FIELD OF TECHNOLOGY
[0001] A new hearing aid is provided that is configured to perform wireless communication
with other devices and that has a new power supply for the wireless communication
unit.
BACKGROUND
[0002] Typically, only a limited amount of power is available from the power supply of a
hearing aid. For example, a conventional button cell Zinc-air battery typically supplies
power to a hearing aid circuit due to its high energy density and low cost.
[0003] In the design of a hearing aid, the size and the power consumption are important
considerations. The battery is a large component of the hearing aid, and to ensure
compact and inconspicuous hearing aids, small sized batteries, such as the "312" and
"13" types are used. However, small batteries have a relatively large internal resistance.
For example, a "312" battery typically has an internal resistance of 5 Ω - 10 Ω compared
to typical internal resistance values of 0.1 Ω - 0.5 Ω of an AA type battery. The
large internal resistance causes the supply voltage to drop significantly as a function
of increased output current. Voltage drops may result in reduced sound quality and/or
interrupted operation of parts of the hearing aid.
[0004] A radio chip for wireless communication draws significant amounts of current during
on-going transmission and reception. A conventional Zinc-air battery is only capable
of supplying the required current for wireless transmission and reception for a limited
time period, typically 0.5 - 5 milliseconds (ms). If the battery continues to supply
the required amount of current for longer time periods, the supply voltage will decrease,
and below a certain threshold, the hearing aid circuit, in particular digital parts
of the hearing aid circuit, will not operate properly.
[0005] Further, Zinc-air batteries require time to recover after having supplied peak currents,
even for limited time periods. Typically, the radio chip duty cycle, i.e. the percentage
of radio turn-on time with respect to the sum of the radio turn-on and radio turn-off
time, must be kept below 15 % - 20 %.
[0006] US 2011/255722 discloses a hearing instrument with a power supply, wherein the hearing instrument
includes an analogue-to-digital converter for conversion of an input audio signal
to a digital input signal, a digital signal processor for processing the digital input
signal into a processed signal, an audio amplifier for amplifying the processed signal,
a wireless communication unit for wireless data communication between the hearing
instrument and another device, and a stabilizing circuit having an energy storage
unit and a rectifying element, wherein the energy storage unit is configured to supply
power to one or more of the analogue-to-digital converter, the digital signal processor,
and the audio amplifier, and the rectifying element is configured to prevent the energy
storage unit from supplying power to the wireless communication unit.
SUMMARY
[0007] The invention is defined by independent claim 1. Preferred embodiments are defined
in the dependent claims.
[0008] In the new hearing aid according to the appended claims, the power supply of the
hearing aid, i.e. a battery according to the invention, such as a Zinc-air battery,
is relieved from supplying peak currents to a wireless communication unit of the hearing
aid. In addition to the power supply, the wireless communication unit is supplied
with power from an energy storage unit, such as one or more capacitors. The energy
storage unit is replenished from the power supply through a current limiting unit,
such as a resistor, an electronic current limiter, etc.
[0009] The energy storage unit, i.e. at least one capacitor according to the invention,
will deliver peak currents to the wireless communication unit so that peak currents
drawn from the power supply are lowered, and the current limiting unit, e.g. resistor,
will limit currents drawn from the power supply during voltage drops of the energy
storage unit.
[0010] Thus, a new hearing aid is provided, comprising a hearing aid circuit with
an input transducer configured to output an audio signal based on a signal applied
to the input transducer and representing sound,
a hearing loss processor configured to compensate a hearing loss of a user of the
hearing aid and output a hearing loss compensated audio signal, e.g., the hearing
aid may aim to restore loudness, such that loudness of the applied signal as it would
have been perceived by a normal listener substantially matches the loudness of the
hearing loss compensated signal as perceived by the user,
an output transducer, such as a receiver, an implanted transducer, etc., configured
to output an auditory output signal based on the hearing loss compensated audio signal
that can be received by the human auditory system, whereby the user hears the sound,
and
a wireless communication unit configured to communicate wirelessly with another device.
[0011] A power supply is connected to supply power to the hearing aid circuit.
[0012] The new hearing aid further comprises an energy storage unit that is connected to
the communication unit for power supply of the communication unit.
[0013] The energy storage unit is further connected to the power supply through a current
limiting unit for replenishment of the energy storage unit with energy from the power
supply, whereby the energy storage unit draws lower peak currents from the power supply
than if the current limiting unit was absent.
[0014] Preferably, the energy storage unit does not store magnetic energy, i.e. the energy
storage unit does not contain an inductive component.
[0015] Preferably, the current limiting unit does not contain an inductive component for
energy storage, e.g. in a switching current limiter.
[0016] Compared to the size of other hearing aid components, inductive components for energy
storage are relatively bulky, and it is preferred to avoid adding inductive components
for energy storage to the hearing aid design in order to save space.
[0017] The energy storage unit may comprise at least one capacitor for supplying current
to the wireless communication unit, such as one capacitor for supplying current to
the wireless communication unit.
[0018] The capacitance of the energy storage unit may be at least 47 µF, such as at least
100 µF, such as at least 200 µF.
[0019] The current limiting unit operates to limit the amount of current drawn from the
power supply by the wireless communication unit and the energy storage unit.
[0020] The current limiting unit may comprise at least one resistor coupled in series between
the power supply and the energy storage unit, such as one resistor coupled in series
between the power supply and the energy storage unit.
[0021] The current limiting unit may have a resistance ranging from 5 Ω - 50 Ω coupled in
series between the power supply and the energy storage unit.
[0022] A ratio between an absolute value of an output impedance of the current limiting
unit and an absolute value of an output impedance of the energy storage is larger
than 5:1.
[0023] A power consumption of the wireless communication unit may range from 5 - 200 mW
during wireless transmission.
[0024] Duration of on-going wireless communication of the wireless communication unit may
range from 100 µs - 10 ms.
[0025] The current limiting unit may comprise a current limiter, such as a switched current
limiter, such as a switched capacitor current limiter, coupled in series between the
power supply and the energy storage unit.
[0026] The hearing aid circuit may comprise a switched voltage converter, such as a switched
capacitor voltage converter, such as a voltage doubler, coupled for supplying the
wireless communication unit with a supply voltage that is larger than the power supply
voltage.
[0027] The switched voltage converter may include the current limiting unit.
[0028] Preferably, the energy storage unit is coupled at the output of the switched voltage
converter. The currents at the output side of the voltage converter are smaller than
at the input side of the converter so that the energy storage unit will have to supply
smaller peak currents than if coupled at the input side of the voltage converter,
and also a capacitor with a specific capacitance value stores more energy with increased
voltage. Further, influence of capacitor leakage current decreases with increased
voltage.
[0029] The input transducer may comprise one or more microphones, each of which converts
an acoustic signal applied to the microphone into a corresponding analogue audio signal
in which the instantaneous voltage of the audio signal varies continuously with the
sound pressure of the acoustic signal at the microphone.
[0030] The input transducer may also comprise a telecoil that converts a varying magnetic
field at the telecoil into a corresponding varying analogue audio signal in which
the instantaneous voltage of the audio signal varies continuously with the varying
magnetic field strength at the telecoil.
[0031] Typically, the analogue audio signal is made suitable for digital signal processing
by conversion into a corresponding digital audio signal in an analogue-to-digital
converter whereby the amplitude of the analogue audio signal is represented by a binary
number. In this way, a discrete-time and discrete-amplitude digital audio signal in
the form of a sequence of digital values represents the continuous-time and continuous-amplitude
analogue audio signal.
[0032] Throughout the present disclosure, the "audio signal" may be used to identify any
analogue or digital signal forming part of the signal path from the output of the
input transducer to an input of the hearing loss processor.
[0033] Throughout the present disclosure, the "hearing loss compensated audio signal" may
be used to identify any analogue or digital signal forming part of the signal path
from the output of the hearing loss processor to an input of the output transducer.
[0034] The wireless communication unit may be a device or a circuit comprising both a wireless
transmitter and a wireless receiver. The transmitter and receiver may share common
circuitry and/or a single housing. Alternatively, the transmitter and receiver may
share no circuitry, and the wireless communication unit may comprise separate devices
with the transmitter and the receiver, respectively.
[0035] The wireless communication may be performed according to a frequency diversification
or spread spectrum scheme, i.e. the frequency range utilized by the hearing aid is
divided into a number of frequency channels, and wireless transmissions switch channels
according to a predetermined scheme so that transmissions are distributed over the
frequency range.
[0036] A frequency hopping algorithm may be provided that allows devices in the network
to calculate what frequency channel the network will use at any given point in time
without relying on the history of the network, e.g. based on the present frequency
channel number, a pseudo-random number generator calculates the next frequency channel
number. This facilitates synchronization of a new device in with the hearing aid,
e.g. the new device comprises the same pseudo-random number generator as the hearing
aid. Thus, upon receipt of the current frequency channel number during acquisition,
the new device will calculate the same next frequency channel number as the hearing
aid.
[0037] Preferably, in a network, one device in the network is a master device. All other
devices in the system synchronize to the timing of the master device, and preferably,
the master device is a hearing aid, since the hearing aid user will always carry the
hearing aid when he or she uses the network.
[0038] Every device in the network has its own identification number, e.g. a 32-bit number.
Globally unique identities are not required since the probability of two users having
hearing aids with identical identifications is negligible.
[0039] Preferably, a new device is automatically recognized by the network and interconnected
with the network.
[0040] It is an advantage of a network operating according to a spread spectrum scheme that
the communication has a low sensitivity to noise, since noise is typically present
in specific frequency channels, and communication will only be performed in a specific
frequency channel for a short time period after which communication is switched to
another frequency channel.
[0041] Further, several networks may co-exist in close proximity, for example two or more
hearing aid users may be present in the same room without network interference, since
the probability of two networks simultaneously using a specific frequency channel
will be very low. Likewise, the hearing aid network may coexist with other wireless
networks utilizing the same frequency band, such as Bluetooth networks or other wireless
local area networks.
[0042] The hearing aid may advantageously be incorporated into a binaural hearing aid system,
wherein two hearing aids are interconnected, e.g., through a wireless network, for
digital exchange of data, such as audio signals, signal processing parameters, control
data, such as identification of signal processing programs, etc., etc., and optionally
interconnected with other devices, such as a remote control, etc.
BRIEF DESCRIPTION OF THE DRAWINGS
[0043] In the following, the new method and hearing aid is explained in more detail with
reference to the drawings, wherein
- Fig. 1
- Is a schematic diagram of one new hearing aid according to the appended claims,
- Fig. 2
- Is a schematic diagram of another new hearing aid according to the appended claims,
and
- Fig. 3
- Shows plot of simulated currents during operation of the hearing aid of Fig. 2.
DETAILED DESCRIPTION OF THE DRAWINGS
[0044] In the following, various examples of the new hearing aid are illustrated. The new
hearing aid according to the appended claims may, however, be embodied in different
forms and should not be construed as limited to the examples set forth herein.
[0045] It should be noted that the accompanying drawings are schematic and simplified for
clarity, and they merely show details which are essential to the understanding of
the new hearing aid, while other details have been left out.
[0046] Like reference numerals refer to like elements throughout. Like elements will, thus,
not be described in detail with respect to the description of each figure.
[0047] Fig. 1 shows a schematic diagram of a new hearing aid 10 according to the appended
claims.
[0048] The hearing aid 10 has a Zinc-air battery 12 that supplies power to the hearing aid
circuit 14.
[0049] The hearing aid circuit 14 includes an input transducer 16 in the form of a microphone
16. The microphone 16 outputs an analogue audio signal 18 based on an acoustic sound
signal arriving at the microphone 16 when the hearing aid 10 is operating.
[0050] An analogue-to-digital converter 20 converts the analogue audio signal 18 into a
corresponding digital audio signal 22 for digital signal processing in the hearing
aid circuit 14, in particular in the hearing loss processor 24 that is configured
to compensate a hearing loss of a user of the hearing aid 10. Preferably, the hearing
loss processor 24 comprises a dynamic range compressor well-known in the art for compensation
of frequency dependent loss of dynamic range of the user often termed recruitment
in the art. In this way, the hearing aid may be configured to restore loudness, such
that loudness of the hearing loss compensated signal as perceived by the user wearing
the hearing aid 10 substantially matches the loudness of the acoustic sound signal
arriving at the microphone 16 as it would have been perceived by a listener with normal
hearing. Accordingly, the hearing loss processor 24 outputs a digital hearing loss
compensated audio signal 26.
[0051] A digital-to-analogue converter 28 converts the digital hearing loss compensated
audio signal 26 into a corresponding analogue hearing loss compensated audio signal
30.
[0052] An output transducer in the form of a receiver 32 converts the analogue hearing loss
compensated audio signal 30 into a corresponding acoustic signal for transmission
towards an eardrum of the user, whereby the user hears the sound originally arriving
at the microphone; however, compensated for the user's individual hearing loss.
[0053] The hearing aid circuit 14 further includes a wireless communication unit 34 in the
form of a radio chip connected to an antenna and configured to communicate wirelessly
with other devices, e.g. in a hearing aid network as is well-known in the art.
[0054] The radio chip may operate at a larger voltage than the output voltage of a conventional
Zinc-air battery. Thus, in Fig. 1, a voltage doubler 36 is provided to supply power
to the radio chip 34. The voltage doubler 36 and the current limiting unit 40 may
be combined. However, in another example, a radio chip can be used that is capable
of operating at the output voltage of a Zinc-air battery, and in such an example,
the voltage doubler 36 may be omitted.
[0055] A radio chip 34 typically draws significant amounts of current during on-going wireless
data transmission and data reception, e.g. ranging from 5 mA - 50 mA. A Zinc-air battery
is only capable of supplying the required amount of current during a short time period,
typically a few milliseconds. Continued supply of the required amount of current may
lead to a lowered supply voltage below which one or more other parts of the hearing
aid, e.g. the digital signal processing circuitry, may stop operating properly. Further,
the Zinc-air battery requires time to recover after having supplied current to the
radio chip 34 during its communication. Therefore, typically the radio chip duty cycle,
i.e. the percentage of radio turn-on time with respect to the sum of the radio turn-on
and radio turn-off time, should be kept below 15 % - 20 % depending on current values
and battery performance.
[0056] Communication between devices, e.g. in a network, may be synchronized so that every
device, e.g. in the network, knows when to transmit and when to receive. Communication,
i.e. reception and/or transmission, may be performed in short bursts, which e.g. may
be in a range of 10 µs to 10 ms, such as in a range of 100 µs to 1 ms, such as in
a range of 400 µs to 800 µs, such as around 600 µs.
[0057] The hearing aid 10 further comprises an energy storage unit 38 that is connected
to the communication unit 34 for power supply of the communication unit 34 so that
the main power for the communication unit 34 during on-going wireless data transmission
or data reception of the communication unit 34 is supplied from the energy storage
unit 38, thereby relieving the battery 12 from supplying these peak current loads,
and thereby avoiding significant voltage drops of the power supply for the hearing
aid circuit 14. The energy storage unit 38 has low output impedance.
[0058] The energy storage unit 38 is further connected to the power supply 12 through a
current limiting unit 40 for replenishment of the energy storage unit 38 with energy
from the power supply 12, whereby the energy storage unit 38 draws lower peak currents
from the power supply 12 than if the current limiting unit 40 had been absent.
[0059] The current limiting unit 40 may be a switched current limiting unit, such as a switched
capacitor current limiting unit; however, preferably, the current limiting unit does
not contain an inductive component.
[0060] Compared to the size of other hearing aid components, inductive components are relatively
bulky, and it is preferred to avoid adding inductive components to the hearing aid
design in order to save space.
[0061] The energy storage unit 38 may comprise one or more capacitors for supplying current
to the wireless communication unit 34. The capacitor(s) should have a low ESR (equivalent
series resistance) facilitating delivery of the peak currents for the communication
unit 34.
[0062] The capacitance of the energy storage unit may be at least 47 µF, such as at least
100 µF, such as at least 200 µF.
[0063] A ratio between an absolute value of an output impedance of the current limiting
unit 40 and an absolute value of an output impedance of the energy storage is larger
than 5:1 so that the peak currents for the communication unit 34 are delivered from
the energy storage unit 38.
[0064] The current limiting unit 40 may have a resistance ranging from 5 Ω - 50 Ω coupled
in series between the power supply and the energy storage unit so that the peak currents
for the communication unit 34 are delivered from the energy storage unit 38.
[0065] The current limiting unit 40 may comprise one or more resistors coupled in series
between the power supply 12 and the energy storage unit 38.
[0066] A power consumption of the wireless communication unit may range from 20 - 200 mW
during wireless transmission.
[0067] Duration of wireless communication of the wireless communication unit may range from
100 µs - 2 ms.
[0068] As shown in Fig. 1, the energy storage unit 38 is preferably coupled at the output
of the switched voltage converter 36. The currents at the output side of the voltage
converter 36 are smaller than at the input side of the converter 36 so that the energy
storage unit 38 will have to supply smaller peak currents than if coupled at the input
side of the voltage converter 36, and also a capacitor with a specific capacitance
value can store more energy with increased voltage. Further, influence of capacitor
leakage current decreases with increased voltage.
[0069] Fig. 2 shows a schematic diagram of a new hearing aid 10 identical to the hearing
aid shown in Fig.2 except for the fact that the current limiting unit is constituted
by a single resistor 40, e.g. a 10 Ω resistor, and the energy storage unit is constituted
by a single capacitor 38, e.g. a 220 µF capacitor with an ESR of 1 Ω - 2 Ω.
[0070] Fig. 3 shows simulated currents of the hearing aid 10 shown in Fig. 2. The square
current trace 50 shows the current drawn by the radio chip 34 showing the peak currents
during on-going data transmission or reception, and the lower current trace 52 shows
the current flowing through the resistor 40. It should be noted that the current supplied
to the voltage doubler 36 has half the value of current trace 52.
1. A hearing aid (10) comprising a battery (12) connected to supply power to a hearing
aid circuit (14) with
an input transducer (16) configured to output an audio signal (18) based on a signal
applied to the input transducer (16) and representing sound,
a hearing loss processor (24) configured to compensate a hearing loss of a user of
the hearing aid (10) and output a hearing loss compensated audio signal (26),
an output transducer (32) configured to output an auditory output signal based on
the hearing loss compensated audio signal (26) that can be received by the human auditory
system resulting in the user hearing sound, and
a wireless communication unit (34) configured to communicate wirelessly with another
device,
at least one capacitor (38), and
a current limiting unit (40),
characterized in that
the at least one capacitor (38) is coupled to supply peak currents to the wireless
communication unit (34), and
the at least one capacitor (38) is further connected to the battery (12) through the
current limiting unit (40) for replenishment of the at least one capacitor (38) with
energy from the battery (12), whereby the at least one capacitor (38) draws lower
peak currents from the battery (12) than if the current limiting unit (40) was absent.
2. A hearing aid (10) according to claim 1, wherein the at least one capacitor (38) is
constituted by one capacitor (38) for supplying peak currents to the wireless communication
unit.
3. A hearing aid (10) according to claim 1 or 2, wherein the capacitance of the at least
one capacitor (38) is at least 47 µF.
4. A hearing aid (10) according to any of the previous claims, wherein the current limiting
unit (40) comprises at least one resistor coupled in series between the battery (12)
and the at least one capacitor (38).
5. A hearing aid (10) according to any of the previous claims, wherein the current limiting
unit (40) is constituted by one resistor coupled in series between the battery (12)
and the at least one capacitor (38).
6. A hearing aid (10) according to any of the previous claims, wherein the current limiting
unit (40) has a resistance ranging from 5 Ω - 50 Ω coupled in series between the battery
(12) and the at least one capacitor (38).
7. A hearing aid (10) according to any of the previous claims, wherein a ratio between
an absolute value of an output impedance of the current limiting unit (40) and an
absolute value of an output impedance of the at least one capacitor (38) is larger
than 5:1.
8. A hearing aid (10) according to any of the previous claims, wherein a power consumption
of the wireless communication unit (34) ranges from 5 mW - 200 mW during wireless
transmission.
9. A hearing aid (10) according to any of the previous claims, wherein a duration of
wireless communication of the wireless communication unit (34) ranges from 100 µs
- 2 ms.
10. A hearing aid (10) according to claim 1, wherein the current limiting unit (40) comprises
a current limiter coupled in series between the battery (12) and the at least one
capacitor (38).
11. A hearing aid (10) according to claim 10, wherein the current limiter (40) is a switched
current limiter.
12. A hearing aid (10) according to any of the previous claims, wherein the hearing aid
circuit (14) comprises a switched voltage converter (36) coupled between the battery
(12) and the at least one capacitor (38) for increasing the voltage supplying the
at least one capacitor (38) above the battery voltage.
13. A hearing aid (10) according to claim 12, wherein the switched voltage converter (36)
is a voltage doubler.
14. A hearing aid (10) according to claim 12 or 13, wherein the switched voltage converter
(36) includes the current limiting unit (40).
1. Hörhilfe (10), umfassend eine Batterie (12), die mit Versorgungsenergie für eine Hörhilfenschaltung
(14) verbunden ist, mit
einem Eingangsumsetzer (16), der konfiguriert ist, basierend auf einem an den Eingangsumsetzer
(16) angelegten und Ton darstellenden Signal ein Audiosignal (18) auszugeben,
einem Hörverlustprozessor (24), der konfiguriert ist, einen Hörverlust eines Benutzers
der Hörhilfe (10) auszugleichen und ein Audiosignal mit Hörverlustausgleich (26) auszugeben,
einem Ausgangsumsetzer (32), der konfiguriert ist, basierend auf dem Audiosignal mit
Hörverlustausgleich (26) ein auditives Ausgangssignal auszugeben, das durch das menschliche
Hörsystem aufgenommen werden kann, was dazu führt, dass der Benutzer Ton hört, und
einer drahtlosen Kommunikationseinheit (34), die konfiguriert ist, drahtlos mit einer
anderen Vorrichtung zu kommunizieren,
zumindest einem Kondensator (38) und
einer Strombegrenzungseinheit (40),
dadurch gekennzeichnet, dass
der zumindest eine Kondensator (38) mit Versorgungsstromspitzen an die drahtlose Kommunikationseinheit
(34) gekoppelt ist und
der zumindest eine Kondensator (38) zur Wiederauffüllung des zumindest einen Kondensators
(38) mit Energie aus der Batterie (12) weiter durch die Strombegrenzungseinheit (40)
mit der Batterie (12) verbunden ist, wobei der zumindest eine Kondensator (38) geringere
Stromspitzen aus der Batterie (12) bezieht, als wenn die Strombegrenzungseinheit (40)
fehlte.
2. Hörhilfe (10) nach Anspruch 1, wobei der zumindest eine Kondensator (38) durch einen
Kondensator (38) zur Versorgung der drahtlosen Kommunikationseinheit mit Stromspitzen
gebildet ist.
3. Hörhilfe (10) nach Anspruch 1 oder 2, wobei die Kapazität des zumindest einen Kondensators
(38) zumindest 47 µF beträgt.
4. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei die Strombegrenzungseinheit
(40) zumindest einen Widerstand umfasst, der in Serie zwischen die Batterie (12) und
den zumindest einen Kondensator (38) gekoppelt ist.
5. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei die Strombegrenzungseinheit
(40) durch einen Widerstand gebildet ist, der in Serie zwischen die Batterie (12)
und den zumindest einen Kondensator (38) gekoppelt ist.
6. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei die Strombegrenzungseinheit
(40) einen Wirkwiderstand im Bereich von 5 Ω bis 50 Ω- in Serie zwischen die Batterie
(12) und den zumindest einen Kondensator (38) gekoppelt besitzt.
7. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei ein Verhältnis zwischen
einem absoluten Wert einer Ausgangsimpedanz der Strombegrenzungseinheit (40) und einem
absoluten Wert einer Ausgangsimpedanz des zumindest einen Kondensators (38) größer
ist als 5:1.
8. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei ein Energieverbrauch der
drahtlosen Kommunikationseinheit (34) während der drahtlosen Übertragung von 5 mW
bis 200 mW reicht.
9. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei eine Dauer der drahtlosen
Kommunikation der drahtlosen Kommunikationseinheit (34) von 100 µs bis 2 ms reicht.
10. Hörhilfe (10) nach Anspruch 1, wobei die Strombegrenzungseinheit (40) einen Strombegrenzer
umfasst, der in Serie zwischen die Batterie (12) und den zumindest einen Kondensator
(38) gekoppelt ist.
11. Hörhilfe (10) nach Anspruch 10, wobei der Strombegrenzer (40) ein Schaltstrombegrenzer
ist.
12. Hörhilfe (10) nach einem der vorstehenden Ansprüche, wobei die Hörhilfeschaltung (14)
zum Erhöhen der Spannung, die den zumindest einen Kondensator (38) versorgt, über
die Batteriespannung einen Schaltspannungswandler (36) umfasst, der zwischen die Batterie
(12) und den zumindest einen Kondensator (38) gekoppelt ist.
13. Hörhilfe (10) nach Anspruch 12, wobei der Schaltspannungswandler (36) ein Spannungsverdoppler
ist.
14. Hörhilfe (10) nach Anspruch 12 oder 13, wobei der Schaltspannungswandler (36) die
Strombegrenzungseinheit (40) aufweist.
1. Prothèse auditive (10) comprenant une batterie (12) connectée pour alimenter un circuit
de prothèse auditive (14) avec
un transducteur d'entrée (16) configuré pour fournir en sortie un signal audio (18)
sur la base d'un signal appliqué au transducteur d'entrée (16) et représentant du
son,
un processeur de perte d'audition (24) configuré pour compenser une perte d'audition
d'un utilisateur de la prothèse auditive (10) et fournir en sortie un signal audio
compensé de perte d'audition (26),
un transducteur de sortie (32) configuré pour fournir en sortie un signal de sortie
auditif sur la base du signal audio compensé de perte d'audition (26) qui peut être
reçu par le système auditif humain résultant en une audition de son par l'utilisateur,
et
une unité de communication sans fil (34) configurée pour communiquer sans fil avec
un autre dispositif,
au moins un condensateur (38), et
une unité de limitation de courant (40),
caractérisée en ce que
l'au moins un condensateur (38) est couplé pour fournir des courants de crête à l'unité
de communication sans fil (34), et
l'au moins un condensateur (38) est connecté en outre à la batterie (12) à travers
l'unité de limitation de courant (40) pour le réapprovisionnement du au moins un condensateur
(38) avec de l'énergie de la batterie (12), grâce à quoi l'au moins un condensateur
(38) tire des courants de crête plus faibles de la batterie (12) que si l'unité de
limitation de courant (40) était absente.
2. Prothèse auditive (10) selon la revendication 1, dans laquelle l'au moins un condensateur
(38) est constitué d'un condensateur (38) pour fournir des courants de crête à l'unité
de communication sans fil.
3. Prothèse auditive (10) selon la revendication 1 ou 2, dans laquelle la capacité de
l'au moins un condensateur (38) est d'au moins 47 µF.
4. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle l'unité de limitation de courant (40) comprend au moins une résistance couplée
en série entre la batterie (12) et l'au moins un condensateur (38).
5. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle l'unité de limitation de courant (40) est constituée d'une résistance couplée
en série entre la batterie (12) et l'au moins un condensateur (38).
6. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle l'unité de limitation de courant (40) présente une résistance comprise entre
5 Ω - 50 Ω couplée en série entre la batterie (12) et l'au moins un condensateur (38).
7. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle un ratio entre une valeur absolue d'une impédance de sortie de l'unité de
limitation de courant (40) et une valeur absolue d'une impédance de sortie de l'au
moins un condensateur (38) est plus grand que 5:1.
8. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle une consommation de puissance de l'unité de communication sans fil (34) est
comprise entre 5 mW - 200 mW pendant la transmission sans fil.
9. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle une durée de communication sans fil de l'unité de communication sans fil
(34) est comprise entre 100 µs - 2 ms.
10. Prothèse auditive (10) selon la revendication 1, dans laquelle l'unité de limitation
de courant (40) comprend un limiteur de courant couplé en série entre la batterie
(12) et l'au moins un condensateur (38).
11. Prothèse auditive (10) selon la revendication 10, dans laquelle le limiteur de courant
(40) est un limiteur de courant à découpage.
12. Prothèse auditive (10) selon l'une quelconque des revendications précédentes, dans
laquelle le circuit de prothèse auditive (14) comprend un convertisseur de tension
à découpage (36) couplé entre la batterie (12) et l'au moins un condensateur (38)
pour augmenter la tension alimentant l'au moins un condensateur (38) au-dessus de
la tension de batterie.
13. Prothèse auditive (10) selon la revendication 12, dans laquelle le convertisseur de
tension à découpage (36) est un doubleur de tension.
14. Prothèse auditive (10) selon la revendication 12 ou 13, dans laquelle le convertisseur
de tension à découpage (36) inclut l'unité de limitation de courant (40).