BACKGROUNDOFTHEINVENTION
[0001] Embodiments of the present invention generally relate to methods for spinning textile
fibers at low temperatures and finishing textiles at low temperatures. Said finishing
includes low-temperature bleaching, low-temperature mercerizing, and/or low-temperature
dyeing steps. The preferred fiber for the methods of the instant is cotton, but other
textile fibers may also be used. The textiles may be composed of a single type of
fiber, or may be a blend of fibers, preferably including cotton.
[0002] Processing raw fibers into usable textiles requires multiple steps. First, the raw
fiber must be spun into usable thread or yarn, referred to herein as the "spinning
step". Then the thread or yarn is woven into a textile, referred to herein as the
"weaving step". Finally, the textile is finished. Each of these three steps includes
multiple sub-steps, referred to herein as the "finishing step". The methods of this
invention are improvements to the previously-known spinning and finishing steps.
[0003] The previously-known implementation of the spinning step generally includes blowing
and cleaning, carding, drawing, simplex, spinning, and winding sub-steps. Some of
these sub-steps may be omitted when using certain fibers or when producing certain
types of thread or yarn. Spinning certain fibers and/or producing certain other types
of thread and/or yarn may require additional substeps.
[0004] The previously-known implementation of the finishing step generally includes greige
batching, singeing, desizing, scouring, bleaching, width setting, mercerizing, dyeing,
finishing and sanforizing sub-steps. Some of these sub-steps may be omitted when using
certain fibers or when the finished product is to have certain characteristics. Some
additional sub-steps may be included when using certain fibers or when the finished
product is to have certain characteristics.
[0005] The finishing sub-steps are used to give the finished textile desired finish, strength,
and/or other qualities. The finishing sub-steps often rely on the completion of a
previous sub-step, for example, dyeing a textile an even and vibrant color requires
it first to be bleached to an even white.
[0006] Certain sub-steps are discussed further herein. Other than the modifications disclosed
as part of an embodiment of the instant invention, when a sub-step is referred to
herein, it is the form of the sub-step that is well-known in the textile arts.
[0007] Generally, the previously known and preferred modes of performing the spinning step
and most sub-steps of the finishing step, particularly the bleaching step, mercerizing
step, and/or the dyeing step are performed at a temperature significantly above the
standard "room temperature" of approximately 21 degrees Celsius (71 degrees Fahrenheit).
(Temperatures in degrees Celsius are hereinafter given as "C" and those in Fahrenheit
as "F.") All temperature values given herein are intended to represent ranges and
no particular value given is meant to exclude substantially similar temperatures in
a range around the temperature given.
[0008] As an example, the spinning step is conventionally performed at a temperature of
approximately 40-45C. Certain sub-steps of the finishing step are conventionally performed
at even higher temperatures. For example, conventional bleaching is performed at approximately
100-102C, conventional mercerizing is performed at approximately 60-90C, and conventional
dyeing is performed at 100-160C, depending on the dyeing process used.
[0009] The instant invention is directed to,
inter alia, performing the spinning step and certain sub-steps of the finishing step, namely
bleaching, mercerizing and dyeing, at substantially lower temperatures than conventional
in the textile arts.
BRIEFSUMMARYOFTHEINVENTION
[0010] In one embodiment of a method of the instant invention, cotton is spun at a reduced
temperature than the standard for industrial cotton spinning. The cotton may also
be spun at higher revolutions per minute ("RPM") than is standard for industrial cotton
processing.
[0011] In another embodiment of a method of the instant invention, textiles containing cotton
are finished in a process including bleaching, mercerizing, and/or dyeing at a reduced
temperature as compared to the standard temperatures for performing bleaching, mercerizing,
and/or dyeing.
[0012] In a third embodiment of the instant invention, the first two embodiments are performed
in sequence: cotton is spun as described, is then woven into a textile and that textile
is finished, said finishing including bleaching, mercerizing, and/or dyeing at a reduced
temperature as compared to the standard temperatures for performing bleaching, mercerizing,
and/or dyeing.
[0013] Performing these steps at reduced temperatures has multiple benefits. Energy is saved
because the spinning room, bleaching liquor, mercerizing solution, and dye do not
require heating. The comfort and safety of workers is improved due to cooler ambient
temperatures and absence of dangerously hot liquids. Additionally, there are significant
improvements to the quality of thread and textile produced by the low-temperatures
processes, as discussed more fully herein.
[0014] The foregoing summary, as well as the following detailed description of preferred
embodiments of the invention, will be better understood when read in conjunction with
the appended drawings. For the purpose of illustrating the invention, there are shown
in the drawings embodiments which are presently preferred. Dotted lines are used in
the drawings for steps that are optional and either not considered an integral part
of the depicted embodiment of the instant invention or that may be performed in the
alternative. It should be understood, however, that the invention is not limited to
the precise arrangements and instrumentalities shown. In the drawings:
FIG. 1 is a flowchart depicting the process flow of a method embodying the low-temperature
spinning process of the present invention;
FIG. 2 is a flowchart depicting the process flow of a method embodying the low-temperature
fabric finishing process of the present invention; and
FIG. 3 is a flowchart depicting the process flow of the preferred method of the present
invention.
[0015] Where a term is provided in the singular, the inventors also contemplate aspects
of the invention described by the plural of that term. As used in this specification
and in the appended claims, the singular forms "a", "an" and "the" include plural
references unless the context clearly dictates otherwise, e.g., "a machine" may include
a plurality of machines. Thus, for example, a reference to "a method" includes one
or more methods, and/or steps of the type described herein and/or which will become
apparent to those persons skilled in the art upon reading this disclosure.
[0016] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and materials similar or equivalent to those
described herein can be used in the practice or testing of the present invention,
the preferred methods, constructs and materials are now described. All publications
mentioned herein are incorporated herein by reference in their entirety. Where there
are discrepancies in terms and definitions used in references that are incorporated
by reference, the terms used in this application shall have the definitions given
herein.
[0017] "Ambient temperature" as used herein refers to the approximate average and standard
air temperature of the enclosure or area in which a given process is performed. The
materials, machine, equipment, solution, and/or atmosphere immediately around a given
machine or process may be outside a range given for ambient temperature without changing
the ambient temperature.
[0018] Disclosed herein are methods for spinning cotton into thread and/or yarn at reduced
ambient temperatures and finishing woven textiles comprised at least partially of
cotton at reduced temperatures. As part of this method, thread, yarn, and or textiles
with improved properties are produced under safer conditions and at reduced expense.
[0019] The instant method may be performed in a single facility, wherein cotton is processed
from raw cotton to finished textile, or may be performed at separate facilities, wherein
raw cotton is processed and spun into thread and/or yarn at a first facility, yarn
is woven into textiles at a second facility, and/or the textiles are finished at a
third facility. It is preferred that the method of the instant invention be performed
at a single facility.
[0020] The preferred embodiment includes both spinning cotton and finishing textiles. However,
in certain embodiments of the instant invention, only the low-temperature spinning
is performed. In other embodiments, only the low-temperature finishing steps are performed.
[0021] The cold spinning process 100 of one method embodying the instant invention, as depicted
in FIG. 1, includes a blowing and cleaning step 110, a carding step 120, a drawing
step 130, a spinning step 140, and, in some embodiments, a weaving step 150. The aforementioned
steps are, generally, performed as is well-known in the art, with the exception of
the ambient temperature and, with respect to the spinning step 140, the spinning speed.
[0022] In the instant invention, the blowing and cleaning step 110, carding step 120, drawing
step 130, and spinning step 140 are all performed at an ambient temperature of 25-30C,
a temperature substantially less than the ambient temperature of 40-45C which is standard
in the art for performing the corresponding steps of the standard spinning process.
This reduced temperature permits spinning the fiber into yarn and/or thread at higher
revolutions per minute without a corresponding increase in breakage of the cotton.
[0023] The blowing and cleaning step 110, carding step 120, and drawing step 130 of the
cold spinning process 100 are performed as are standard in the art with the exception
of the ambient temperature. Any machine or equipment known in the art for performing
said steps may be used to perform said steps as part of the method of the instant
invention. The steps may be performed in separate rooms of a facility or may be performed
on machines disposed in a single room of a spinning facility, which may be part of
a larger spinning, weaving, and/or finishing facility. Other fabric processes, such
as embroidering, may also be performed in such a facility.
[0024] The blowing and cleaning step 110 processes raw and/or unspun cotton 105 into opened
clean fibers and/or tufts as is known in the art. The carding step 120 completes the
cleaning of the cotton and separates and aligns the fibers as is known in the art.
The drawing step 130 evens the lengths of the fibers as is known in the art.
[0025] In the spinning step 140, the cotton fibers are spun into thread and/or yarn 145
on an open-ended spinning machine 350. In the instant invention, the spinning step
140 is preferably performed at 25-30 degrees Celsius and is performed at up to 150,000
RPM, substantially faster than standard spinning processes in the art, which are performed
at 20,000 RPM. Additionally, the spinning step 140 does not require the generally-required
rewinding process of most spinning processes known in the art.
[0026] The increased revolutions per minute used in the spinning step 140 combined with
the reduced ambient temperature provides multiple benefits as compared with the conventional
process as known in the art. In particular, the yield of the spinning process 100
is 5% greater than that of the conventional process: the instant spinning process
100 has an approximately 88% yield by weight as opposed to a yield of 82-84% by weight
in the conventional process. Yarn 145 produced using the instant spinning process
100 also has a reduced imperfection index ("IPI") and reduced hairiness as compared
to conventionally produced yarns.
[0027] A variety of weights and types of yarns and/or threads 145 can be produced in the
spinning process 100 of the instant method including, without restriction, 20/1 yarn
for weaving.
TABLE 1, below, lists the characteristics of 20/1 yarn produced using the conventional process
and the method of the instant invention.
TABLE 1 |
Characteristics of 20/1 Carded Yarn |
Yarn Characteristic |
Value |
Min / Max |
New Method |
Conventional Process |
Yarn Count & Twist |
Deviation of Count |
Max |
20+ /-2.5% |
20+ /-2.5% |
Count Variation CVcb(%) |
Max |
1.8 |
1.8 |
Twist Multiplier alpha e |
Max |
|
4.4 |
Variation of twist CVt(%) |
Max |
|
3 |
Direction of twist |
|
Z |
Z |
Yarn Evenness & Hairiness |
Evenness Uster CVm(%) |
Max |
14.5 |
15 |
Thin Places - 50% (1 /Km) |
Max |
14 |
12 |
Thick Places +50% (1 /Km) |
Max |
75 |
140 |
Neps |
Max |
20 (+280% 1/km) |
160 (+200% 1/km) |
Hairness |
Range |
4.0-6.1 |
5.3-7.6 |
CV Hairness (%) |
Max |
4 |
4 |
Yarn strength & Elongation at Conventional test speed 5m/min |
Single End Strength (cN/tex) |
Min |
12 |
17 |
Strength Variation CVb (%) |
Max |
8.2 |
8.5 |
Single End Elongation (%) |
Min |
5.6 |
5.5 |
Yarn strength & Elongation at High test speed 400m/min |
Single End Strength (cN/tex) |
Min |
13.5 |
19 |
Strength Variation CVb (%) |
Max |
8.9 |
9.2 |
Single End Elongation (%) |
Min |
5 |
5 |
[0028] Once the thread and/or yarn 145 is spun it may be sold and/or stored as-is. It may
also be woven in the same or another facility in a weaving step 150. Preferably, the
weaving step 150 is performed at an ambient temperature of 25-30C, a relative humidity
of 75%-78%, and otherwise performed as is standard and well-known in the industry.
Processing at a lower temperature as in the other steps of the spinning process 100
of the instant invention allows the weaving step 150 to be performed in the same facility
as the other steps of the spinning process 100 and has similar benefits to the working
environment. Additionally, less fluff is produced as compared to conventional weaving
processes performed at higher ambient temperatures and/or using thread and/or yarn
produced using conventional processes. The reduction in fluff improves cleanliness
of the spinning and weaving facility and reduces the health and safety risks related
to increased fluff in such a facility, including, without restriction, fire risks.
[0029] Following the weaving step 150, the fabric 160 woven in the weaving step 150 may
be finished using any finishing process known in the art. Preferably, however, the
fabric 160 woven in the weaving step 150 is then finished using the cold-finishing
process 200 of the instant invention as shown in FIG. 2. The full preferred method
of the instant invention, including the cold spinning process 100 including the weaving
step 150, followed by the cold finishing process 200, is shown in FIG. 3. The cold-finishing
process 200 of the instant invention may be performed on any fabric 205 including,
alternatively and without restriction, fabric 160 produced using the cold-spinning
process 100, fabric produced using conventional spinning and/or weaving processes
and/or on fabric produced by weaving, at conventional temperatures, yarn 145 produced
using the cold spinning process 100.
[0030] The cold-finishing process 200 may be, without restriction, performed in the same
facility as the spinning process 100 and or weaving step 150, performed in a different
facility, or may be performed on stored fabric or purchased fabric at a specialized
fabric-finishing facility. The ambient temperature of the fabric finishing facility
is not restricted.
[0031] The cold finishing process 200 includes, preferably, a cold bleaching step 210, cold
mercerizing step 220, cold dyeing step 230. The cold finishing process 200 also includes
washing steps 240 and 260 following the cold bleaching step 210 and the cold dyeing
step 230, respectively. The entire finishing process as depicted in FIG. 3 may include
steps in addition to the cold finishing process 200. It is preferred that the cold
bleaching step 210, cold mercerizing step 220, and cold dyeing step 230 all be performed,
but the instant invention also includes embodiments of the cold finishing process
200 wherein one of said steps is omitted and embodiments wherein two of said steps
are omitted.
[0032] The preferred embodiment of the cold finishing process 200 also includes a greige
batching step 310 and singeing step 320. The greige batching step 310 and the singeing
step 320 may be omitted, but if included are performed first. If the greige batching
step 310 and singeing step 320 are performed, they are performed as is well-known
and standard in the textile arts. If they are not performed, the cold bleaching step
210 is performed first. If the greige batching step 310 is performed and the singeing
step 320 is performed, the cold bleaching step 210 is performed thereafter.
[0033] The cold bleaching step 210 is performed by immersing the fabric 205, through padding,
in a bleaching liquor and rotating it in said bleaching liquor for 8-10 hours, said
bleaching liquor being maintained at approximately 35C-40C. The constituents of the
bleaching liquor are given in
TABLE 2 with the acceptable concentration range for each and the concentration for use in
the preferred embodiment of the cold bleaching step 210 of the instant invention.
For each constituent of the bleaching liquor, the preferred compound or chemical for
use as that constituent is listed in parentheses, but any chemical or compound known
in the art to be suitable for use with cotton fibers and fulfills that function may
be used, without restriction. The formulation herein may be adjusted to produce desired
whiteness levels, desizing as measured by the TEGEWA scale, and/or capillary properties
as desired for the finished product or as required for later steps in the instant
cold finishing process 100.
TABLE 2 |
Ingredient |
Concentration Range |
Preferred Concentration |
Hydrogen peroxide (50%) |
70-90 g/l |
80 g/l |
Caustic Soda 48 Be |
50-70 g/l |
60 g/l |
Sodium Silicate 38 Be |
20-40 g/l |
30 g/l |
Wetting Agent (Lavoton RGA, NonIonic/Anionic) |
4-8 g/l |
6 g/l |
Sequestering Agent (Heptol BNF, Anionic) |
1-3 g/l |
2 g/l |
Stabilizer (Contavon DSP, Anionic) |
4-8 g/l |
6 g/l |
Oxidative Desizer (Sodium persulphate) |
0.5-1.5 g/l |
1 g/l |
[0034] The cold bleaching step 210 as described herein replaces the need for separate scouring
and desizing steps as required in conventional fabric finishing. This reduces the
complexity of the instant cold finishing process 200and reduces time required to perform
the instant cold finishing process 200.
[0035] Following the cold bleaching step 210, the preferred embodiment of the invention
includes a first washing step 240 and width setting step 250. The first washing step
240 is necessary to the invention, but the width setting step 250 may be omitted.
The first washing step is performed by washing the bleached fabric 205 in washing
solution, preferably but without restriction water, maintained at 85-95C, preferably
at 90C. The width setting step 250, if performed, is performed as is well-known and
standard in the art.
[0036] After the first washing step 240 and, if included, the width setting step 250, the
preferred embodiment of the invention includes a cold mercerizing step 220. The cold
mercerizing step 220 is performed by immersing the fabric 205 in a caustic soda solution
of 26 to 32 degrees Baume (hereinafter, "Be"), maintained at 15 to 18C. The caustic
soda (Sodium Hydroxide/NaOH and referred to herein as "caustic soda") solution is
preferably 30 Be. Fabric containing cotton fibers and mercerized as described herein
as the cold mercerizing step 260 has superior characteristics to fabric containing
cotton fibers mercerized in the standard process, which is performed at temperatures
of 60C-90C.
[0037] Following the cold mercerizing step 220, the preferred embodiment includes a cold
dyeing step 230. Proceeding to the cold dyeing step 230 without including an additional
width setting step, as is required in the conventional and well-known fabric finishing
processes, increases efficiency of the fabric finishing process. The cold dyeing step
230 is performed by immersing at least a portion of the fabric 205, through padding,
in dye liquor maintained at 20C-25C. Preferably, all of a given piece of fabric 205
is immersed. The dye liquor in the preferred embodiment of the cold dyeing step 230
includes a dye having at least one vinyl sulphone reactive group, but other dyes appropriate
for fabrics including cotton fibers may be used. Example dyestuffs commonly available
and known in the art that are suitable for use in the cold dyeing step 230 include,
without restriction, Bezaktiv (V/S range) Jakazol (VS/HLF/CE/DS/VS/ME range), and
Everzol (ED/LX/LF range). The fabric 205 is held in the dye liquor for approximately
16 hours, and is rotated during the period it is held in the dye liquor.
[0038] After the cold dyeing step 230, the fabric 205 is subjected to a second washing step
260 to remove excess dye liquor. The second washing step 260 is performed using water
at 85 - 95C, and preferably at 90C. The fabric 205 may be optionally treated with
additional finishing steps 330 such as, without restriction, Sanforizing, Calendering,
and/or other fabric finishing processes. These additional finishing steps 330 may
be performed, without restriction, at ambient temperatures or at the temperatures
well-known in the art for the performance of such steps.
[0039] When the full preferred embodiment of the cold finishing process 200 of the instant
invention is used, that is, the fabric 205 is finished using the cold bleaching step
210, the cold mercerizing step 220, and the cold dyeing 230 step, the characteristics
of the finished fabric are improved as compared to fabric finished using an industry-standard
fabric finishing process.
TABLE 3, below, gives the specifications of cotton fabric finished using the preferred embodiment
of the cold finishing process 200 of the instant invention.
TABLE 3
Test |
Specifications |
Yarn Count |
|
ISO 7211-5 |
Warp (Ne) |
20 (+/-5.0%) |
Weft (Ne) |
20 (+/-5.0%) |
Fabric Count |
|
ISO 7211-2 |
Ends/Inch |
60 (+/-4.0%) |
Picks/Inch |
60 (+/-4.0%) |
Fabric Weight |
|
ISO 3801 |
Gm/m2 |
140(+/-5.0%) |
Oz/yd2 |
--- |
Pilling Resistance |
|
|
ISO 12945-2 |
Rating |
>3 |
@ 2000 Cycles |
|
|
Tensile Strength |
|
|
ISO 13934-1 |
Warp(N) |
≥ 250.0 N |
Weft(N) |
≥ 250.0 N |
Tear Strength |
|
|
ISO 13937-2 |
Warp(N) |
≥8.0 N |
Weft(N) |
≥8.0 N |
Dimensional Stability to Wash |
|
|
ISO 6330 |
Warp |
+2%/-5% |
Weft |
+2%/-5% |
Formaldehyde |
|
|
ISO 14184-1 |
|
≤ 20.0ppm |
Flammability |
|
|
16 CFR 1610 |
|
≥ 7.1 sec |
Colorfasntess to Light |
|
|
ISO 105 B02 |
Rating |
≥ 4-5 |
Colorfastness to Rubbing |
|
|
ISO 105 X12 |
Dry |
≥ 4-0 |
|
Wet |
≥ 3-0 |
[0040] Fabric finished using the cold finishing process 200 may be used for any purpose
fabric containing cotton fibers is used for in industry, fashion, and/or any other
field.
[0041] Although the present invention has been described in relation to particular embodiments
thereof, many other variations and modifications and other uses may become apparent
to those skilled in the art. It is preferred, therefore, that the present invention
be limited not by this specific disclosure herein, but only by the appended claims.
1. A method for manufacturing yarn or thread including cotton fibers, comprising:
spinning cotton fibers into yarn or thread at an ambient temperature of 25-30 degrees
Celsius.
2. The method of claim 1 wherein spinning the cotton is performed at greater than 50,000
revolutions per minute, such as at approximately 150,000 revolutions per minute.
3. A method for manufacturing yarn or thread including cotton fibers, comprising:
blowing and cleaning unspun cotton at an ambient temperature of 38-40.5 degrees Celsius;
then carding said cotton at an ambient temperature of 38-40.5 degrees Celsius;
then drawing said cotton at an ambient temperature of 38-40.5 degrees Celsius; and
then spinning said cotton into yarn or thread at an ambient temperature of 25-30 degrees
Celsius.
4. The method of claim 3 wherein spinning the cotton is performed at greater than 50,000
revolutions per minute, such as at approximately 150,000 revolutions per minute.
5. A method for manufacturing fabric including cotton fibers, comprising:
weaving yarn containing cotton fibers into a fabric at an ambient temperature of 25-30
degrees Celsius.
6. The method of claim 5, further comprising:
immersing said fabric for between 8 and 10 hours in a bleaching liquor maintained
at 35 to 40 degrees Celsius; and
washing said fabric in a washing solution maintained at 85 to 95 degrees Celsius,
wherein said washing solution is optionally water; and optionally further comprising
immersing said fabric in a 26 to 32 degree Baume solution, such as a 30 degree Baume
solution, of caustic soda maintained at 15 to 18 degrees Celsius.
7. The method of claim 6, further comprising:
immersing at least a portion of the fabric in a dye liquor bath maintained at 20 to
25 degrees Celsius;
rotating said fabric in said dye liquor bath for approximately 16 hours; and washing
said fabric in water maintained at 85 to 95 degrees Celsius, such as approximately
90 degrees Celsius.
8. A method for manufacturing fabric including cotton fibers, comprising:
blowing and cleaning unspun cotton at an ambient temperature of 38-40.5 degrees Celsius;
then carding said cotton at an ambient temperature of 38-40.5 degrees Celsius;
then drawing said cotton at an ambient temperature of 38-40.5 degrees Celsius; then
spinning said cotton into yarn at an ambient temperature of 25-30 degrees
Celsius; and
then weaving said yarn into a fabric at an ambient temperature of 25-30 degrees Celsius.
9. The method of claim 8, further comprising:
immersing said fabric for between 8 and 10 hours in a bleaching liquor maintained
at 35 to 40 degrees Celsius; and
washing said fabric in a washing solution maintained at 85 to 95 degrees Celsius,
wherein said washing solution is optionally water; and optionally further comprising
immersing said fabric in a 26 to 32 degree Baume solution, such as a 30 degree Baume
solution, of caustic soda maintained at 15 to 18 degrees Celsius.
10. The method of claim 9, further comprising:
immersing at least a portion of the fabric in a dye liquor bath maintained at 20 to
25 degrees Celsius;
rotating said fabric in said dye liquor bath for approximately 16 hours; and
washing said fabric in water maintained at 85 to 95 degrees Celsius, such as at approximately
90 degrees Celsius.
11. A method of processing fabric containing cotton fibers comprising:
immersing said fabric for between 8 and 10 hours in a bleaching liquor maintained
at 35 to 40 degrees Celsius; and
washing said fabric in a washing solution maintained at 85 to 95 degrees Celsius,
wherein the washing solution is optionally water; and optionally further comprising
immersing said fabric in a 26 to 32 degree Baume solution, such as a 30 degree Baume
solution, of caustic soda maintained at 15 to 18 degrees Celsius.
12. The method of claim 11, further comprising:
immersing at least a portion of the fabric in dye liquor maintained at 20 to 25 degrees
Celsius;
rotating said fabric in said dye liquor for approximately 16 hours; and washing said
fabric in water maintained at 85 to 95 degrees Celsius, such as at approximately 90
degrees Celsius.
13. The method of any of claims 7, 10 or 12 wherein said dye liquor includes a dye having
at least one vinyl sulphone reactive group, wherein said dye is optionally selected
from the group consisting of Bezaktiv dyes, Jakazol dyes, and Everzol dyes.
14. The yarn or fabric produced by the methods of claim 1, claim 8 or claim 10.