrit measurement working electrode
5, the blood component measurement working electrode 6, the blood component measurement
counter electrode 7, and the blood component introduction detecting electrode 8) is
stopped in the voltage application stop mode C.
[0197] FIG. 25 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of yet another embodiment of the present invention.
The control operation shown in FIG. 25, which is yet another embodiment of the present
invention, performs the first biological information measurement mode A and the second
biological information measurement mode D.
[0198] Specifically, in this embodiment, before starting the measurement (i.e., at the time
of waiting for the detection of blood), a hematocrit value (the first biological information)
is measured in the first biological information measurement mode A, and the second
biological information measurement mode D is performed immediately In performing the
second biological information measurement mode D, based on the hematocrit value (the
first biological information) measured in the first biological information measurement
mode A, the control portion 19 can change a voltage value to be applied to the blood
component measurement counter electrode 7 and the blood component measurement working
electrode 6 in the second biological information measurement mode D, or further can
change a voltage application time during which a voltage is applied to the blood component
measurement counter electrode 7 and the blood component measurement working electrode
6 in the second biological information measurement mode D.
[0199] FIG. 26 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of yet another embodiment of the present invention.
The control operation shown in FIG. 26, which is yet another embodiment of the present
invention, performs the first biological information measurement mode A, the voltage
application stop mode C, and the second biological information measurement mode D.
[0200] Specifically, in this embodiment, before starting the measurement (i.e., at the time
of waiting for the detection of blood), a hematocrit value (the first biological information)
is measured in the first biological information measurement mode A, and then (when
the measurement is started) the voltage application stop mode C is performed to stop
the application of the voltage to the blood component measurement counter electrode
7 and the blood component measurement working electrode 6, and subsequently the second
biological information measurement mode D is performed. In performing the second biological
information measurement mode D, based on the hematocrit value (the first biological
information) measured in the first biological information measurement mode A, the
control portion 19 can change a voltage value to be applied to the blood component
measurement counter electrode 7 and the blood component measurement working electrode
6 in the second biological information measurement mode D, or further can change a
voltage application time during which a voltage is applied to the blood component
measurement counter electrode 7 and the blood component measurement working electrode
6 in the second biological information measurement mode D, or still further can change
a stop time during which the application of the voltage to all the electrodes (the
hematocrit measurement working electrode 5, the blood component measurement working
electrode 6, the blood component measurement counter electrode 7, and the blood component
introduction detecting electrode 8) is stopped in the voltage application stop mode
C.
[0201] FIG. 27 is a diagram showing the state of a voltage applied over time in a biological
information measurement device of yet another embodiment of the present invention.
The control operation shown in FIG. 27, which is yet another embodiment of the present
invention, performs the pre-processing application mode B, the first biological information
measurement mode A, the voltage application stop mode C, and the second biological
information measurement mode D.
[0202] Specifically, in this embodiment, an approximate glucose value is calculated in the
pre-processing application mode B, and then based on the hematocrit value (the first
biological information) in the first biological information measurement mode A, the
control portion 19 can change a voltage value to be applied to the blood component
measurement counter electrode 7 and the blood component measurement working electrode
6 in the second biological information measurement mode D and a voltage application
time during which a voltage is applied to the blood component measurement counter
electrode 7 and the blood component measurement working electrode 6 in the second
biological information measurement mode D. Moreover, the voltage application stop
mode C or a short interval (which is shorter than the stop time of the voltage application
stop mode C in Embodiments 1 and 2) may be provided before and after the first biological
information measurement mode A.
[0203] In this embodiment, if the resultant hematocrit value (the first biological information)
is a standard value (e.g., the hematocrit value is 42), it is not necessary to change
the voltage to be applied and the voltage application time in the second biological
information measurement mode D.
Industrial Applicability
[0204] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a determination portion that is connected to the first input
terminal, the second input terminal, and the third input terminal; a control portion
that is connected to the determination portion and the voltage application portion;
and a display portion that is connected to the control portion. The control portion
is configured to perform a first biological information measurement mode in which
first biological information is measured based on a current flowing through the first
input terminal and a second biological information measurement mode in which second
biological information is measured by applying a voltage to the second input terminal
and the third input terminal after the first biological information measurement mode.
The display portion is configured to display the second biological information. The
control portion is configured to be able to change at least one of i) a voltage value
to be applied to the second input terminal and the third input terminal in the second
biological information measurement mode and ii) a voltage application time during
which a voltage is applied to the second input terminal and the third input terminal
in the second biological information measurement mode based on the first biological
information in the first biological information measurement mode. Thus, the present
invention can improve the measurement accuracy.
[0205] According to the present invention, at least one of the voltage value to be applied
to the second input terminal and the third input terminal in the second biological
information measurement mode and the voltage application time during which a voltage
is applied to the second input terminal and the third input terminal in the second
biological information measurement mode can be changed based on the first biological
information in the first biological information measurement mode. For example, a hematocrit
value is measured in the first biological information measurement mode, and the biological
information, e.g., a blood glucose level is measured based on this hematocrit value
in the second biological information measurement mode.
[0206] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a determination portion that is connected to the first input
terminal, the second input terminal, and the third input terminal a control portion
that is connected to the determination portion and the voltage application portion;
and a display portion that is connected to the control portion. The control portion
is configured to perform a first biological information measurement mode in which
first biological information is measured based on a current flowing through the first
input terminal, a pre-processing application mode in which a voltage is applied to
the second input terminal and the third input terminal after the first biological
information measurement mode, a voltage application stop mode in which the application
of the voltage to the second input terminal and the third input terminal is stopped
after the pre-processing application mode, and a second biological information measurement
mode in which second biological information is measured by applying a voltage to the
second input terminal and the third input terminal after the voltage application stop
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change a voltage value to be applied
to the second input terminal and the third input terminal in the pre-processing application
mode based on the first biological information in the first biological information
measurement mode. Thus, the present invention can improve the measurement accuracy
[0207] According to the present invention, the voltage value to be applied to the second
input terminal and the third input terminal in the pre-processing application mode
can be changed based on the first biological information in the first biological information
measurement mode. For example, a hematocrit value is measured in the first biological
information measurement mode, and the biological information, e.g., a blood glucose
level is measured based on this hematocrit value in the second biological information
measurement mode.
[0208] As described above, the present invention is directed to a biological information
measurement device to which a biosensor is to be attached. The biosensor includes
a first electrode, a second electrode, a third electrode, and a reagent portion provided
between the second electrode and the third electrode. The biological information measurement
device includes the following: a first input terminal to be connected to the first
electrode; a second input terminal to be connected to the second electrode; a third
input terminal to be connected to the third electrode; a voltage application portion
that applies a voltage to the first input terminal, the second input terminal, and
the third input terminal; a determination portion that is connected to the first input
terminal, the second input terminal, and the third input terminal; a control portion
that is connected to the determination portion and the voltage application portion;
and a display portion that is connected to the control portion. The control portion
is configured to perform a first biological information measurement mode in which
first biological information is measured based on a current flowing through the first
input terminal, a pre-processing application mode in which a voltage is applied to
the second input terminal and the third input terminal after the first biological
information measurement mode, a voltage application stop mode in which the application
of the voltage to the second input terminal and the third input terminal is stopped
after the pre-processing application mode, and a second biological information measurement
mode in which second biological information is measured by applying a voltage to the
second input terminal and the third input terminal after the voltage application stop
mode. The display portion is configured to display the second biological information.
The control portion is configured to be able to change a voltage value to be applied
to the second input terminal and the third input terminal in the pre-processing application
mode based on the first biological information in the first biological information
measurement mode. The control portion is configured to be able to change a voltage
application time during which a voltage is applied to the second input terminal and
the third input terminal in the second biological information measurement mode based
on the first biological information in the first biological information measurement
mode. Thus, the present invention can improve the measurement accuracy.
[0209] According to the present invention, the voltage value to be applied to the second
input terminal and the third input terminal in the pre-processing application mode
can be changed based on the first biological information in the first biological information
measurement mode, and the voltage application time during which a voltage is applied
to the second input terminal and the third input terminal in the second biological
information measurement mode can be changed based on the first biological information
in the first biological information measurement mode. For example, a hematocrit value
is measured in the first biological information measurement mode, and the biological
information, e.g., a blood glucose level is measured based on this hematocrit value
in the second biological information measurement mode.
[0210] Therefore, according to the present invention, since the blood glucose level itself
is measured under the conditions that are not much affected by the hematocrit value,
the measurement accuracy can be improved.
[0211] It is expected that the present invention will be used as a biological information
detector for detecting the biological information such as a blood glucose level.
Description of Reference Numerals
[0212]
- 1
- Main body case
- 2
- Biosensor
- 3
- Insertion port
- 4
- Insulating substrate
- 5
- Hematocrit measurement working electrode
- 6
- Blood component measurement working electrode
- 7
- Blood component measurement counter electrode
- 8
- Blood component introduction detecting electrode
- 9
- Input terminal portion
- 10
- Reagent portion
- 11
- Reagent
- 12
- Spacer
- 13
- Cover
- 14
- Blood supply path
- 15
- Blood inlet
- 16
- Air hole
- 17
- Voltage application portion
- 18
- Current-voltage converter
- 19
- Control portion
- 20
- A/D converter
- 21
- Determination portion
- 22
- Display portion
- 23
- Power source
- 24
- Memory
- 25
- Clock
- 26
- Correction portion