[0001] The present invention relates to a flow control device, and preferably but not necessarily
exclusively in the form of an adaptor for insertion into a liquid-dispensing nozzle
or neck of a liquid-tightly sealable container.
[0002] A movable valve which is manufactured in a nozzle to close a liquid flow path is
known. However, moving parts of the valve have a shorter working life, and manufacturing
the valve within a nozzle significantly increases production costs.
[0003] The use of a close- or tight-knit mesh-like perforated plate is also known from the
applicant's earlier disclosure in European patent
EP 2219992 B1. Although such a mesh-like perforated plate can be made to halt the flow of certain
liquids when used in conjunction with a nozzle and a fluid-tightly sealable container,
the small perforations are complex to manufacture and therefore expensive.
[0004] Furthermore, the small perforations result in a higher ratio of framework to open
space, thus occluding liquid flow therethrough during pouring and leading to undesirable
delay.
[0005] Additionally, the small perforations have been found to block more easily and thus
such a perforated plate requires cleaning more often than is desirable. The present
invention therefore seeks to provide a solution to these problems.
[0006] It is also known that where a fuel container fitted with a pouring spout is used
to dispense petrol or gasoline that under certain circumstances where fire or ignition
occurs this flame can travel or flashback up the pouring spout causing the fuel/air
mixture in the fuel container to explode causing bums, injury or death of the user.
[0007] According to a first aspect of the present invention, there is provided a flow control
system for dispensing liquid from a liquid-tightly sealable container into a second
container to a predetermined level, the system comprising: a liquid having a viscosity;
a flow control device having a liquid flow channel having a first inlet end and a
first outlet end; a fluid flow channel which is independent of the liquid flow channel
and which has a second inlet end and a second outlet end; and a flow control element
by which flow is prevented or substantially prevented from exiting
[0008] the first outlet end of the liquid flow channel, the flow control element being a
slotted element having a plurality of elongate slots forming liquid flow apertures
therethrough, the elongate slots having longitudinal extents which extend across a
flow path defined by the liquid flow channel, characterised by the elongate slots
being predeterminately dimensioned according to the said viscosity of the liquid to
halt or substantially halt liquid flow along the liquid flow channel when the liquid
flow channel is tilted to a flow condition and the fluid flow channel becomes at least
in part filled with liquid, flow in the liquid flow channel remaining halted or substantially
halted until the liquid flow channel is righted to an at rest condition.
[0009] Preferable and/or optional features of the first aspect of the invention are set
forth in claims 2 to 12, inclusive.
[0010] According to a second aspect of the invention, there is provided a nozzle for a fluid-tightly
sealable container, the nozzle comprising a flow control system in accordance with
the first aspect of the invention.
[0011] According to a third aspect of the invention, there is provided a fluid-tightly sealable
container comprising a neck extending from a flow outlet, and a flow control system
according to the first aspect of the invention in the said neck.
[0012] In the second and third aspects, preferably the flow control device is removable.
[0013] According to a fourth aspect of the invention, there is provided a method of controlling
liquid having a viscosity, dispensing from a liquid-tightly sealable container into
a further container to a predetermined level and arresting flashback flame travel,
the method comprising the step of providing a slotted element in a nozzle, the slotted
element having a plurality of elongate slots forming liquid flow apertures, the slots
having a predetermined dimension according to the viscosity of the liquid which: i)
halts or substantially halts liquid flow therethrough when the slotted element is
tilted to a flow condition and the predetermined level in the further container is
reached, and ii) at least arrests flashback flame travel.
[0014] The present invention will now be more particularly described, by way of example
only, with reference to the accompanying drawings, in which:
Figure 1a shows a diagrammatic cross-sectional view of a first embodiment of a flow
control device, in accordance with the first aspect of the invention and in the form
of an adaptor;
Figure 1b is an end view of the flow control device, showing a slotted flow control
element and taken along line A-A in Figure 1b;
Figures 2a to 2d shows enlarged views of second through fourth embodiments of part
of a fluid flow channel of the flow control device, in accordance with the first aspect
of the invention, wherein a distal end is modified;
Figure 3 shows a diagrammatic cross-sectional view of the flow control device of the
first embodiment, fluid-tightly inserted into a releasable liquid dispensing nozzle;
Figure 4 shows a diagrammatic cross-sectional view of the flow control device of the
first embodiment, fluid-tightly inserted into a fluid-tightly sealable container;
Figure 5 is an end view of a fifth embodiment of a flow control device, showing a
slotted flow control element wherein the slots are curved.
[0015] Referring firstly to Figures 1a and 1b of the drawings, there is shown a first embodiment
of a flow control device 10, in this case being in the form of a flow control adaptor
for adapting a nozzle or spout of a fluid-tightly closable and openable liquid container.
The flow control device 10 comprises a hollow and substantially tubular body 12, an
elongate liquid flow passage or channel 14, an elongate air flow passage or channel
16 which is independent of the liquid flow channel 14, and a slotted flow control
element 18.
[0016] Herein throughout, 'elongate' is intended to mean having a greater length than width
or, in other words, a greater longitudinal extent than a lateral extent.
[0017] The hollow body 12 is formed integrally with the air flow channel 16, whereby the
liquid flow channel 14 is defined by the remaining bore 20 of the body 12. Preferably
though not necessarily exclusively, the body 12 and air flow channel 16 are one-piece,
for example, being moulded plastics. A partitioning wall 22 of the air flow channel
16 partitions the bore 20 of the body 12, whereby the liquid flow channel 14 is defined
by the wall 24 of the bore 20 and the exterior surface 26 of the air flow channel
16.
[0018] The shared partitioning wall 22, in this embodiment, extends the length of the body
12.
[0019] Preferably, the body 12 is a generally tubular and, typically, cylindrical push-fit
insert adaptor for a neck, nozzle or spout, but may be the neck, nozzle or spout itself.
[0020] The slotted flow control element 18 can be any form of material. By way of example,
the slotted flow control element 18 is a slotted plate or disk, and may be made from
a solid material, such as metal or plastics.
[0021] Advantageously, in this embodiment, the slotted flow control element 18 is provided
integrally at a distal end of the body 12. However, the slotted flow control element
18 can be formed at any point along a flow path defined by the liquid flow channel
14, as necessity dictates.
[0022] Beneficially, the slotted flow control element 18 can be integrally moulded with
the body 12 at the time of manufacture. Consequently, the device 10 in adaptor form
can be easily and cheaply formed as a single one-piece moulding incorporating the
slotted flow control element 18.
[0023] The adaptor 10 may also optionally incorporate a sealing element 28 located circumferentially
around the body 12 such that, when the adaptor 10 is inserted in to an outlet opening
of a nozzle or neck of a container, a fluid tight seal is achieved between the adaptor
10 and the container. The sealing element 28 is typically made from a rubber or other
suitable compressible material, and is preferably seated in a continuous circumferential
recess in an exterior surface of the body 12.
[0024] Although only one sealing element 28 is shown, two or more, preferably spaced, sealing
elements can be provided to improve a seal.
[0025] The air flow channel 16 may be a separate pipe or tube that is formed in the body
12 forming a fluid flow path 30 in parallel with a liquid flow path 32 of the liquid
flow channel 14. However, preferably, the air flow channel 16 is integrally formed
as one-piece with the body 12, as shown in Figure 1a.
[0026] The liquid flow channel 14 has a liquid-inlet end 34 and a liquid-outlet end 36 at
opposite ends of the body 12. The liquid flow path 32 is thus defined therebetween.
Similarly, the air flow channel 16 has an air-inlet end 38 at one end of the of the
body 12, and an air-outlet end 40 which is spaced from the opposite end of the body
12 so as to be remote from the bore 20 of the body 12. An air flow path 42 is similarly
defined between the air-inlet end 38 and the air-outlet end 40.
[0027] Referring to Figure 1b, the slotted flow control element 18 is shown from the front.
As can be understood, the flow control element 18 is a stationary or substantially
stationary slotted element having a plurality of elongate slots 42 forming liquid
flow apertures 44 therethrough. Each elongate slot 42 extends to or adjacent to a
perimeter edge portion of a body 46 of the flow control element 18. As such, each
elongate slot 42 extends across at least a majority of the body 46.
[0028] The slotted flow control element 18 is preferably a thin plate or disk, which is
planar or substantially planar. Each elongate slot 42 in this embodiment is straight,
having a uniform or substantially uniform lateral extent along at least a majority
of its longitudinal extent. Due to the bore 20 of the fluid flow channel 16 being
preferably circular or substantially circular, each or at least a majority of the
elongate slots 42 have different longitudinal extents. However, although feasible
to provide two or more coaxially aligned said elongate slots arranged substantially
end to end across the body 46, this would likely only negatively impact the fluid
flow rate through the slotted flow control element 18 due to the body 46 forming effectively
a central spar, and thus is not thought to be preferable at this time.
[0029] Although the slotted flow control element 18 is a disk or plate, it is possible that
the flow control element 18 can be a slotted block having a greater thickness. Due
to the increase in material, this would increase production costs, but a similar flow
control would be achievable, since it understood to be the lateral extents of the
elongate slots 42 perpendicular to the direction of the liquid flow path that govern
the operation of the flow control device 10.
[0030] In this embodiment, the elongate slots 42 extend in or substantially in parallel
with each other.
[0031] The slotted flow control device 10 is preferably unitarily formed as one-piece and
therefore without moving parts. The elongate slots 42 in this case have fixed lateral
and longitudinal extents, as well as fixed depths or thicknesses.
[0032] When the flow control device 10 is used with liquids of low viscosity it is sometimes
necessary, as shown in the second to fourth embodiments of Figures 2a to 2d, to modify
the air-outlet end 40 of the air flow channel 16 to prevent the air flow channel 16
becoming rapidly filled with liquid before liquid flow is established in the liquid
flow channel 14. Once the air flow channel 16 becomes filled with liquid, liquid flow
along the liquid flow channel 14 ceases and thus pouring from the flow control device
10 stops.
[0033] Referring to Figure 2a, a second embodiment of the flow control device 10 seals the
air-outlet end 40 of the air flow channel 16, and provides one or more vent holes
48 laterally through the side of the air flow channel 16 adjacent to the air-outlet
end 40.
[0034] Figure 2b shows a third embodiment of the flow control device 10, wherein a mesh
or perforated flow restriction element 50 may be provided across the air-outlet end
40 of the air flow channel 16.
[0035] A fourth embodiment of the flow control device 10 is shown in Figure 2c, and this
includes a U-shaped bend 52 at the distal end portion 54 of the air-outlet end 40
of the air flow channel 16. Liquid flow therefore does not impinge directly on the
air-outlet end 40 of the air flow channel 16, during use and when the flow control
device 10 is tilted to a pouring or dispensing condition.
[0036] A fifth embodiment of the flow control device 10 is shown in Figure 2d, and this
comprises a one-way ball or check valve 56. The valve 56 includes a ball 58 provided
in an enlarged end portion 60 of the air flow channel 16. The ball 58 is seatable
on or adjacent to a narrowed bore portion 62 which is spaced from the air-outlet end
40. Once seated, the ball 58 closes off the air flow path 30 to liquid flow into the
air flow channel 16 from the air-outlet end 40. Thus, air or liquid can flow in to
the air flow channel 16 via the air flow channel inlet end 38, but liquid cannot or
substantially cannot enter the air flow channel 16 from the closable air outlet end
40.
[0037] The second to fourth embodiments are given by way of examples only, and other means
to prevent or limit liquid flow ingress into the air flow channel 16 from the air-outlet
end 40 can be used with low viscosity liquids, as necessity dictates. With higher
viscosity liquids, the liquid flow ingress means may be dispensed with.
[0038] Figure 1a shows the flow control device 10 in the form of an adaptor and which preferably
includes a depth stop 64. In this embodiment, the depth stop 64 is a radially outwardly
extending lip or flange at the proximal end of the body 12. The depth stop 64 may
be continuous or discontinuous around the body 12. The geometry of the depth stop
64 is such that when the flow control device 10 is used to fill a container of known
capacity and/or geometry and the depth stop 64 is resting against the front lip or
rim of the container being filled, only a measured amount of liquid is dispensed before
the slotted flow control element 18 halts the flow of liquid.
[0039] Although provided on the body 12, the depth stop could be included on the liquid
tightly sealable container or a nozzle, spout or neck into which the device 10 in
adaptor form is insertable.
[0040] The elongate slots 42 in the slotted flow control element 18 are dimensioned such
that, when the liquid is flowing through the liquid flow channel 14 and air flows
through the air flow channel 16, the liquid flow rate through the slotted flow control
element 18 is high. However, once a level of dispensed liquid results in back flow
into the air flow channel 16 via the air flow inlet 38, the liquid flow through the
slotted flow control element 18 is stopped or substantially stopped due to the slotted
flow control element 18.
[0041] In order to achieve cessation of liquid flow, the viscosity of the liquid being dispensed
governs a lateral extent of the elongate slots 42. By way of example, it has been
determined through investigation that liquids with a kinematic viscosity range of
or substantially of 0 to 20 mm
2 s
-1 [cSt (centi Stokes)], the preferred slot width is or substantially is 1.5mm or less.
However, for liquids with a kinematic viscosity in the range of or substantially of
20 to 1500 mm
2 s
-1 [cSt], the preferred slot width is in the range of or substantially of 1.5 to 2.0
mm. For liquids having a kinematic viscosity in the range of or substantially of 1500
to 3000 mm
2 s
-1 [cSt], the preferred slot width is in the range of or substantially of 2.0 to 3.0
mm, and for liquids with a kinematic viscosity which is greater than or substantially
greater than 3000 mm
2 s
-1 [cSt], the preferred slot width can be greater than 3.0 mm. Obviously, the slotted
flow control element 18 inevitably provides an occlusion to or restriction of fluid
flow therethrough, and consequently it is beneficial to have the greatest width of
the elongate slots 42 as possible for a given viscosity of liquid to be dispensed.
[0042] Referring to Figure 3, there is shown the flow control device 10 of the first embodiment,
in adaptor form, inserted into a distal end 66 of a liquid dispensing nozzle 68. The
nozzle 68 includes a screw-threaded attachment 70 at its proximal end 72 for fluid-tight
releasable engagement with a neck of a fluid-tightly sealable container not shown.
[0043] Preferably, the nozzle 68 includes a flexible portion 74 partway between its distal
and proximal ends 66, 72, allowing directional orientation of the distal end 66.
[0044] The body 12 is insertable up to the depth stop 64, which thus positions the fixed
slotted flow control element 18 at the exact position required to automatically halt
the dispensing of liquid once the dispensed liquid reaches or substantially reaches
the distal end 66 of the nozzle 68 and dispensed liquid flows into the air flow channel
16.
[0045] The screw-threaded attachment 70 may conveniently include a threaded collar 76 which
is independently received on the nozzle body to simplify engagement with the mating
screw-threaded neck of the dispensing container.
[0046] Preferably, to provide a fluid-tight seal, a further seal element 78 is provided
at or adjacent to the proximal end 72 of the nozzle 68. For operation of the slotted
flow control element 18 to be successful, the nozzle must be fluid-tightly sealable
to the container, and the container in all other respects bar the opening at the neck
must be fluid-tight.
[0047] The nozzle may be other shapes, as necessity dictates, and may be a spout or an extended
neck in which the flow control device 10 is received.
[0048] In other modifications, the nozzle, spout or neck may be part of the flow control
device 10, whereby the slotted flow control element 18 is integrally formed as part
of the nozzle, spout or neck instead of being provided as part of an adaptor.
[0049] When in the form of an adaptor, the flow control device 10 is insertable and also
preferably removable, so that the spout, neck or nozzle 68 can be used in its standard
unadapted form, if required.
[0050] Referring to Figure 4, there is shown the flow control device 10 of the first embodiment
inserted into a mouth and neck 80 of a fluid-tightly sealable container 82. An outside
diameter B of the device 10 is typically such that it is an interference or friction
fit within the inside diameter of the outlet 84 of the liquid tightly sealable container
82, thereby ensuring that it forms a fluid-tight seal to the container 82 and remains
in place when the container 82 is inverted. The seal 32 of the device 10, if utilised,
also improves the fluid-tight engagement.
[0051] With the flow control device 10 in use and thus tilted or even substantially inverted
to a pouring or dispensing position, the partial or total back filling of the air
flow channel 16 with liquid entering via the air-inlet end 38 due to the rising level
of the dispensed liquid results in a state whereby, once the air-inlet end 38 of the
air flow channel 16 is withdrawn or removed from the dispensed liquid, air in significant
volume is not drawn into the air flow channel 16 via its air-inlet end 38. The blocking
of the air flow channel 16 with dispensed liquid along with the predetermined widths
or lateral extents of the elongate slots 42 of the slotted flow control element 18
based on the kinematic viscosity of the dispensed liquid causes further flow through
the slotted elongate element 18 to be halted or substantially halted. The flow control
device 10 can thus be withdrawn from the dispensed liquid in the container being filled
without further or substantial further liquid flow occurring from the liquid-outlet
end 36 of the liquid flow channel 14.
[0052] The flow control device 10 can then be reset for further use by uprighting the liquid-sealable
container on which the device 10 is provided. The liquid in the flow control device
10 thus flows back in to the dispensing container under gravity.
[0053] Referring to Figure 5, a fifth embodiment of a flow control device 10 is shown. Again,
like references refer to parts which are the same as or similar to those of the previous
embodiments, and further detailed description is thus omitted. In this embodiment,
the flow control device 10 comprises the liquid flow channel 14, the fluid flow channel
16, and the slotted flow control element 18.
[0054] In this embodiment, elongate slots 142 of the slotted flow control element 18 have
an at least in part arcuate longitudinal extent, and more preferably the elongate
slots 142 are semi-circular.
[0055] The semi- or part-circular elongate slots 142 may advantageously be concentric with
each other, so that they extend in or substantially in parallel. It is beneficial
from a cost-effective production perspective to centre a radius of each elongate slot
142 on the fluid flow channel 16.
[0056] The benefit of the arcuate elongate slots 142 is that a longitudinal extent of one
or more of the elongate slots 142a is greater than a lateral extent of the liquid
flow channel 14. This provides an increase in open surface area to framework 94 for
liquid flow therethrough, whilst maintaining the required uniform lateral extent of
each elongate slot 42.
[0057] Although not shown in the drawings, a discrete or independent filter or mesh may
be positioned across the liquid flow path to filter the liquid as it is poured. The
filter or mesh may be at or adjacent to the slotted flow control element 14, at an
end of the liquid flow channel 14 remote from the slotted flow control element 16,
or partway therebetween.
[0058] In an additional benefit of the present invention, the flow control device 10 also
forms a flame arrestor, thereby preventing or limiting back travel or flashback along
the tubular body 12 and into the connected container.
[0059] It has been determined that there are two criteria for successful operation of a
flame arrestor using the flow control device 10. The dimensions of the apertures of
the slotted flow control element 18 must be less than a critical dimension and the
critical velocity through the apertures must be higher than the impinging flame velocity
where the critical velocity through the mesh is a function of the mesh geometry.
[0060] By virtue of the geometry and dimensions of the flow control device 10 and the slotted
flow control element 18, along with the inherent latent heat of vaporisation of the
fuel coating the preferably moulded slots 42, a thermoplastic material can be beneficially
utilised without resulting in melting during direct short term flame exposure as experienced
with accidental petrol ignition or explosion in the vicinity of the plurality of apertures.
The use of a plastics as opposed to a metal significantly reduces manufacturing costs
and thus allows greater exposure to potential consumers.
[0061] During an ignition situation, for example, with a user refilling a tank of a gasoline
powered lawnmower that has just been in use and is thus up to running temperature,
the appropriately dimensioned slots 42 effectively break up any travelling flame mass
into flamelets. This is sufficient to prevent flashback and explosion of the fuel
air mixture in the fuel container.
[0062] It has been determined that, for flashback to be prevented or limited, the slots
42 should be no more than 1.5 mm or less for 0 to 20 mm
2 s
-1 [cSt] viscosity.
[0063] With the present invention, the slots 42 are preferably 7 mm in length and 1.5 mm
in width, thereby achieving the required flame arrestor characteristic as well as
enabling flow control including shutoff during a pouring or dispensing operation,
without requiring any moving parts.
[0064] Although the nozzle described above is preferably removably engagable with the fluid-tightly
sealable container, it may be permanently attached once inserted or become an integral
part of the nozzle and/or container.
[0065] Preferably, the liquid flow channel and the fluid flow channel have uniform lateral
dimensions or bores along at least a majority of their longitudinal extents.
[0066] Although the fluid flow channel has a greater longitudinal extent than the body of
the liquid flow channel, it may feasibly be received fully within the body.
[0067] The body of the liquid flow channel may be formed with an opening or longitudinal
subsidiary bore for receiving an independent fluid flow channel as, for example, a
tight push fit. This may ease or simplify manufacturing and would allow a length of
the fluid flow channel to be easily adapted dependent on intended use.
[0068] The flow control device may be used with any kind of liquid to be dispensed and a
gas other than air. The air flow channel mentioned in the previous embodiments may
therefore be generically termed a fluid flow channel, and/or a gas-flow channel, even
though it may receive, as mentioned above, some dispensed liquid.
[0069] The flow control device may be utilised solely as a flame arrestor, and in this case
the flow control aspect would be dispensed with. It would still be preferable to utilise
the elongate slots, but the slots may be dispensed with in favour of apertures of
other dimensions. Providing the dimension of 1.5 mm is retained, flashback of flame
travel into the associated container can be prevented or limited.
[0070] It is thus possible to provide a flow control device, which may be in the form of
an adaptor and which can be easily inserted, typically by being push-fitted, into
a nozzle or mouth and neck of a container. The flow control device utilises no moving
parts, and thus has a long working life and is not prone to failure. The device utilises
a slotted flow control element, preferably being a plate, disk or even flexible or
rigid membrane, which may be positioned arbitrarily along the liquid flow channel.
In the case of the device being an adaptor, it may also be removable, and can thus
be used with a variety of different nozzles, spouts, and/or containers. It is also
possible to utilise the flow control device as a flame arrestor to achieve further
functionality, provided the elongate slots are dimensioned appropriately.
[0071] The embodiments described above are provided by way of examples only, and various
other modifications will be apparent to persons skilled in the art without departing
from the scope of the invention as defined by the appended claims.
1. A flow control system for dispensing liquid from a liquid-tightly sealable container
into a second container to a predetermined level, the system comprising: a liquid
having a viscosity; a flow control device (10) having a liquid flow channel (14) having
a first inlet end (34) and a first outlet end (36); a fluid flow channel (16) which
is independent of the liquid flow channel (14) and which has a second inlet end (38)
and a second outlet end (40); and a flow control element (18) by which flow is prevented
or substantially prevented from exiting the first outlet end (36) of the liquid flow
channel (14), the flow control element (18) being a slotted element (18) having a
plurality of elongate slots (42) forming liquid flow apertures (44) therethrough,
the elongate slots (42) having longitudinal extents which extend across a flow path
defined by the liquid flow channel (14), characterised by the elongate slots (42) being predeterminately dimensioned according to the said
viscosity of the liquid to halt or substantially halt liquid flow along the liquid
flow channel (14) when the liquid flow channel is tilted to a flow condition and the
fluid flow channel (16) becomes at least in part filled with liquid, flow in the liquid
flow channel (14) remaining halted or substantially halted until the liquid flow channel
(14) is righted to an at rest condition.
2. A flow control system as claimed in claim 1, wherein the elongate slots (42) have
a lateral extent of or substantially of 1.5 mm or less for a liquid having a viscosity
up to or substantially up to 20 mm2 s-1 [cSt].
3. A flow control system as claimed in claim 1, wherein the elongate slots (42) have
a lateral extent of or substantially of 3 mm for a liquid having a viscosity between
or substantially between 20 mm2 s-1 [cSt] and 1500 mm2 s-1 [cSt].
4. A flow control system as claimed in any one of claims 1 to 3, wherein the elongate
slots (42) of the slotted element (18) are straight.
5. A flow control system as claimed in any one of claims 1 to 3, wherein the elongate
slots (42) of the slotted element (18) have an at least in part arcuate longitudinal
extent.
6. A flow control system as claimed in any one of claims 1 to 5, wherein the elongate
slots (42) of the slotted element (18) extend in or substantially in parallel with
each other.
7. A flow control system as claimed in any one of claims 1 to 6, wherein the slotted
element (18) extends across the liquid flow channel (14).
8. A flow control system as claimed in any one of claims 1 to 7, wherein the slotted
element (18) is rigid or substantially rigid and devoid of movable parts.
9. A flow control system as claimed in any one of claims 1 to 8, wherein the slotted
element (18) is at or adjacent to the first inlet end (34) of the liquid flow channel
(14).
10. A flow control system as claimed in any one of claims 1 to 9, wherein the flow control
device (10) is an adaptor for insertion into a liquid-dispensing nozzle or neck of
a fluid-tightly sealable container.
11. A flow control system as claimed in claim 10, the flow control device (10) further
comprising a stop (64) for the insertion of the in use adaptor a preset distance into
the liquid-dispensing nozzle, such that the container is fillable repeatedly to a
fixed predetermined level.
12. A flow control system as claimed in any one of the preceding claims, wherein the elongate
slots (42) have a lateral extent which in use form a flame arrestor.
13. A nozzle for a fluid-tightly sealable container, the nozzle comprising a flow control
system as claimed in any one of claims 1 to 12.
14. A fluid-tightly sealable container comprising a neck extending from a flow outlet,
and a flow control system as claimed in any one of claims 1 to 12 in the said neck.
15. A method of controlling liquid having a viscosity, dispensing from a liquid-tightly
sealable container into a further container to a predetermined level and arresting
flashback flame travel, the method comprising the step of providing a slotted element
(18) in a nozzle, the slotted element (18) having a plurality of elongate slots (42)
forming liquid flow apertures (44), the slots (42) having a predetermined dimension
according to the said viscosity of the liquid which: i) halts or substantially halts
liquid flow therethrough when the slotted element (18) is tilted to a flow condition
and the predetermined level in the further container is reached, and ii) at least
arrests flashback flame travel.
1. Durchflusssteuerungssystem zum Abgeben von Flüssigkeit aus einem flüssigkeitsdicht
verschließbaren Behälter in einen zweiten Behälter bis zu einem vorbestimmten Niveau,
wobei das System umfasst: eine Flüssigkeit mit einer Viskosität; eine Durchflusssteuerungsvorrichtung
(10) mit einem Flüssigkeitsströmungskanal (14) mit einem ersten Einlassende (34) und
einem ersten Auslassende (36); einen Fluidströmungskanal (16), der unabhängig von
dem Flüssigkeitsströmungskanal (14) ist und der ein zweites Einlassende (38) und ein
zweites Auslassende (40) aufweist; und ein Strömungssteuerelement (18), durch das
die Strömung am Austritt aus dem ersten Austrittsendes (36) des Flüssigkeitsströmungskanals
(14) gehindert oder im Wesentlichen gehindert wird, wobei das Strömungssteuerelement
(18) ein geschlitztes Element (18) ist, das eine Vielzahl von länglichen Schlitzen
(42) umfasst, die Flüssigkeitsströmungsöffnungen (44) durch diese hindurch bilden,
wobei die länglichen Schlitze (42) Längsausdehnungen aufweisen, die sich über einen
durch den Flüssigkeitsströmungskanal (14) definierten Fließweg erstrecken, dadurch gekennzeichnet, dass die länglichen Schlitze (42) überwiegend entsprechend der Viskosität der Flüssigkeit
dimensioniert sind, um die Flüssigkeitsströmung entlang des Flüssigkeitsströmungskanals
(14) anzuhalten oder im Wesentlichen anzuhalten, wenn der Flüssigkeitsströmungskanal
gegenüber einem Strömungszustand geneigt ist und der Fluidströmungskanal (16) zumindest
teilweise mit Flüssigkeit gefüllt wird, wobei die Strömung in dem Flüssigkeitsströmungskanal
(14) angehalten oder im Wesentlichen angehalten bleibt, bis der Flüssigkeitsströmungskanal
(14) zu einem Ruhezustand aufgerichtet wird.
2. Durchflusssteuerungssystem nach Anspruch 1, wobei die länglichen Schlitze (42) eine
laterale Ausdehnung von oder im Wesentlichen von 1,5 mm oder weniger für eine Flüssigkeit
mit einer Viskosität bis oder im Wesentlichen bis zu 20 mm2 s-1 [cSt] aufweisen.
3. Durchflusssteuerungssystem nach Anspruch 1, wobei die länglichen Schlitze (42) eine
laterale Ausdehnung von oder im Wesentlichen von 3 mm für eine Flüssigkeit mit einer
Viskosität zwischen oder im Wesentlichen zwischen 20 mm2 s-1 [cSt] und 1500 mm2 s-1 [cSt] aufweisen.
4. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 3, wobei die länglichen
Schlitze (42) des geschlitzten Elements (18) gerade sind.
5. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 3, wobei die länglichen
Schlitze (42) des geschlitzten Elements (18) eine zumindest teilweise gebogene Längsausdehnung
aufweisen.
6. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 5, wobei sich die länglichen
Schlitze (42) des geschlitzten Elements (18) parallel oder im Wesentlichen parallel
zueinander erstrecken.
7. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 6, wobei sich das geschlitzte
Element (18) über den Flüssigkeitsströmungskanal (14) erstreckt.
8. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 7, wobei das geschlitzte
Element (18) starr oder im Wesentlichen starr und frei von beweglichen Teilen ist.
9. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 8, wobei das geschlitzte
Element (18) am oder neben dem ersten Einlassende (34) des Flüssigkeitsströmungskanals
(14) angeordnet ist.
10. Durchflusssteuerungssystem, nach einem der Ansprüche 1 bis 9, wobei die Durchflusssteuerungsvorrichtung
(10) ein Adapter zum Einsetzen in einen Flüssigkeitsabgabestutzen oder einen Hals
eines flüssigkeitsdicht verschließbaren Behälters ist.
11. Durchflusssteuerungssystem nach Anspruch 10, wobei die Durchflusssteuerungsvorrichtung
(10) ferner einen Anschlag (64) zum Einführen des in Gebrauch befindlichen Adapters
um eine voreingestellten Weg in den Flüssigkeitsabgabestutzen umfasst, so dass der
Behälter wiederholt bis zu einem festgelegten vorbestimmten Niveau befüllbar ist.
12. Durchflusssteuerungssystem, nach einem der vorstehenden Ansprüche, wobei die länglichen
Schlitze (42) eine seitliche Ausdehnung aufweisen, die im Gebrauch eine Flammsperre
bilden.
13. Stutzen für einen flüssigkeitsdicht verschließbaren Behälter, wobei der Stutzen eine
Durchflusssteuerungsvorrichtung gemäß einem der Ansprüche 1 bis 12 umfasst.
14. Flüssigkeitsdicht verschließbarer Behälter mit einem Hals, der sich von einem Strömungsauslass
erstreckt, und einer Durchflusssteuerungsvorrichtung in dem Hals, wie sie in einem
der Ansprüche 1 bis 12 beansprucht wird.
15. Verfahren zur Steuerung einer Flüssigkeit mit einer Viskosität, die aus einem flüssigkeitsdicht
verschließbaren Behälter in einen weiteren Behälter bis zu einem vorbestimmten Niveau
abgegeben wird und zur Verhinderung von Flammenrückschlag, wobei das Verfahren den
Schritt des Bereitstellens eines geschlitzten Elements (18) in einem Stutzen umfasst,
wobei das geschlitzte Element (18) eine Vielzahl an länglichen Schlitzen (42) aufweist,
die Flüssigkeitsströmungsöffnungen (44) bilden, wobei die Schlitze (42) eine vorbestimmte
Dimensionierung entsprechend der Viskosität der Flüssigkeit haben, welche: i) die
Flüssigkeitsströmung dadurch anhält oder im Wesentlichen anhält, wenn das geschlitzte
Element (18) gegenüber einem Strömungszustand geneigt ist und das vorbestimmte Niveau
in dem weiteren Behälter erreicht ist, und ii) zumindest Flammenrückschlag verhindert.
1. Système de commande de débit pour distribuer un liquide d'un contenant hermétiquement
étanche aux liquides dans un second contenant jusqu'à un niveau prédéterminé, le système
comprenant un liquide ayant une certaine viscosité ; un dispositif de commande de
débit (10) ayant un canal d'écoulement de liquide (14) ayant une première extrémité
d'entrée (34) et une première extrémité de sortie (36) ; un canal d'écoulement de
fluide (16) qui est indépendant du canal d'écoulement de liquide (14) et qui a une
seconde extrémité d'entrée (38) et une seconde extrémité de sortie (40) ; et un élément
de commande d'écoulement (18) par lequel on empêche ou on empêche sensiblement l'écoulement
de quitter la première extrémité de sortie (36) du canal d'écoulement de liquide (14),
l'élément de commande de débit (18) étant un élément fendu (18) ayant une pluralité
de fentes allongées (42) formant des ouvertures d'écoulement de liquide (44) qui le
traversent, les fentes allongées (42) ayant des extensions longitudinales qui s'étendent
en travers d'un trajet d'écoulement défini par le canal d'écoulement de liquide (14)
caractérisé en ce que les fentes allongées (42) ont des dimensions prédéterminées en fonction de ladite
viscosité du liquide pour arrêter ou sensiblement arrêter l'écoulement de liquide
le long du canal d'écoulement de liquide (14) lorsque le canal d'écoulement de liquide
est incliné dans un état d'écoulement et que le canal d'écoulement de liquide (16)
se remplit au moins en partie de liquide, le débit dans le canal d'écoulement de liquide
(14) restant arrêté ou sensiblement arrêté jusqu'à ce que le canal d'écoulement de
liquide (14) soit redressé à un état de repos.
2. Système de commande de débit selon la revendication 1, dans lequel les fentes allongées
(42) ont une extension latérale de ou sensiblement de 1,5 mm ou moins pour un liquide
ayant une viscosité allant jusqu'à ou sensiblement jusqu'à 20 mm2s-1 [cSt].
3. Système de commande de débit selon la revendication 1, dans lequel les fentes allongées
(42) ont une extension latérale de ou sensiblement de 3 mm pour un liquide ayant une
viscosité entre ou sensiblement entre 20 mm2s-1[cSt] et 1500 mm2s-1[cSt].
4. Système de commande de débit selon l'une quelconque des revendications 1 à 3, dans
lequel les fentes allongées (42) de l'élément fendu (18) sont droites.
5. Système de commande de débit selon l'une quelconque des revendications 1 à 3, dans
lequel les fentes allongées (42) de l'élément fendu (18) ont une extension longitudinale
au moins en partie arquée.
6. Système de commande de débit selon l'une quelconque des revendications 1 à 5, dans
lequel les fentes allongées (42) de l'élément fendu (18) s'étendent ou s'étendent
sensiblement parallèlement l'une à l'autre.
7. Système de commande de débit selon l'une quelconque des revendications 1 à 6, dans
lequel l'élément fendu (18) s'étend en travers du canal d'écoulement de liquide (14).
8. Système de commande de débit selon l'une quelconque des revendications 1 à 7, dans
lequel l'élément fendu (18) est rigide ou sensiblement rigide et démuni de parties
mobiles.
9. Système de commande de débit selon l'une quelconque des revendications 1 à 8, dans
lequel l'élément fendu (18) se trouve au niveau ou de manière adjacente à la première
extrémité d'entrée (34) du canal d'écoulement de liquide (14).
10. Système de commande de débit selon l'une quelconque des revendications 1 à 9, dans
lequel le dispositif de commande de débit (10) est un adaptateur pour insertion dans
une buse ou un col de distribution de liquide d'un contenant hermétiquement étanche
aux fluides.
11. Système de commande de débit selon la revendication 10, le dispositif de commande
de débit (10) comprenant en outre un arrêt (64) pour l'insertion de l'adaptateur de
service à une distance préétablie dans la buse de distribution de liquide de sorte
que le contenant puisse être rempli de manière répétée à un niveau prédéterminé fixe.
12. Système de commande de débit selon l'une quelconque des revendications précédentes,
dans lequel les fentes allongées (42) ont une extension latérale qui forme en service
un dispositif anti-retour de flamme.
13. Buse pour un contenant hermétiquement étanche aux liquides, la buse comprenant un
système de commande de débit selon l'une quelconque des revendications 1 à 12.
14. Contenant hermétiquement étanche aux fluides comprenant un col s'étendant d'une sortie
d'écoulement et un système de commande de débit selon l'une quelconque des revendications
1 à 12 dans ledit col.
15. Procédé de commande d'un liquide ayant une certaine viscosité, distribuant à partir
d'un contenant hermétiquement étanche aux liquides dans un autre contenant à un niveau
prédéterminé et arrêtant le déplacement de flammes de retour, le procédé comprenant
l'étape de mise en service d'un élément fendu (18) dans une buse, l'élément fendu
(18) ayant une pluralité de fentes allongées (42) formant des ouvertures d'écoulement
de liquide (44), les fentes (42) ayant une dimension prédéterminée en fonction de
ladite viscosité du liquide qui i) arrête ou arrête sensiblement l'écoulement de liquide
qui les traverse lorsque l'élément fendu (18) est incliné dans un état d'écoulement
et que le niveau prédéterminé dans l'autre contenant est atteint, et ii) arrête au
moins le déplacement de flammes de retour.