(19)
(11) EP 2 809 918 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.09.2017 Bulletin 2017/37

(21) Application number: 13774935.4

(22) Date of filing: 16.01.2013
(51) International Patent Classification (IPC): 
F02C 7/12(2006.01)
F02C 6/04(2006.01)
F02G 3/00(2006.01)
F01D 25/12(2006.01)
F01D 11/04(2006.01)
F02C 7/28(2006.01)
F02C 6/08(2006.01)
F02C 7/06(2006.01)
F02C 7/18(2006.01)
F02C 9/18(2006.01)
F01D 25/16(2006.01)
(86) International application number:
PCT/US2013/021628
(87) International publication number:
WO 2013/154630 (17.10.2013 Gazette 2013/42)

(54)

GAS TURBINE ENGINE BUFFER SYSTEM

PUFFERSYSTEM FÜR GASTURBINENMOTOR

SYSTÈME TAMPON POUR MOTEUR À TURBINE À GAZ


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 31.01.2012 US 201261592925 P
06.02.2012 US 201213366447

(43) Date of publication of application:
10.12.2014 Bulletin 2014/50

(73) Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72) Inventors:
  • ACKERMANN, William K.
    East Hartford, Connecticut 06118-1905 (US)
  • MUNSELL, Peter M.
    Granby, Connecticut 06035 (US)

(74) Representative: Bridge, Kerry Ann 
Dehns St Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56) References cited: : 
FR-A- 1 446 066
US-A- 2 584 899
US-A- 3 940 092
US-A- 5 586 860
US-A1- 2003 046 938
US-A1- 2009 097 067
GB-A- 1 095 129
US-A- 2 584 899
US-A- 4 502 274
US-A- 6 035 627
US-A1- 2008 115 503
US-B2- 6 550 253
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates to a gas turbine engine, and more particularly to a buffer system that can provide buffer cooling air to cool portions of the gas turbine engine, including at least one shaft of the gas turbine engine.

    [0002] Gas turbine engines typically include at least a compressor section, a combustor section and a turbine section. During operation, air is pressurized in the compressor section and is mixed with fuel and burned in the combustor section to generate hot combustion gases. The hot combustion gases are communicated through the turbine section which extracts energy from the hot combustion gases to power the compressor section and other gas turbine engine modes.

    [0003] Gas turbine engines typically include shafts that support a plurality of airfoil supporting rotors of the compressor section and the turbine section. For example, in a two-spool turbofan engine, an inner shaft (i.e., a low speed shaft) and an outer shaft (i.e., a high speed shaft) can be incorporated. These shafts, in particular the inner shaft, can be exposed to relatively high torque loading and stresses that result from size limitations caused by the need for the shaft to traverse the rotor structure inboard of the radially inner disk bores.

    [0004] GB 1,095,129 A and FR1446066 describe cooling and seal pressurising systems for gas turbine engines. US 2003/0046938 A1 describes apparatus and methods for controlling flow in turbomachinery. US 2,584,899 describes the construction of stator elements of turbines, compressors or similar machines.

    SUMMARY



    [0005] The present invention relates to a gas turbine as laid out in claim 1.

    [0006] In a further embodiment of the foregoing gas turbine engine embodiment, the outer shaft can include a tie shaft.

    [0007] In a further embodiment of any of the foregoing gas turbine engine embodiments, the buffer cooling air can be communicated axially along an outer diameter of the inner shaft.

    [0008] In a further embodiment of any of the foregoing gas turbine engine embodiments, the buffer system can include a controller that selectively operates the conditioning device.

    [0009] In a further embodiment of any of the foregoing gas turbine engine embodiments, the gas turbine engine includes a compressor section, a combustor in fluid communication with the compressor section, a turbine section in fluid communication with the combustor, the inner and outer shaft that interconnect the portion of the compressor section and the turbine section, and a bearing structure that supports the inner or outer shaft. The bearing structure can include a bearing compartment. A buffer system can selectively communicate a buffer cooling air to the bearing structure and axially along the inner or outer shaft.

    [0010] In a further embodiment of any of the foregoing gas turbine engine embodiments, the conditioning device can include either a heat exchanger or an ejector.

    [0011] In a further embodiment of any of the foregoing gas turbine engine embodiments, the gas turbine engine can include a high bypass geared aircraft engine having a bypass ratio of greater than about six (6).

    [0012] In a further embodiment of any of the foregoing gas turbine engine embodiments, the gas turbine engine includes a low fan pressure ratio of less than about 1.45.

    [0013] The present invention relates also to a method as laid out in claim 6.

    [0014] In a further embodiment of the foregoing method embodiment, the step of communicating the buffer cooling air axially along at least a portion of the inner shaft can include communicating the buffer cooling air along an outer diameter of the inner shaft.

    [0015] In a further embodiment of any of the foregoing method embodiments, the step of communicating the buffer cooling air axially along at least a portion of the inner shaft can include communicating the buffer cooling air along each of an inner diameter and an outer diameter of the inner shaft.

    [0016] The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] 

    Figure 1 is a cross-section of a gas turbine engine.

    Figure 2 is a schematic cross-section a gas turbine engine.

    Figure 3 is a schematic of an example buffer system of the gas turbine engine.

    Figure 4 illustrates additional aspects of the buffer system of Figure 3.

    Figure 5 is a schematic of another example of a buffer system.


    DETAILED DESCRIPTION



    [0018] Figure 1 is a cross-section of a gas turbine engine 20. The gas turbine engine 20 of this example is a two-spool turbofan engine that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmenter section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path while the compressor section 24 drives air along a core flow path for compression and communication into the combustor section 26. The hot combustion gases generated in the combustor section 26 are expanded through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to turbofan engines and these teachings could extend to other types of turbine engines, including but not limited to three-spool engine architectures and land based engines.

    [0019] The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A relative to an engine static structure 36 via several bearing structures 38. It should be understood that various bearing structures 38 at various locations may alternatively or additionally be provided.

    [0020] The low speed spool 30 generally includes an inner shaft 40 (i.e., a low shaft) that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 can be connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 (i.e., a high shaft) that interconnects a high pressure compressor 52 and a high pressure turbine 54. In this example, the inner shaft 40 and the outer shaft 50 are supported at a plurality of axial locations by bearing structures 38 that are positioned within the engine static structure 36.

    [0021] A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 can support one or more bearing structures 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing structures 38 about the engine centerline longitudinal axis A, which is collinear with their longitudinal axes. The inner shaft 40 and the outer shaft 50 can be either co-rotating or counter-rotating with respect to one another.

    [0022] The core airflow is compressed by the low pressure compressor 44 and the high pressure compressor 52, is mixed with fuel and burned in the combustor 56, and is then expanded over the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The high pressure turbine 54 and the low pressure turbine 46 rotationally drive the respective low speed spool 30 and the high speed spool 32 in response to the expansion.

    [0023] In some non-limiting examples, the gas turbine engine 20 is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 bypass ratio is greater than about six (6:1). The geared architecture 48 of the example gas turbine engine 20 includes an epicyclic gear train, such as a planetary gear system or other gear system. The example epicyclic gear train has a gear reduction ratio of greater than about 2.3. The geared architecture 48 enables operation of the low speed spool 30 at higher speeds which can increase the operational efficiency of the low pressure compressor 44 and low pressure turbine 46 and render increased pressure in a fewer number of stages.

    [0024] The low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 of the gas turbine engine 20. In another non-limiting embodiment, the bypass ratio of the gas turbine engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about 5 (5:1). The geared architecture 48 of yet another embodiment is an epicyclic gear train with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines including direct drive turbofans.

    [0025] In this embodiment of the example gas turbine engine 20, a significant amount of thrust is provided by a bypass flow B due to the high bypass ratio. The fan section 22 of the gas turbine engine 20 is designed for a particular flight conditiontypically cruise at about 0.8 Mach and about 10500 meters (35,000 feet). This flight condition, with the gas turbine engine 20 at its best fuel consumption, is also known as bucket cruise. TSFC (Thrust Specific Fuel Consumption) is an industry standard parameter of fuel consumption per unit of thrust.

    [0026] Fan Pressure Ratio is the pressure ratio across the fan section 22 without the use of a Fan Exit Guide Vane system. The low Fan Pressure Ratio according to one non-limiting embodiment of the example gas turbine engine 20 is less than 1.45.

    [0027] Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of "T" / 518.70.5. T represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example gas turbine engine 20 is less than about 1150 fps (351 m/s).

    [0028] Figure 2 illustrates a portion 100 of a gas turbine engine, such as the gas turbine engine 20. The portion 100 can include one or more bearing structures 38. Only one bearing structure 38 is depicted in Figure 2 to schematically illustrate its features, but this is in no way intended to limit this disclosure.

    [0029] The bearing structure 38 supports a shaft 61, such as the outer shaft 50, which supports a rotor assembly 63, such as a rotor assembly of the compressor section 24 or the turbine section 28, through a hub 65. In this example, the shaft 61 is a tie shaft that that connects the high pressure compressor 52 to the high pressure turbine 54. The rotor assembly 63 carries at least one airfoil 67 for adding or extracting energy from the core airflow.

    [0030] The bearing structure 38 defines a bearing compartment B that houses one or more bearings 71. The bearing compartment B contains a lubricant for lubricating (and acting as a cooling medium to) the bearings 71. One or more seals 73 (two shown) contain the lubricant within the bearing compartment B. The seals 73 of the bearing compartment B must be pressurized to prevent the lubricant from leaking out during certain flight conditions, both steady state and transient. A buffer system can be used to communicate buffer supply air to the bearing compartment B in order to provide adequate pressurization of the seals 73 without exceeding material and/or lubricant temperature limitations. Example buffer systems that can be used for this and other purposes, including cooling at least one shaft, are detailed below.

    [0031] Figure 3 illustrates an example buffer system 60 that can communicate a buffer cooling air 62 to a first portion of the gas turbine engine 20, such one or more bearing structures 38 (shown schematically in Figure 3) and a second portion of the gas turbine engine 20, such as to the inner shaft 40 (shown schematically in Figure 4) of the gas turbine engine 20. The buffer cooling air 62 pressurizes the outside of the bearing compartment(s) of the bearing structure(s) 38 to maintain sufficient pressure differential between the buffer cavity and the inner bearing compartment cavity and maintain bearing compartment seal leakage inflow at an acceptable temperature. The buffer cooling air 62 can also be used to cool the inner shaft 40 (and optionally the outer shaft 50, see Figure 1) to acceptable operating temperatures. By cooling the inner and outer shafts 40, 50 with the buffer cooling air 62, the inner and outer shafts 40, 50 can be manufactured using relatively low temperature capable materials rather than exotic, high cost, and difficult to manufacture alloys. Example low temperature capable materials include steel or stainless steel among other known materials.

    [0032] The buffer system 60 of Figure 3 may include a bleed air supply 64 and a conditioning device 80. The bleed air supply 64 may be sourced from the fan section 22, the low pressure compressor 44 or the high pressure compressor 52. In the illustrated non-limiting example, the bleed air supply 64 is sourced from a middle stage of the high pressure compressor 52. The conditioning device 80 can cool and/or otherwise condition the bleed air supply 64 to render a buffer cooling air 62 having an acceptable temperature for buffering the environment surrounding the bearing structures 38 and the inner shaft 40. The conditioning device 80 could include an air-to-air heat exchanger, a fuel-to-air heat exchanger, or any other suitable heater exchanger.

    [0033] Referring to Figure 4, the buffer cooling air 62 may be communicated from the conditioning device 80 to a bearing structure 38, then axially along an outer diameter 82 of the inner shaft 40 (i.e., between the inner shaft 40 and the outer shaft 50), and then downstream to the turbine section 28 to cool other bearing structures or for turbine ventilation purposes. The outer shaft 50, which in this example is a tie shaft that interconnects the high pressure compressor 52 and the high pressure turbine 54, isolates the inner shaft 40 from potentially hotter compressor ventilation airflow C supplied from the same or different source. The compressor ventilation airflow C may be hotter than the inner shaft 40 as a result of heat transfer with the hardware of the compressor section 24.

    [0034] The buffer cooling air 62 may also be simultaneously communicated axially along and through an inner diameter 84 of the inner shaft 40 where the inner shaft 40 is hollow. It should be understood that the buffer cooling air 62 may be communicated along the outer diameter 82, along the inner diameter 84, or both at the same time. The buffer cooling air 62 may condition the bearing structures 38 and the inner and outer shafts 40, 50 as it is communicated along this path. In this example, the buffer cooling air 62 is communicated substantially along an entire axial length L1 of the inner shaft 40 and an entire axial length L2 of the outer shaft 50. However, the buffer cooling air 62 could be communicated along only portions of the axial lengths L1, L2 depending on how and where the buffer cooling air 62 is piped to the inner shaft 40 and the outer shaft 50.

    [0035] Although shown schematically, the buffer cooling air 62 is communicated between the conditioning device 80, the bearing structures 38 and the inner and outer shafts 40, 50 via buffer tubing, conduits, or other passageways. Such tubing, conduits and/or passageways could be routed throughout the gas turbine engine 20. The type, location and configuration of such tubing, conduits and/or passageways are not intended to limit this disclosure.

    [0036] The buffer system 60 may also include a controller 70. The controller 70 can be programmed to selectively command the communication of buffer cooling air 62 during certain operating conditions. The controller 70 may also potentially generate a signal to command operation of the conditioning device 80 and/or a source-switching valve. Also, although shown as a separate feature, the controller functionality could be incorporated into the conditioning device 80. The buffer system 60 is operable to communicate buffer cooling air 162 for responding to any engine operating condition.

    [0037] Figure 5 illustrates another example buffer system 160 that may be used to supply a buffer cooling air 162 to pressurize a bearing structure 38 and cool the inner and outer shafts 40, 50 of the gas turbine engine 20. In this example, the buffer system 160 is a multi-source buffer system that includes a first bleed air supply 164 and a second bleed air supply 166. In the exemplary embodiment, the first bleed air supply 164 is a low pressure bleed air supply and the second bleed air supply 166 is a high pressure bleed air supply that includes a pressure that is greater than the pressure of the first bleed air supply 164.

    [0038] The first bleed air supply 164 may be sourced from the fan section 22, the low pressure compressor 44 or the high pressure compressor 52. In the illustrated non-limiting example, the first bleed air supply 164 is sourced from an upstream stage of the high pressure compressor 52. However, the first bleed air supply 164 could be sourced from any location that is upstream from the second bleed air supply 166. The second bleed air supply 166 may be sourced from the high pressure compressor 52, such as from a middle or downstream stage of the high pressure compressor 52. The second bleed air supply 166 could also be sourced from the low pressure compressor 44 or the fan section 22 depending on where the first bleed air supply 164 is sourced from.

    [0039] The buffer system 160 may also include a valve 168 that is in communication with both the first bleed air supply 164 and the second bleed air supply 166. Although shown schematically, the first bleed air supply 164 and the second bleed air supply 166 can be in fluid communication with the valve 168 via buffer tubing, conduits, or other passageways.

    [0040] In the exemplary embodiment, the valve 168 may select between the first bleed air supply 164 and the second bleed air supply 166 to communicate a buffer cooling air 162 having a desired temperature and pressure to desired portions of the gas turbine engine 20. The valve 168 communicates either the first bleed air supply 164 or the second bleed air supply 168 to a conditioning device 180 to cool the air supply and render the buffer cooling air 162.

    [0041] The valve 168 can be a passive valve or a controller base valve. A passive valve operates like a pressure regulator that can switch between two or more sources without being commanded to do so by a controller, such as an engine control (EEC). The valve 168 of this example uses only a single input which is directly measured to switch between the first bleed air supply 164 and the second bleed air supply 661.

    [0042] The valve 168 could also be a controller based valve. For example, the buffer system 160 could include a controller 170 in communication with the valve 168 for selecting between the first bleed air supply 164 and the second bleed air supply 166. The controller 170 is programmed with the necessary logic for selecting between the first bleed air supply 164 and the second bleed air supply 166 in response to detecting a pre-defined power condition of the gas turbine engine 20. The controller 170 could also be programmed with multiple inputs.

    [0043] The determination of whether to communicate the first bleed air supply 164 or the second bleed air supply 166 as the buffer cooling air 162 is based on a power condition of the gas turbine engine 20. The term "power condition" as used in this disclosure generally refers to an operability condition of the gas turbine engine 20. Gas turbine engine power conditions can include low power conditions and high power conditions. Example low power conditions include, but are not limited to, ground operation, ground idle and descent idle. Example high power conditions include, but are not limited to, takeoff, climb, and cruise conditions. It should be understood that other power conditions are also contemplated as within the scope of this disclosure.

    [0044] In one exemplary embodiment, the valve 168 communicates the first bleed air supply 164 (which is a relatively lower pressure bleed air supply) to the conditioning device 180 in response to identifying a high power condition of a gas turbine engine 20. The second bleed air supply 166 (which is a relatively higher pressure bleed air supply) is selected by the valve 168 and communicated to the conditioning device 180 in response to detecting a low power condition of the gas turbine engine 20. Both sources of bleed air are intended to maintain the same minimum pressure delta across the bearing compartment seals. Low power conditions require a higher pressure stage source to maintain adequate pressure differential, while high power conditions can meet requirements with a lower stage pressure source. Use of the lowest possible compressor stage can to meet the pressure requirements and minimize supply temperature and any negative performance impact to the gas turbine engine 20.

    [0045] The conditioning device 180 of the buffer system 160 could include a heat exchanger or an ejector. An ejector adds pressure (using a small amount of the second bleed air supply 166) to the first bleed air supply 164 to prepare the buffer supply air 162.

    [0046] Although the different examples have a specific component shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.

    [0047] The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claims should be studied to determine the true scope and content of this disclosure.


    Claims

    1. A gas turbine engine (20), comprising:

    a bearing structure;

    an inner shaft that interconnects a low pressure compressor and a low pressure turbine;

    an outer shaft that surrounds said inner shaft and a buffer cooling air is communicated between said inner shaft and said outer shaft, and interconnects a high pressure compressor and a high pressure turbine and

    a buffer system (60; 160) including:

    a first bleed air supply (64;164); and

    a conditioning device (80; 180) that conditions said first bleed air supply (64;164) to render the buffer cooling air at a temperature for pressurizing said bearing structure (38) and cooling said inner shaft and said outer shaft (40,50), and wherein said buffer cooling air is communicated axially through an inner diameter of said inner shaft to cool said inner shaft, and characterized by said buffer system (160) including a second bleed air supply (166) and a valve (168) that selects between said first bleed air supply (164) and said second bleed air supply (166) to communicate said buffer cooling air to said at least one bearing structure (38) and said inner and outer shafts (40,50).


     
    2. The gas turbine engine as recited in claim 1, wherein said outer shaft is a tie shaft.
     
    3. The gas turbine engine as recited in any preceding claim, wherein said buffer cooling air is communicated axially along an outer diameter of said inner shaft (40).
     
    4. The gas turbine engine as recited in any preceding claim, wherein said buffer system (60; 160) includes a controller (70;170) that selectively operates said conditioning device (80;180).
     
    5. The gas turbine engine of any preceding claim, comprising:

    a compressor section (24);

    a combustor (26) in fluid communication with said compressor section (24);

    a turbine section (28) in fluid communication with said combustor (26);

    a bearing structure (38) that supports said inner or outer shaft (40,50), wherein said bearing structure includes a bearing compartment (B); and

    said buffer system (60;160) communicating a buffer cooling air to said bearing structure (38) and axially along said inner or outer shaft (40,50) to pressurize said bearing compartment (B) and cool said inner or outer shaft (40,50).


     
    6. A method of cooling portions of a gas turbine engine, comprising:

    communicating a buffer cooling air to at least one bearing structure (38) of the gas turbine engine (20) to pressurize a bearing compartment (B) of the at least one bearing structure (38); and

    communicating the buffer cooling air axially through an inner diameter of an inner shaft (40) of the gas turbine engine (20), the inner shaft surrounded by an outer shaft, and communicating the buffer cooling air between said inner shaft and said outer shaft, and further comprising the step of:

    cooling a first bleed air supply (64; 164) prior to the steps of communicating the buffer cooling air, and characterized by said buffer system (160) including a second bleed air supply (166) and a valve (168) that selects between said first bleed air supply (164) and said second bleed air supply (166) to communicate said buffer cooling air to said at least one bearing structure (38) and said inner and outer shafts (40,50).


     
    7. The method as recited in claim 6, further comprising the step of communicating the buffer cooling air axially along at least a portion of the inner shaft (40), said step including communicating the buffer cooling air along an outer diameter of the inner shaft (40).
     
    8. The method as recited in claim 6 or 7, further comprising the step of communicating the buffer cooling air axially along at least a portion of the inner shaft (40), said step including communicating the buffer cooling air along each of an inner diameter and an outer diameter of the inner shaft (40).
     


    Ansprüche

    1. Gasturbinenmotor (20), umfassend:

    eine Lagerstruktur;

    eine innere Welle, die einen Niederdruckkompressor und eine Niederdruckturbine verbindet;

    eine äußere Welle, die die innere Welle umgibt, und wobei eine Pfufferkühlluft zwischen der inneren Welle und der äußeren Welle kommuniziert wird, und die einen Hochdruckkompressor und eine Hochdruckturbine miteinander verbindet und

    ein Puffersystem (60;160), beinhaltend:

    eine erste Zapfluftzufuhr (64;164); und

    eine Klimatisierungsvorrichtung (80;180), die die erste Zapfluftzufuhr (64;164) klimatisiert, um die Pufferkühlluft bei einer Temperatur bereitzustellen, um die Lagerstruktur (38) mit Luftdruck zu versehen und die innere Welle und die äußere Welle (40,50) zu kühlen, und wobei die Pufferkühlluft axial durch einen inneren Durchmesser der inneren Welle zum Kühlen der inneren Welle kommuniziert wird und dadurch gekennzeichnet, dass das Puffersystem (160) eine zweite Zapfluftzufuhrt (166) und ein Ventil (168) beinhaltet, das zwischen der ersten Zapfluftzufuhr (164) und der zweiten Zapfluftzufuhr (166) auswählt, um die Pufferkühlluft an die mindestens eine Lagerstruktur (38) und die innere und äußere Welle (40,50) zu kommunizieren.


     
    2. Gasturbinenmotor nach Anspruch 1, wobei die äußere Welle eine Verbindungswelle ist.
     
    3. Gasturbinenmotor nach einem der vorstehenden Ansprüche, wobei die Pufferkühlluft axial entlang eines äußeren Durchmessers der inneren Welle (40) kommuniziert wird.
     
    4. Gasturbinenmotor nach einem der vorstehenden Ansprüche, wobei das Pufferkühlsystem (60;160) eine Steuerung (70;170) beinhaltet, die selektiv die Klimatisierungsvorrichtung (80;180) betreibt.
     
    5. Gasturbinenmotor nach einem der vorstehenden Ansprüche, umfassend:

    einen Kompressorabschnitt (24);

    eine Brennkammer (26) in Fluidkommunikation mit dem Kompressorabschnitt (24);

    einen Turbinenabschnitt (28) in Fluidkommunikation mit der Brennkammer (26);

    eine Lagerstruktur (38), die die innere und äußere Welle (40,50) trägt, wobei die Lagerstruktur ein Lagergehäuse (B) beinhaltet; und

    wobei das Puffersystem (60;160) eine Pufferkühlluft an die Lagerstruktur (38) und axial entlang der inneren und äußeren Welle (40,50) kommuniziert, um das Lagergehäuse (B) mit Luftdruck zu versehen und die innere und äußere Welle (40,50) zu kühlen.


     
    6. Verfahren zum Steuern von Teilen eines Gasturbinenmotors, umfassend:

    Kommunizieren einer Pufferkühlluft an mindestens eine Lagerstruktur (38) des Gasturbinenmotors (20), um ein Lagergehäuse (B) der mindestens eine Lagerstruktur (38) mit Luftdruck zu versehen; und

    Kommunizieren der Pufferkühlluft axial durch einen inneren Durchmesser einer inneren Welle (40) des Gasturbinenmotors (20), wobei die innere Welle von einer äußeren Welle umgeben ist, und Kommunizieren der Pufferkühlluft zwischen der inneren und äußeren Welle und ferner umfassend den Schritt des:

    Kühlens einer ersten Zapfluftzufuhr (64;164) vor den Schritten des Kommunizierens der Pufferkühlluft und gekennzeichnet dadurch, dass das Puffersystem (160) eine zweite Zapfluftzufuhr (166) und ein Ventil (168) beinhaltet, das zwischen der ersten Zapfluftzufuhr (164) und der zweiten Zapfluftzufuhr (166) auswählt, um die Pufferkühlluft an die mindestens eine Lagerstruktur (38) und die innere und äußere Welle (40,50) zu kommunizieren.


     
    7. Verfahren nach Anspruch 6, ferner umfassend den Schritt des Kommunizierens der Pufferkühlluft axial entlang mindestens eines Teils der inneren Welle (40), wobei der Schritt Kommunizieren der Pufferkühlluft entlang einem äußeren Durchmesser der inneren Welle (40) beinhaltet.
     
    8. Verfahren nach Anspruch 6 oder 7, ferner umfassend den Schritt des
    Kommunizierens der Pufferkühlluft axial entlang mindestens eines Teils der inneren Welle (40), wobei der Schritt Kommunizieren der Pufferkühlluft entlang jedes von einem inneren Durchmesser und einem äußeren Durchmesser der inneren Welle (40) beinhaltet.
     


    Revendications

    1. Moteur à turbine à gaz (20), comprenant :

    une structure de support ;

    un arbre interne qui interconnecte un compresseur à faible pression et une turbine à faible pression ;

    un arbre externe qui entoure ledit arbre interne et un air de refroidissement tampon est communiqué entre ledit arbre interne et ledit arbre externe, et interconnecte

    un compresseur à pression élevée et une turbine à pression élevée et

    un système tampon (60 ; 160) comprenant :

    une première alimentation en air de prélèvement (64 ; 164) ; et

    un dispositif de conditionnement (80 ; 180) qui conditionne ladite première alimentation en air de prélèvement (64 ; 164) pour amener l'air de refroidissement tampon à une température pour pressuriser ladite structure de support (38) et refroidir ledit arbre interne et ledit arbre externe (40, 50), et dans lequel ledit air de refroidissement tampon est communiqué axialement à travers un diamètre interne dudit arbre interne pour refroidir ledit arbre interne, caractérisé en ce que ledit système tampon (160) comprend une seconde alimentation en air de prélèvement (166) et une valve (168) qui choisit entre ladite première alimentation en air de prélèvement (164) et ladite seconde alimentation en air de prélèvement (166) pour communiquer ledit air de refroidissement tampon audit au moins une structure de support (38) et lesdits arbres interne et externe (40, 50).


     
    2. Moteur à turbine à gaz selon la revendication 1, dans lequel ledit arbre externe est un arbre d'accouplement.
     
    3. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel ledit air de refroidissement tampon est communiqué axialement le long d'un diamètre externe dudit arbre interne (40).
     
    4. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel ledit système tampon (60 ; 160) comprend un contrôleur (70 ; 170) qui fait fonctionner sélectivement ledit dispositif de conditionnement (80 ; 180).
     
    5. Moteur à turbine à gaz une quelconque revendication précédente, comprenant :

    une section de compresseur (24) ;

    une chambre de combustion (26) en communication fluide avec ladite section de compresseur (24) ;

    une section de turbine (28) en communication fluide avec ladite chambre de combustion (26) ;

    une structure de support (38) qui soutient ledit arbre interne ou externe (40, 50), dans lequel ladite structure de support comprend un compartiment de support (B) ; et

    ledit système tampon (60 ; 160) communiquant un air de refroidissement tampon à ladite structure de support (38) et axialement le long dudit arbre interne ou externe (40,50) pour pressuriser ledit compartiment de support (B) et refroidir ledit arbre interne ou externe (40, 50).


     
    6. Procédé de refroidissement des parties d'un moteur à turbine à gaz, comprenant :

    la communication d'un air de refroidissement tampon à au moins une structure de support (38) du moteur à turbine à gaz (20) pour pressuriser un compartiment de support (B) de l'au moins une structure de support (38) ; et

    la communication de l'air de refroidissement tampon axialement à travers un diamètre interne d'un arbre interne (40) du moteur à turbine à gaz (20), l'arbre interne entouré par un arbre externe, et communiquant l'air de refroidissement tampon entre ledit arbre interne et ledit arbre externe, et comprenant également les étapes suivantes :

    le refroidissement d'une première alimentation en air de prélèvement (64 ; 164) avant les étapes de communication de l'air de refroidissement tampon, et caractérisé en ce que ledit système tampon (160) comprend une seconde alimentation en air de prélèvement (166) et une valve (168) qui choisit entre ladite première alimentation en air de prélèvement (164) et ladite seconde alimentation en air de prélèvement (166) pour communiquer ledit air de refroidissement tampon audit au moins une structure de support (38) et lesdits arbres interne et externe (40, 50).


     
    7. Procédé selon la revendication 6, comprenant également l'étape de communication de l'air de refroidissement tampon axialement le long d'au moins une partie de l'arbre interne (40), ladite étape comprenant la communication de l'air de refroidissement tampon le long d'un diamètre externe de l'arbre interne (40).
     
    8. Procédé selon la revendication 6 ou 7, comprenant également l'étape de communication de l'air de refroidissement tampon axialement le long d'au moins une partie de l'arbre interne (40), ladite étape comprenant la communication de l'air de refroidissement tampon le long de chacun d'un diamètre interne et d'un diamètre externe de l'arbre interne (40).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description