(19) |
 |
|
(11) |
EP 2 904 276 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
25.10.2017 Bulletin 2017/43 |
(22) |
Date of filing: 19.07.2013 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/DK2013/050247 |
(87) |
International publication number: |
|
WO 2014/053140 (10.04.2014 Gazette 2014/15) |
|
(54) |
BELT DRIVEN AXIAL FLOW PUMP WITH PULLEY BETWEEN TWO BEARINGS
AXIALPUMPE MIT RIEMENANTRIEB UND RIEMENSCHEIBE ZWISCHEN ZWEI LAGER
POMPE AXIALE ENTRAÎNÉE PAR UNE COURROIE AVEC POULIE ENTRE DEUX PALIERS
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(30) |
Priority: |
01.10.2012 DK 201270598
|
(43) |
Date of publication of application: |
|
12.08.2015 Bulletin 2015/33 |
(73) |
Proprietor: Iron Pump A/S |
|
2730 Herlev (DK) |
|
(72) |
Inventor: |
|
- MAZUR, Michael
DK-3400 Hillerød (DK)
|
(74) |
Representative: Plougmann Vingtoft a/s |
|
Rued Langgaards Vej 8 2300 Copenhagen S 2300 Copenhagen S (DK) |
(56) |
References cited: :
CN-U- 2 106 249 DE-A1-102010 056 393
|
DE-A1- 2 436 578 US-A- 3 185 122
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The present invention relates to a pump housing,
inter alia for use in a stabilizer system for a ship, in particular to a ship's anti heeling
pump housing.
BACKGROUND OF THE INVENTION
[0002] When a ship during loading or unloading tilts to port or starboard and does not return
back to its upright position it is known as heeling of the vessel. One reason of a
ship's heeling is an uneven cargo load distribution during the cargo loading and unloading.
An anti-heeling system of a ship is configured to automatically detect the heeling
angle of the ship and to compensate therefore. This allows the vessel to have a continuous
loading and unloading cargo operation without paying too much attention to the cargo's
load distribution on the ship which saves a considerable amount of time during a call
to port. In addition, the anti-heeling system allows safer and rapid cargo loading
and unloading, reduces damage to ramp, rolling cargo and containers and ensures safety
of the ship and personnel.
In a water-pump anti-heeling system the ship's ballast tanks are internally connected
to each other by means of pipes near the ship's keel, and by a pump system with an
anti-heeling pump, automatic valves and control systems. When the ship heels to any
of the sides, a heeling sensor sends a signal for a change of the ship's angle to
a controller. Transferring of ballast tank water from the heeled side to the other
side of the ship makes the vessel upright. The pump system typically comprises an
electrical motor driven water pump, which is normally reversible to direct ballast
water flow between tanks on either side of the ship.
It is a problem that the prior art anti-heeling pump systems are often difficult to
service not only because of space constraints in the ship's engine room but also because
of the design of the pumps. For some operations the prior art pump systems have shown
not to be simple to maintain in operation, by not allowing a quick and simple access
to internal components requiring regular service or replacement. Also, the running
speed of the pump cannot be easily varied, limiting the versatility of the pumps.
German patent application no.
10 2010 056 393 discloses a pump operated by a belt extending in a secondary transverse passage. One
problem with this pump is that it is suitable for relatively low-pressure operation
only, being adapted for carrying a single propeller only and for a flow of liquid
in a primary direction only. The flow passage has a reduced area at the inner housing
with the pump axle, the pump outer housing having the same contour, giving rise to
a high pressure drop. The secondary transverse passage is configured to allow for
the belt to be pulled off the end of the axle and the axle does not extending past
the secondary passage but has an axle end located within the secondary passage such
that the belt engages the axle close to the axle end, potentially giving rise to higher
transverse loads on one set of bearings than on the other set of bearings.
[0003] The document
DE 24 36 578 A1 discloses in figures 1 and 2 a pump housing according to the preamble of claim 1.
OBJECT OF THE INVENTION
[0004] To solve the above problems, an object of the present invention is to provide an
improved pump system which may allow for easy service, has few components requiring
service, and which also takes up less space, such as a lesser part of the normally
very constrained engine room space near the ship's keel.
[0005] This is achieved by providing a pump housing as defined in claim 1 which is usable
together with a closed loop driving belt extending between the inside and the outside
of the pump housing and which allows for easy access and replacement of internal components
of the pump. The pump according to the invention provides for a transmission of a
driving motor shaft rotation by the driving belt engaging a drive transmission structure,
such as one releasably mounted coaxially around the pump axle. Replacing such an annular
drive transmission structure with one of another diameter allows for a control of
the speed of rotation of the pump axle using the same driving motor rotation speed.
The driving belt runs in a secondary passage extending generally transverse to the
flow passage of the pump between the ends of the pump axle, and has a width in the
direction generally parallel with the flow passage which preferably corresponds essentially
to the width of the second passage in that direction. Preferably both ends of the
pump axle extend into the flow passage, allowing them to be fitted with a respective
propeller whenever a particular high pressure is required, such as is sometimes the
case for anti-heeling systems. In such a case the pump will normally include dynamic
axle seals near each of the axle ends, and the second/secondary passage will then
be located between the dynamic axle seals.
[0006] The second/secondary passage width is preferably chosen to allow for accommodation
of the driving belt with some play; by way of example, when the pump is designed to
operate with a driving belt having a 90 mm width the width of the secondary passage
will typically be in the order of 110 mm - 130 mm, or exceeding only slightly the
width of the belt. Preferably the secondary passage extends between two peripherally
spaced apart openings in an outer housing of the pump, such as at different locations
in a cross-sectional plane, along the circumference of the outer housing. Preferably,
the outer housing and an inner housing may be integrally formed.
[0007] By the pump outer housing having a generally enlarged dimension, eg. a bulbous shape,
between the ends of the pump, the pump housing preferably having circular cross-sections,
the pump water flow passage may have the same or essentially the same total cross-sectional
area compared to that of the piping connected to the pump, thereby providing a limited
flow resistance. The pump may be configured with an essentially symmetrical geometry
about a central plane transverse to the pump axle, providing similar hydraulic properties
irrespectively of the direction of flow through the pump.
[0008] Replacing a belt may be done by cutting it, then inserting a strip of belt material
into the secondary passage, and then splicing the ends of the belt material to form
a closed loop belt. According to the invention, the pump housing is in two parts with
the secondary passage opening up in the axial direction of the pump upon the two parts
being separated, allowing replacement of the driving belt and of the axle bearings.
BRIEF DESCRIPTION OF THE FIGURES
[0009] The invention will now be described in more detail with regard to the accompanying
figures. The figures show one way of implementing the present invention and is not
to be construed as being limiting to other possible embodiments falling within the
scope of the attached claim set.
Fig. 1a is schematic view of a ship during unloading,
Fig. 1b is a perspective view of a pump and motor combination according to the invention,
Fig. 2 is a cross-sectional view of the combination of fig. 1b,
Fig. 3 is a longitudinal sectional view of the pump of fig. 2, taken along line B-B
of fig. 2,
Fig. 4 is a longitudinal sectional view of the pump of fig. 2, taken along line C-C
of fig. 2,
Fig. 5 is a perspective view showing only the axle and drive transmission structure
of the pump of fig. 1b,
Fig. 6 is a perspective view of one part of the pump, and
Fig. 7 is a longitudinal view of an alternative embodiment of the pump of fig. 2.
DETAILED DESCRIPTION OF AN EMBODIMENT
[0010] Fig. 1a shows a ship S in the process of being unloaded at a port. The drawing shows
how the ship S may tilt towards one side during a non-symmetrical unloading, and for
which reason the ship is conventionally equipped with an anti-heeling stabilizer mechanism
that seeks to maintain a perfectly upright position of the ship. The stabilizer mechanism
conventionally includes a motor driven pump P connected to opposite ballast water
tanks T1 and T2 by pipes 8. As the ship S tilts to one side the stabilizer mechanism
activates the pump P to deliver water from one tank T1 to the other tank T2, or vice
versa. The motor, pump P and the pipes 8 are located close to the keel and should
take up as little space as possible. Often several such stabilizer mechanisms are
arranged along the ship's length.
[0011] Shown in fig. 1b is a cast metal pump and motor combination as discussed above and
in accordance with the present invention. The pump may be moulded of any other material.
This combination includes a drive belt 15 driven by an output shaft 12 of the motor
M and connected with the pump 20. Opposite flanges 26, 26' serve to connect the pump
20 to a respective pipe 8. As will be discussed further below the belt 15 engages
a drive transmission structure within the pump 20, the belt 15 and drive transmission
structure providing upon rotation of the output shaft 12 a rotation of an impeller
105 connected to the end of a pump axle mounted in the pump housing H and having opposite
ends A, B, respectively. When mounted in position in the ship's S hull the output
shaft 12 extends essentially parallel with the pump axle. A suitable frame (not shown)
may be configured to carry the pump 20 and the motor M and to be mounted to the ship's
hull; the motor M may be mounted on the frame F to allow for the distance between
the motor M and the pump 20 to be varied, such as for changing the driving belt tension.
[0012] Where the pump is used as part of a ship's anti-heeling system the aforementioned
rotation of the impeller 105 sets up a flow of ballast water along a flow passage
22 that extends inside the pump 20 between the opposite ends 24, 25 of the pump 20,
between the tanks T1 and T2. A second passage 80 separate from the flow passage 22
extends generally transversally to the pump axle and receives the driving belt 15.
The second passage 80 preferably has a width in the direction between the opposite
ends 24, 25 of at least 40 mm, in any event corresponding to the width of the driving
belt 15 required for operation of the pump. The driving belt 15 may be a rubber belt
such as a belt made of reinforced synthetic rubber.
[0013] Fig. 2 is a cross-sectional view of the pump and motor combination of fig. 1b, showing
the driving belt 15 extending around the drive transmission structure 90 inside the
pump 20. With a bulbous design of the outer pump housing H the cross-sectional area
of the flow passage 22 throughout the length of the pump 20 may be the same as that
of the pipes 8 at the opposite flanges 26, 26'.
[0014] As seen best in figs. 2-4 the pump 20 comprises an inner housing 60 inside an outer
housing 30, and the flow passage 22 extends between the outer housing 30 and the inner
housing 60, between the opposite ends 24, 25 of the pump 20. In the inner housing
60 a through-going passage 29 extends in the direction between the opposite ends 24,
25 and is configured for receiving a portion of the impeller axle 100 as well as the
drive transmission structure 90 which is connected with or integral with the axle
100. The view of fig. 2 is as shown by line A-A in fig. 4.
[0015] The outer housing 30 defines together with the inner housing 60 the aforementioned
second passage 80 which communicates with the outside of the outer housing 30 and
extends around the drive transmission structure 90. As seen best in figs. 2 and 6
the second passage 80 is defined in part by the through-going passage 29 and so extends
around the drive transmission structure 90 opposite two peripherally spaced apart
openings 82, 84 in the outer housing 30, each opening 82, 84 defining a respective
end of the second passage 80. Shown also in fig. 2 is a plurality of radially directed
walls 23 that connect the inner housing 60 with the outer housing 30; the walls 23
are preferably integral with the inner housing 60 and the outer housing 30 and split
up the flow passage 22 into longitudinal segments 22' as shown in fig. 2, the sum
of the cross-sectional areas of the respective segments 22' defining the total cross-sectional
area of the flow passage 22.
[0016] As the skilled person will readily understand the dimension of the second passage
80 between the opposite walls 23 that define the second passage 80, as shown by way
of example in fig. 2, is such as to accommodate, with some play, for a driving belt
15 having a suitable thickness, and also where appropriate to allow for the use of
a smaller diameter annular transmission drive structure 90 where the spacing between
opposite lower parts of the belt 15 shown in fig. 2 would be smaller.
[0017] Shown also in figs. 2 and 5 is a toothing 92 of the annular drive transmission structure
90 engaging a toothing 16 of the driving belt 15 that is received in the second passage
80. Fig. 5 is a view showing only the axle 100 and an exemplary form of the drive
transmission structure 90 also shown in fig. 2 wherein the drive transmission ring
is coaxially and releasably mounted to the axle 100, such as by a taper lock. The
selected diameter of the ring allows for a selection of a given speed of rotation
of the pump axle 100 in accordance with the speed of rotation of the motor output
shaft 12. The belt 15 may alternatively engage the axle 100 directly, and may alternatively
be configured for frictional engagement with a V-shaped notch of the drive transmission
structure 90. The driving belt may by way of example alternatively be a V-belt working
with the aforementioned V-shaped notch, and several individual belts may be used next
to each other where this is deemed appropriate. According to the invention, and as
seen best in figs. 3 and 4, the outer housing 30 comprises two parts, namely a first
outer housing part 36 in extension of a second outer housing part 42 in the direction
of the axle 100. The two outer housing parts 36, 42 are releasably connected to each
other by opposite flanges 40, 70 to form a seal along a peripheral region 21 around
the flow passage 22. In addition, the first outer housing part 36 is integrally connected
with a first inner housing part 66 and the second outer housing part 42 is integrally
connected with a second inner housing part 72, arranged in extension of the first
inner housing part 66 in the direction of the axle 100. The two inner housing parts
are releasably sealed against each other along a peripheral region 61 around the axle
100, this seal being established as the two outer housing parts 36, 42 are connected
to each other. As shown in fig. 6 the second passage 80 may extend only in the second
inner housing part 72, being open towards the first inner housing part 66. This allows
for an easy replacement of the driving belt 15 when worn down in that the pump 20
is first disconnected from the pipes 8 and one impeller 105 removed from the axle
100, following which the two outer housing parts 36, 42 with respective inner housing
parts are separated from each other, allowing the belt 15 to be pulled laterally out
of the passage 80 and to be replaced.
[0018] It is noted that, as shown in fig. 3 the pump axle 100 may carry an impeller 105
at each end, and the impeller is such that rotation of the axle 100 in the opposite
direction by opposite rotation of the output shaft 12 will bring about an opposite
liquid flow through the pump 20. Upon mounting the impellers 105 a dynamic axle seal
170 is compressed. Bearings 160 are configured to support the axle 100 laterally,
taking into account lateral forces applied on the axle 100 by the belt 15. In addition,
as shown in fig. 4 various cross-bores may be provided for circulating cooling water
flowing through the pump 20. An indicator cross-bore 162 may be provided downstream
of a chamber 161 in front of a packing. Water from the chamber 161 exiting the bore
162 is an indication that the packing is worn down and that the packing should be
replaced by dissembling the pump 20 as described above.
[0019] Fig. 7 shows an variation wherein the pump carries an impeller 105 at one axle end
B only, the inner housing 60 having a closure portion 200 opposite that one end B
to seal the inside of the inner housing 60 in relation to the flow passage 22 opposite
the end B. This embodiment is useful where low-pressure operations only are anticipated;
the same basic elements as described above may be used in combination with a shortened
length axle 60.
[0020] Although the present invention has been described in connection with the specified
embodiments, it should not be construed as being in any way limited to the presented
examples. The scope of the present invention is set out by the accompanying claim
set. The invention is not specific to the use of the pump for anti-heeling purposes,
but for any purpose where a pump as shown in the drawing figs. 1b-7 is useful. In
the context of the claims, the terms "comprising" or "comprises" do not exclude other
possible elements or steps. Also, the mentioning of references such as "a" or "an"
etc. should not be construed as excluding a plurality. The use of reference signs
in the claims with respect to elements indicated in the figures shall also not be
construed as limiting the scope of the invention.
1. A ship's anti heeling pump housing (H), said housing (H) comprising an outer housing
(30) and an inner housing (60) inside said outer housing (30), a liquid flow passage
(22) between said outer housing (30) and said inner housing (60) extending between
opposite ends (24, 25) of said pump housing (H), a through-going passage (29) extending
in the direction between said opposite ends (24, 25) being configured for receiving
a portion of an impeller axle (100), said outer housing (30) defining together with
said inner housing (60) a second passage (80) separate from said liquid flow passage
(22), said second passage (80) extending generally transversally to said through-going
passage (29) and communicating with the outside of said outer housing (30) and with
said through-going passage (29), said outer housing (30) comprising a first outer
housing part (36) arranged in extension of a second outer housing part (42) in the
direction between said opposite ends (24, 25), said first outer housing part (36)
being releasably connected to said second outer housing part (42), said first outer
housing part (36) supporting a first inner housing part (66) and said second outer
housing part (42) supporting a second inner housing part (72), said first inner housing
part (66) being arranged in extension of said second inner housing part (72) in the
direction between said opposite ends (24, 25), said second passage (80) being in said
second inner housing part (72),
the pump housing being characterised in that
said second passage (80) is open towards said first inner housing part (66) along
the whole length of the second passage (80).
2. The pump housing according to claim 1, said outer housing (H, 30) having an enlarged
dimension between said ends (24, 25) of said pump (20), to provide for said flow passage
(22) having the same or essentially the same total cross-sectional area compared to
the cross-sectional area of said flow passage (22) at said ends (24, 25) of said pump
(20).
3. The pump housing according to any of the preceding claims, said first outer housing
part (36) and said second outer housing part (42) having a respective flange (40,
70), said respective flanges (40, 70) being releasably connected to establish seals
between said first outer housing part (36) and said second outer housing part (42)
and between said first inner housing part (66) and said second inner housing part
(72).
4. A pump comprising the pump housing according to any one of the preceding claims, said
pump further comprises a portion of an axle (100) extending inside said inner housing
(60), said axle (100) having a first axle end (A) and a second axle end (B) and carrying
at least one impeller (105) for establishing a flow of a liquid along said flow passage
(22), a drive transmission structure (90) in said inner housing (60) being connected
with or integral with said axle (100), said second passage (80) further communicating
with the outside at at least one opening (82, 84) and extending around said drive
transmission structure (90) opposite to said opening (82, 84), said axle (100) extending
past said second passage (80) towards each of said ends (24, 25) of said pump (20),
and said second passage (80) being located between bearings (160) for said axle (100).
5. The pump of claim 4, carrying an impeller (105) at said first axle end (A) and at
said second axle end (B).
6. The pump according to claim 4 or 5, said second passage (80) being configured for
receiving an essentially flat driving belt (15) extending from said outside to engage
said drive transmission structure (90) opposite said at least one opening (82, 84).
7. The pump according to any of the preceding claims, said drive transmission structure
being a ring (90) coaxial with said axle (100), said ring (90) being releasably connected
with said axle (100), and said ring (90) comprising a tooting (92) or a V-shaped notch.
1. Gehäuse (H) einer Antikrängungspumpe eines Schiffs, das Gehäuse (H) umfassend ein
äußeres Gehäuse (30) und ein inneres Gehäuse (60) innerhalb des äußeren Gehäuses (30),
ein Flüssigkeitsstromdurchlass (22) zwischen dem äußeren Gehäuse (30) und dem inneren
Gehäuse (60), der zwischen gegenüberliegenden Enden (24, 25) des Pumpengehäuses (H)
verläuft, einen durchlaufenden Durchlass (29), der in der Richtung zwischen den gegenüberliegenden
Enden (24, 25) verläuft, konfiguriert zum Empfangen eines Abschnitts einer Flügelradachse
(100), wobei das äußere Gehäuse (30) zusammen mit dem inneren Gehäuse (60) einen zweiten
Durchlass (80) definiert, der von dem Flüssigkeitsstromdurchlass (22) getrennt ist,
wobei der zweite Durchlass (80) im Allgemeinen quer zu dem durchlaufenden Durchlass
(29) verläuft und mit der Außenseite des äußeren Gehäuses (30) und mit dem durchlaufenden
Durchlass (29) in Verbindung steht, das äußere Gehäuse (30) umfassend einen ersten
Teil (36) des äußeren Gehäuses, der in Verlängerung eines zweiten Teils (42) des äußeren
Gehäuses in der Richtung zwischen den gegenüberliegenden Enden (24, 25) angeordnet
ist, wobei der erste Teil (36) des äußeren Gehäuses abnehmbar mit dem zweiten Teil
(42) des äußeren Gehäuses verbunden ist, wobei der erste Teil (36) des äußeren Gehäuses
einen ersten Teil (66) des inneren Gehäuses stützt und der zweite Teil (42) des äußeren
Gehäuses einen zweiten Teil (72) des inneren Gehäuses stützt, wobei der erste Teil
(66) des inneren Gehäuses in Verlängerung des zweiten Teils (72) des inneren Gehäuses
in der Richtung zwischen den gegenüberliegenden Enden (24, 25) angeordnet ist, wobei
sich der zweite Durchlass (80) in dem zweiten Teil (72) des inneren Gehäuses befindet,
wobei das Pumpengehäuse dadurch gekennzeichnet ist, dass der zweite Durchlass (80) gegen den ersten Teil (66) des inneren Gehäuses entlang
der gesamten Länge des zweiten Durchlasses (80) offen ist.
2. Pumpengehäuse nach Anspruch 1, wobei das äußere Gehäuse (H, 30) eine verlängerte Abmessung
zwischen den Enden (24, 25) der Pumpe (20) hat, um für den Stromdurchlass (22) vorzusehen,
dass er die gleiche oder im Wesentlichen die gleiche Gesamtquerschnittsfläche im Vergleich
zu der Querschnittsfläche des Stromdurchlasses (22) an den Enden (24, 25) der Pumpe
(20) hat.
3. Pumpengehäuse nach einem der vorstehenden Ansprüche, wobei der erste Teil (36) des
äußeren Gehäuses und der zweite Teil (42) des äußeren Gehäuses einen entsprechenden
Flansch (40, 70) hat, wobei die entsprechenden Flansche (40, 70) abnehmbar verbunden
sind, um Abdichtungen zwischen dem ersten Teil (36) des äußeren Gehäuses und dem zweiten
Teil (42) des äußeren Gehäuses und zwischen dem ersten Teil (66) des inneren Gehäuses
und dem zweiten Teil (72) des inneren Gehäuses herzustellen.
4. Pumpe umfassend das Pumpengehäuse nach einem der vorstehenden Ansprüche, wobei die
ferner einen Abschnitt einer Achse (100) umfasst, die im Inneren des inneren Gehäuses
(60) verläuft, wobei die Achse (100) ein erstes Achsenende (A) und ein zweites Achsenende
(B) hat und zumindest einen Flügelrad (105) zum Herstellen einer Strömung einer Flüssigkeit
entlang des Stromdurchlasses (22) trägt, wobei eine Antriebsübertragungsstruktur (90)
in dem inneren Gehäuse (60) mit der Achse (100) verbunden oder in diese integriert
ist, wobei der zweite Durchlass (80) ferner mit der Außenseite an zumindest einer
Öffnung (82, 84) in Verbindung steht und um die Antriebsübertragungsstruktur (90)
gegenüber der Öffnung (82, 84) verläuft, wobei die Achse (100) hinter dem zweiten
Durchlass (80) gegen jeden der Enden (24, 25) der Pumpe (20) verläuft und der zweite
Durchlass (80) sich zwischen Lagern (160) für die Achse (100) befindet.
5. Pumpe nach Anspruch 4, einen Flügelrad (105) an dem Ende (A) der ersten Achse und
dem Ende (B) der zweiten Achse tragend.
6. Pumpe nach Anspruch 4 oder 5, wobei der zweite Durchlass (80) zum Empfangen eines
im Wesentlichen flachen Antriebsriemens (15), der von der Außenseite verläuft, konfiguriert
ist, um die Antriebsübertragungsstruktur (90) gegenüber der zumindest einen Öffnung
(82, 84) eingreifen zu lassen.
7. Pumpe nach einem der vorstehenden Ansprüche, wobei die Antriebsübertragungsstruktur
ein Ring (90) koaxial zu der Achse (100) ist, wobei der Ring (90) abnehmbar mit der
Achse (100) verbunden ist und der Ring (90) eine Verzahnung (92) oder eine V-förmige
Einkerbung umfasst.
1. Bâti de pompe anti-inclinaison (H) d'un navire, ledit bâti (H) comprenant un bâti
extérieur (30) et un bâti intérieur (60) à l'intérieur dudit bâti extérieur (30),
un passage d'écoulement de liquide (22) entre ledit bâti extérieur (30) et ledit bâti
intérieur (60) s'étendant entre les extrémités opposées (24, 25) dudit bâti de pompe
(H), un passage traversant (29) s'étendant selon la direction entre lesdites extrémités
opposées (24, 25) configuré pour recevoir une partie d'un essieu de rotor (100), ledit
bâti extérieur (30) définissant ensemble avec le bâti intérieur (60) un second passage
(80) séparé dudit passage d'écoulement de liquide (22), ledit second passage (80)
s'étendant généralement transversalement audit passage traversant (29) et communiquant
avec l'extérieur dudit bâti extérieur (30) et avec ledit passage traversant (29),
ledit bâti extérieur (30) comprenant une première partie de bâti extérieur (36) disposée
dans le prolongement d'une seconde partie de bâti (42) selon la direction entre lesdites
extrémités opposées (24, 25), ladite première partie de bâti extérieur (36) étant
raccordée de façon libérable à ladite seconde partie de bâti extérieur (42), ladite
première partie de bâti extérieur (36) supportant une première partie de bâti intérieur
(66) et ladite seconde partie de bâti extérieur (42) supportant une seconde partie
de bâti intérieur (72), ladite première partie de bâti intérieur (66) étant disposée
dans le prolongement de ladite seconde partie de bâti intérieur (72) selon la direction
entre lesdites extrémités opposées (24, 25), ledit second passage (80) étant dans
ladite seconde partie de bâti intérieur (72), ledit bâti de pompe étant caractérisé en ce que ledit second passage (80) est ouvert vers ladite première partie de bâti intérieur
(66) sur toute la longueur du second passage (80).
2. Bâti de pompe selon la revendication 1, ledit bâti extérieur (H, 30) possédant une
dimension élargie entre lesdites extrémités (24, 25) de ladite pompe (20) afin de
fournir ledit passage d'écoulement (22) possédant la même ou pratiquement la même
aire de section transversale totale par rapport à la aire de section transversale
dudit passage d'écoulement (22) au niveau desdites extrémités (24, 25) de ladite pompe
(20).
3. Bâti de pompe selon l'une quelconque des revendications précédentes, ladite première
partie de bâti extérieur (36) et ladite seconde partie de bâti extérieur (42) possédant
une bride respective (40, 70), lesdites brides respectives (40, 70) étant raccordées
de façon libérable afin d'établir des joints d'étanchéité entre ladite première partie
de bâti extérieur (36) et ladite seconde partie de bâti extérieur (42) et entre ladite
première partie de bâti intérieur (66) et ladite seconde partie de bâti intérieur
(72).
4. Pompe comprenant le bâti de pompe selon l'une quelconque des revendications précédentes,
ladite pompe comprenant en outre une partie d'un essieu (100) s'étendant à l'intérieur
dudit bâti intérieur (60) ledit essieu (100) possédant une première extrémité d'essieu
(A) et une seconde extrémité d'essieu (B) et portant au moins une roue à ailettes
(105) pour établir un écoulement de liquide le long dudit passage d'écoulement (22),
une structure de transmission d'entraînement (90) dans ledit bâti intérieur (60) étant
raccordé ou réalisée d'une seule pièce avec ledit essieu (100), ledit second passage
(80) communicant en outre avec l'extérieur au niveau d'au moins une ouverture (82,
84) et s'étendant autour de ladite structure de transmission d'entraînement (90) en
face à ladite ouverture (82, 84), ledit essieu (100) s'étendant au-delà dudit second
passage (80) vers chacune desdites extrémités (24, 25) de ladite pompe (20) et ledit
second passage (80) se situant entre les paliers (160) pour ledit essieu (100).
5. Pompe selon la revendication 4, portant une roue à ailettes (105) au niveau de ladite
première extrémité (A) de l'essieu et au niveau de ladite seconde extrémité (B) de
l'essieu.
6. Pompe selon la revendication 4 ou 5, ledit second passage (80) étant configuré pour
recevoir une courroie d'entraînement (15) sensiblement plate s'étendant à partir dudit
extérieur pour venir en prise avec ladite structure de transmission d'entraînement
(90) den face à ladite au moins une ouverture (82, 84).
7. Pompe selon l'une quelconque des revendications précédentes, ladite structure de transmission
d'entraînement étant un anneau (90) coaxial avec ledit essieu (100), ledit anneau
(90) étant relié de manière libérable audit essieu (100) et ledit anneau (90) comprenant
une denture (92) ou une encoche en forme de V.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description