[0001] The present invention relates to a rotary hydraulic machine having radial pistons.
[0002] Hydraulic machines are devices which transform kinetic energy from a shaft into pressurising
energy of a liquid, and vice versa.
[0003] In the first case the hydraulic machine functions as a pump, while in the second
case the hydraulic machine functions as a motor. In both cases, the operating liquid
is oil.
[0004] Rotary hydraulic machines are those in which the element transmitting the kinetic
energy to the outside (in the case of motors) or which introduces the kinetic energy
to the inside (in the case of pumps) is a shaft provided with continuous rotary motion.
[0005] For the sake of simple presentation, from here on explicit reference will be made
to the case of motors, as motors are differentiated from pumps only in regard to the
direction of energy flow and not in regard to constructional mechanisms.
[0006] Rotary hydraulic motors with pistons are constituted by one or more chambers in which
a volume is continually varied by the motion of a piston internally of a cylindrical
seating.
[0007] The chambers are placed periodically in fluid communication with the supply environment
and with the discharging environment by means of holes which are freed by the relative
motion between the piston and the cylinder.
[0008] In rotary hydraulic motors having radial pistons, to which the present invention
relates, the pistons translate along axes which are arranged perpendicularly to the
rotation axis of the drive shaft.
[0009] Rotary hydraulic motors with radial pistons are known which have a static cylinder
block internally of which a plurality of housing seatings for the cylinders are afforded.
These seatings are arranged radially equidistanced (in a star fashion) with respect
to the axis of the drive shaft.
[0010] The cylinders are constrained to the cylinder block by means of pins which enable
the cylinders to oscillate in "pendulum fashion" about axes that are parallel to the
drive shaft.
[0011] Respective pistons are arranged internally of the cylinders, which pistons can slide
along directions that are perpendicular to the drive shaft.
[0012] The pistons are active on a crank of the drive shaft, which crank rotates eccentrically
with respect to the drive shaft.
[0013] An annular crown is keyed rotatably on the crank and is associated to the pistons.
[0014] When the chamber defined between the piston and the head of the respective cylinder
is placed under pressure, the piston translates distancingly from the cylinder head
and transmits a force to the annular crown.
[0015] The crown transmits a force to the crank of the drive shaft directed perpendicularly
to the rotation axis thereof.
[0016] This force is clearly offset with respect to the rotation axis of the drive shaft,
and thus generates a torque which sets the drive shaft in rotation. The combined action
of the various cylinders guarantees a continuous rotary drive of the rotating shaft.
[0017] These types of motors and, equally, pumps, exhibit an important drawback. The pistons
perform translations along directions which intersect in the centre of the annular
crown, the centre of which crown does not coincide (but as mentioned, it is eccentric)
with the rotation axis of the drive shaft.
[0018] On the contrary, the cylinders are arranged in a star-fashion concentrically to the
rotation axis of the drive shaft.
[0019] Therefore, the translation of the pistons generates a torque on the cylinders which
induce the cylinders to oscillate in a "pendulum fashion" during functioning of the
motor.
[0020] The pressure transmitted by the pistons to the cylinders (responsible for the torque
mentioned above) is identical (net of friction) to the force transmitted by the piston
to the annular crown (a force which sets the drive shaft in rotation).
[0021] Thus the pressure transmitted by the pistons to the cylinders is of considerable
entity (directly proportional to the power of the motor).
[0022] This pressure is unloaded on the cylinder body only via the two pins which constrain
each cylinder to the cylinder body.
[0023] Therefore great attention must be paid during the design stage with regard to the
dimensioning and mechanical properties of the cited pins.
[0024] Further, the inevitable wear on these pins (or the relative seatings) creates play
in the coupling between the cylinder and the cylinder body which play requires the
rectification of the motor.
[0025] What is more, the maximum power of these motors has physical limitations in the possibility
of realising pins and relative seatings which are able to guarantee an adequate working
life of the motor.
[0026] A rotary hydraulic machine according to the preamble of claim 1 is shown in
SU615248 or
SU733386.
[0027] In this context, the technical objective underpinning the present invention is to
provide a rotary hydraulic machine according to claim 1 having radial pistons which
obviates the drawbacks in the prior art as cited herein above.
[0028] In particular, an aim of the present invention is to provide a rotary hydraulic machine
having radial pistons which requires only small reconditioning operations.
[0029] A further aim of the present invention is to provide a rotary hydraulic machine with
radial pistons which is dimensionable for any power.
[0030] The set technical objective and the set aims are substantially attained by a rotary
hydraulic machine having radial pistons, comprising the technical characteristics
set out in one or more of the appended claims.
[0031] Further characteristics and advantages of the present invention will more clearly
emerge from the following non-limiting description of a preferred but not exclusive
embodiment of a rotary hydraulic machine having radial pistons, as illustrated in
the accompanying drawings, in which:
- figure 1 is a section view of a rotary hydraulic machine having radial pistons of
the present invention, with some parts removed better to evidence others;
- figure 2 is a view of the machine of figure 1 in a different operating configuration;
- figure 3 is a view of the machine of figure 1 in a further different operating configuration;
- figure 4 is a section according to plane IV-IV of the machine of figure 1; and
- figure 5 is an enlarged view of a detail of the machine of figure 1.
[0032] With reference to the figures of the drawings, 1 denotes in its entirety a rotary
hydraulic machine having radial pistons of the present invention.
[0033] The machine 1 comprises a rotating shaft 2 which, in the case of a motor, is a drive
shaft and in the case of a pump is the shaft introducing energy into the pump.
[0034] The rotating shaft 2 rotates with a continuous motion about a rotation axis R (illustrated
in figure 4).
[0035] The machine 1 further comprises a fixed cylinder body 3 exhibiting a plurality of
housing seatings 4.
[0036] The housing seatings 4 are arranged radially equidistanced to the axis R of rotation
of the rotating shaft 2, such as to realise a star-configuration.
[0037] In the preferred embodiment of the invention the housing seatings are five in number
(see figures 1, 2 and 3).
[0038] A relative cylinder 5 is provided internally of each housing seating 4, which cylinder
5 is able to rotate internally of the housing seating 4 about an axis C which is parallel
to the rotation axis R of the rotating shaft 2.
[0039] A relative piston 6 is provided internally of each cylinder 5. Each piston 6 is slidably
coupled to the respective cylinder 5 along a sliding axis P (in the accompanying figures,
and in particular in figures 1, 2 and 3 a cylinder 5 and the respective piston 6 have
been removed so that the housing seating 4 can be more clearly illustrated).
[0040] The sliding axes P are perpendicular to the rotation axis R of the rotating axis
2 and perpendicular to the rotation axes C of the cylinder 5 internally of the respective
housing seatings 4.
[0041] Each piston 6 is further coupled to a crank 7 of the rotating shaft 2. The crank
7 is eccentric with respect to the rotation axis R of the rotating shaft 2 (see figure
4).
[0042] By crank, in the context of the present invention, reference is made to a portion
of the rotating shaft 2 which develops in a "goose-neck" shape with respect to the
rotating shaft, i.e. which forms a hook shape with respect to the straight development
of the rotating shaft.
[0043] An annular crown 8 is keyed on the crank 7, which crown 8 is rotatable with respect
to the crank about an axis that is parallel to the rotation axis R of the rotating
shaft 2.
[0044] Each piston 6 is constrained to the annular crown 8 along a direction coinciding
with the sliding axis P, while it is free to slide with respect to the annular crown
8 along a perpendicular direction to the sliding axis P.
[0045] In other words, each piston 6 cannot distance from the annular crown 8 but the crown
8 can rotate with respect to the piston 6.
[0046] For this purpose, the annular crown 8 comprises retaining organs 9 which retain the
base of the piston 6 on the external surface 8a of the annular crown 8 (as illustrated
in figure 4).
[0047] Note that the retaining organs 9 guarantee however that the base of the piston 6
can slide along the external surface of the annular crown 8.
[0048] The retaining organs 9 are, for example, constituted by a pair of skids acting between
the base of the piston 6 and the external surface 8a of the annular crown 8.
[0049] Rollers 10 (figure 4) are interposed between the annular crown 8 and the crank 7,
which rollers 10 enable the annular crown 8 to rotate on the crank 7.
[0050] In this way, when a force is applied on the external surface of the annular crown
8 directed towards the centre thereof, this force generates a torque with respect
to the rotation axis R of the rotating shaft 2 which causes rotation thereof.
[0051] To this end, note that the sliding axes P of the pistons 6 converge at a point coinciding
with the centre of the annular crown 8 (and therefore eccentric with respect to the
rotation axis R of the rotating shaft 2).
[0052] When the pressure increases in the expansion chamber 11 (the variable-volume chamber
which is created between the piston head 6 and the cylinder 5), the piston 6 transmits
a force to the annular crown 8 which sets the rotating shaft 2 in rotation (according
to the mechanism as described above).
[0053] In this regard one or more conduits 12 are enslaved to each cylinder 5, which conduits
12 are delivery conduits of pressurised oil, and one or more discharge conduits 13
of the oil (see figure 4).
[0054] In particular, when a piston 6 transmits the above-cited force to the annular crown
8, the crown 8 sets the crank 7 in motion and the piston 6 translates internally of
the cylinder 5.
[0055] Since, as mentioned, the sliding axis P of the pistons 6 passes through the centre
of the annular crown 8 while the cylinders 5 are free to rotate internally of the
seatings 4 arranged equidistanced from the rotation axis R of the rotating shaft 2,
the sliding of the piston 6 internally of the cylinder 5 causes a rotation of the
cylinder 5.
[0056] In other words, the pistons 6 near and distance from the rotation axis R of the rotating
shaft 2, while the cylinders 5 are always at the same distance from the rotation axis
R.
[0057] Therefore, in order to have a sliding motion of the piston 6 internally of the cylinder
5, the cylinder must be able to rotate internally of the seating 4. By comparing figures
1, 2 and 3 with one another, the entity of the rotation can be noted, as a function
of the piston 5 run and thus of the translation of the crank 7.
[0058] In particular, between figure 1 and 2 the crank 7 is translated, bringing it into
a distanced position by 120° in a clockwise direction with respect to the original
position thereof. The same type of motion differentiates figure 2 from figure 3 and
figure 3 from figure 1.
[0059] As can be observed, the cylinders 5 perform a pendular oscillation during a complete
revolution of the rotating shaft 2.
[0060] The rotation of the cylinders 5 is guaranteed by the coupling between the cylinder
5 and the respective housing seating 4.
[0061] In particular, the cylinders 5 and the housing seatings 4 have a cylindrical-sector
conformation (see figures 1, 2 and 3).
[0062] In detail, each cylinder 5 comprises an external wall 14 having a cylindrical-sector
development and each housing seating 4 comprises a surface 15 having a cylindrical-sector
development.
[0063] The external wall 14 of the cylinder 5 is slidably in contact with the surface 15
of the housing seating 4, i.e. it slides along the surface 15.
[0064] Note that there are no pins present active between the cylinder 5 and the respective
housing seating 4 for to guaranteeing relative rotation between the two elements.
[0065] The surface 15 of the housing seating 4 and the external wall 14 of the cylinder
5 have a greater development than the development of a semi-cylinder (as illustrated
in figures from 1 to 3).
[0066] In this way, the cylinder 5 is retained in the housing seating 4 by mechanical interference
between the cylinder 5 and the seating 4.
[0067] The machine 1 advantageously comprises a compensating chamber 16, afforded between
each cylinder 5 and the respective housing seating 4, set in fluid communication with
a source of pressurised fluid (see in particular figure 5).
[0068] The compensating chamber 16 creates a thrust on the cylinder 5 which is able to compensate,
at least in part, the thrust that is exerted on the cylinder during the travel run
of the piston.
[0069] Note that the pressure internally of the expansion chamber 11 generates a thrust
on the piston 6 that is directed towards the centre of the annular crown 8 (as mentioned
above) and, contemporaneously, generates a reaction force which is equal and opposite
on the cylinder 5.
[0070] This force is the main one responsible for the friction forces which oppose the rotation
of the cylinder 5 in the housing seating 4.
[0071] As mentioned herein above, the compensating chamber 16 enables a force to be generated
on the cylinder 5 which is opposite the above-mentioned reaction force.
[0072] The compensating chamber 16 is preferably in fluid communication with the expansion
chamber 11 such as to receive pressurised fluid directly from the expansion chamber
11.
[0073] This enables the same source of pressurised oil to be used for supplying both the
expansion chamber 11 and the compensating chamber 16. Further, as the pressure internally
of the expansion chamber 11 varies during the functioning of the machine, the pressure
internally of the compensating chamber 16 also varies in the same way.
[0074] In order to guarantee fluid communication between the expansion chamber 11 and the
compensating chamber 16, the cylinder 5 comprises a conduit 17 which, by crossing
the whole breadth of the chamber 5, connects the expansion chamber 11 and the compensating
chamber 16.
[0075] In order to guarantee maximum efficiency of the compensating chamber 16, the chamber
16 is set in a position such that the sliding axis P of the piston 6 crosses the compensating
chamber 16 (see figure 5).
[0076] The compensating chamber 16 preferably exhibits a maximum dimension at the sliding
axis P of the piston 6.
[0077] In particular, the compensating chamber 16 is symmetrical with respect to the sliding
axis P.
[0078] In this way, the efficiency of the compensating chamber 16 is maximised since the
force transmitted to the cylinder 5 by the compensating chamber 16 is perfectly aligned
with and in an opposite direction to the reaction force (see above) transmitted to
the cylinder 5.
[0079] In the preferred embodiment of the invention, the compensating chamber 16 is defined
by a rectified portion of the external wall 14 of the cylinder 5 in combination with
the surface 15 of the housing seating 4 (as shown in figure 5).
[0080] In other words, the external wall 14 of the cylinder 5 exhibits a straight portion
which, in combination with the curvature of the surface 15 of the housing seating
4, creates a space which defines the compensating chamber 16.
[0081] Note that the position of the compensating chamber 16 is fixed with respect to the
cylinder 5 and varies with respect to the housing seating 4 as a function of the relative
position of the cylinder internally of the seating 4 (compare figures 1, 2 and 3).
[0082] The machine 1 also comprises a further compensating chamber 18 active between the
piston 6 and the external surface 8a of the annular crown 8. The further compensating
chamber 18 performs the same function as the above-described compensating chamber
16, though it is active between the base of the piston 6 and the annular crown 8.
[0083] In other words, the further compensating chamber 18 reduces the friction between
the piston 6 and the annular crown 8.
[0084] The further compensating chamber 18 too is crossed by the sliding axis P of the piston
6 and exhibits a maximum dimension at the sliding axis P. The further compensating
chamber 18 is in fluid communication with the expansion chamber 11 via a conduit 19.
[0085] The invention thus attains the set aims.
[0086] The compensating chamber 16, in combination with the cylindrical-sector development
of the housing seatings 4 and the cylinders 5 rotating therein, guarantee avoiding
a concentration of forces at a few points (for example the pins in the prior art)
and thus reduce wear on the machine and as a consequence limit the need for reconditioning
operations.
[0087] The force transmitted to the cylinder by the piston 6 is in fact well distributed
over a wide surface and is compensated (at least partially) by the compensating chamber
16.
[0088] Further, the compensating chamber 16, the housing seatings 4, the cylinders 5 and
the pistons 6 can be dimensioned as required without incurring any drawbacks, so that
the machine 1 can be dimensioned for any power rating.
1. A rotary hydraulic machine having radial pistons, comprising a rotating shaft (2),
a cylinder-housing body (3) having a plurality of housing seatings (4) arranged radially
and equidistanced from a rotation axis (R) of the rotating shaft (2), a cylinder (5)
housed in each of the plurality of housing seatings (4) and rotating with respect
to the respective housing seating of the plurality of housing seatings (4) about an
axis (C) which is parallel to the rotation axis (R) of the rotating shaft (2), a slidable
piston (6) in the cylinder (5) housed in each of the plurality of housing seatings
(4) coupled to a crank (7) of the rotating shaft (2), the crank (7) being offset with
respect to the rotation axis (R) of the rotating shaft (2), wherein the cylinder (5)
housed in each of the plurality of housing seatings (4) and each housing seating (4)
have a cylindrical-section sector, a compensating chamber (16) being afforded between
the cylinder (5) housed in each of the plurality of the housing seatings (4) and the
respective housing seating (4), set in fluid communication with a pressurised fluid
source,
characterized in that an annular crown (8) is keyed on the crank (7), said crown (8) is rotatable with
respect to the crank about an axis that is parallel to the rotation axis (R) of the
rotating shaft (2) and in that rollers (10) are interposed between the annular crown (8) and the crank (7), said
rollers (10) enable the annular crown (8) to rotate on the crank (7).
2. The rotary hydraulic machine of claim 1, wherein the cylindrical-section sectors defining
the development of the cylinders (5) and the housing seatings (4) exhibit respective
axes of development which are parallel to one another, parallel to the axis (C) of
rotation of the cylinders (5) and perpendicular to the rotation axis (R) of the rotating
shaft (2).
3. The rotary hydraulic machine of claim 2, wherein each cylinder (5) comprises an external
wall (14) having a cylindrical-sector development and each housing seating (4) comprises
a surface (15) having a cylindrical-sector development; the external wall (14) being
slidably in contact with the surface (15).
4. The rotary hydraulic machine of claim 3, wherein the surface (15) of the housing seating
(4) and the external wall (14) of the cylinder (5) have a development that is greater
than a development of a semi-cylinder.
5. The rotary hydraulic machine of claim 3, wherein the compensating chamber (16) is
defined by a flattened portion of the external wall (14) of the cylinder (5) in combination
with the surface (15) of the housing seating (4).
6. The rotary hydraulic machine of any one of the preceding claims, wherein the compensating
chamber (16) is in fluid communication with an expansion chamber (11), defined between
the piston (6) and the cylinder (5), in order to receive pressurised fluid supplied
to the expansion chamber (11).
7. The rotary hydraulic machine of any one of the preceding claims, wherein each piston
(6) is slidably coupled to the respective cylinder (5) along a sliding axis (P); the
compensating chamber (16) being crossed by the sliding axis (P).
8. The rotary hydraulic machine of claim 7, wherein the compensating chamber (16) exhibits
a maximum dimension at the sliding axis (P).
9. The rotary hydraulic machine of any one of the preceding claims, comprising the annular
crown (8) which is rotatably keyed on the crank (7) of the rotating shaft (2); each
piston (6) in each cylinder (5) being constrained to an external surface (8a) of the
annular crown (8) along a direction which coincides with a sliding axis (P) of said
each piston (6).
10. The rotary hydraulic machine of claim 9, comprising a further compensating chamber
(18) acting between the piston (6) and the external surface (8a) of the annular crown
(8).
11. The rotary hydraulic machine of claim 10, wherein the further compensating chamber
(18) is crossed by the sliding axis (P) and exhibits a maximum dimension at the sliding
axis (P).
1. Hydraulische Drehmaschine mit Radialkolben, umfassend eine Drehwelle (2), einen Zylinderaufnahmekörper
(3), aufweisend eine Vielzahl an Aufnahmesitzen (4), die radial und gleich beabstandet
von einer Rotationsachse (R) der Drehwelle (2) angeordnet sind, einen Zylinder (5)
untergebracht in einem jeden der Vielzahl von Aufnahmesitzen (4) und sich drehend
zum jeweiligen Aufnahmesitz der Vielzahl von Aufnahmesitzen (4) um eine Achse (C),
die parallel zur Rotationsachse (R) der Drehwelle (2) angeordnet ist, einen verschiebbaren
Kolben (6) im Zylinder (5), untergebracht in einem jeden der Vielzahl von Aufnahmesitzen
(4), gekuppelt mit einer Kurbel (7) der Drehwelle (2), wobei die Kurbel (7) im Vergleich
zur Rotationsachse (R) der Drehwelle (2) versetzt ist, wobei der Zylinder (5), der
in einem jeden der Vielzahl von Aufnahmesitzen (4) untergebracht ist, und jeder Aufnahmesitz
(4) einen Sektor mit zylindrischem Querschnitt aufweisen, wobei eine Ausgleichskammer
(16) zwischen dem Zylinder (5), der in einem jeden der Vielzahl von Aufnahmesitzen
(4) untergebracht ist, und dem jeweiligen Aufnahmesitz (4) ausgebildet ist, gebracht
in Fluidkommunikation mit einer mit Druck beaufschlagten Mediumquelle, dadurch gekennzeichnet, dass ein ringförmiger Kranz (8) an der Kurbel (7) verkeilt ist, wobei der Kranz (8) zur
Kurbel um eine Achse drehbar ist, die parallel zur Rotationsachse (R) der Drehwelle
(2) angeordnet ist, und dadurch, dass Rollen (10) zwischen dem ringförmigen Kranz
(8) und der Kurbel (7) eingesetzt sind, wobei die Rollen (10) dem ringförmigen Kranz
(8) ermöglichen, sich auf der Kurbel (7) zu drehen.
2. Hydraulische Drehmaschine nach Anspruch 1, wobei die Sektoren mit zylindrischem Querschnitt
die Entwicklung der Zylinder (5) definieren und die Aufnahmesitze (4) jeweilige Entwicklungsachsen
aufweisen, die parallel zueinander, parallel zur Rotationsachse (C) der Zylinder (5)
und senkrecht zur Rotationsachse (R) der Drehwelle (2) angeordnet sind.
3. Hydraulische Drehmaschine nach Anspruch 2, wobei ein jeder Zylinder (5) eine außenseitige
Wand (14) umfasst, aufweisend eine Entwicklung mit einem zylindrischen Sektor, und
jeder Sitz (4) eine Oberfläche (15) umfasst, aufweisend eine Entwicklung mit einem
zylindrischen Sektor, wobei die außenseitige Wand (14) in Kontakt mit der Oberfläche
(15) verschiebbar ist.
4. Hydraulische Drehmaschine nach Anspruch 3, wobei die Oberfläche (15) des Aufnahmesitzes
(4) und die außenseitige Wand (14) des Zylinders (5) eine Entwicklung aufweisen, die
größer ist als die Entwicklung eines Halbzylinders.
5. Hydraulische Drehmaschine nach Anspruch 3, wobei die Ausgleichskammer (16) durch einen
abgeflachten Abschnitt der außenseitigen Wand (14) des Zylinders (5) in Kombination
mit der Oberfläche (15) des Aufnahmesitzes (4) definiert ist.
6. Hydraulische Drehmaschine nach einem der vorhergehenden Ansprüche, wobei die Ausgleichskammer
(16) in Fluidkommunikation mit einer Expansionskammer (11) steht, definiert zwischen
dem Kolben (6) und dem Zylinder (5), um mit Druck beaufschlagtes Medium zu empfangen,
das der Expansionskammer (11) zugeführt wird.
7. Hydraulische Drehmaschine nach einem der vorhergehenden Ansprüche, wobei ein jeder
Kolben (6) verschiebbar mit dem jeweiligen Zylinder (5) entlang einer Verschiebeachse
(P) gekoppelt ist und die Ausgleichskammer (16) von der Verschiebeachse (P) gekreuzt
wird.
8. Hydraulische Drehmaschine nach Anspruch 7, wobei die Ausgleichskammer (16) eine maximale
Abmessung an der Verschiebeachse (P) aufweist.
9. Hydraulische Drehmaschine nach einem der vorhergehenden Ansprüche, umfassend den ringförmigen
Kranz (8), der drehbar auf der Kurbel (7) der Drehwelle (2) verkeilt ist, wobei ein
jeder Kolben (6) in jedem Zylinder (5) mit einer außenseitigen Oberfläche (8a) des
ringförmigen Kranzes (8) entlang einer Richtung verbunden ist, die mit einer Verschiebeachse
(P) von einem jeden Kolben (6) übereinstimmt.
10. Hydraulische Drehmaschine nach Anspruch 9, zudem umfassend eine weitere Ausgleichskammer
(18), wirkend zwischen dem Kolben (6) und der außenseitigen Oberfläche (8a) des ringförmigen
Kranzes (8).
11. Hydraulische Drehmaschine nach Anspruch 10, wobei die weitere Ausgleichskammer (18)
von der Verschiebeachse (P) gekreuzt wird und eine maximale Abmessung an der Verschiebeachse
(P) aufweist.
1. Machine hydraulique rotative comportant des pistons radiaux, comprenant un arbre rotatif
(2), un corps logeant un cylindre (3) comportant une pluralité de sièges de logement
(4) disposés radialement et équidistants à un axe de rotation (R) de l'arbre rotatif
(2), un cylindre (5) logé dans chacun de la pluralité de sièges de logement (4) et
tournant par rapport au siège de logement respectif de la pluralité de sièges de logement
(4) autour d'un axe (C) étant parallèle à l'axe de rotation (R) de l'arbre rotatif
(2), un piston (6) pouvant coulisser dans le cylindre (5) logé dans chacun de la pluralité
de sièges de logement (4) accouplé à un vilebrequin (7) de l'arbre rotatif (2), le
vilebrequin (7) étant décalé par rapport à l'axe de rotation (R) de l'arbre rotatif
(2), dans laquelle le cylindre (5), logé dans chacun de la pluralité de sièges de
logement (4) et chaque siège de logement (4), comporte un secteur à section cylindrique,
une chambre de compensation (16) étant réalisée entre le cylindre (5) logé dans chacun
de la pluralité de sièges de logement (4) et le siège de logement (4) respectif placé
en communication fluidique avec une source de fluide sous pression, caractérisée en ce qu'une couronne annulaire (8) est calée sur le vilebrequin (7), ladite couronne (8) pouvant
pivoter par rapport au vilebrequin autour d'un axe étant parallèle à l'axe de rotation
(R) de l'arbre rotatif (2) et en ce que des rouleaux (10) sont interposés entre la couronne annulaire (8) et le vilebrequin
(7), lesdits rouleaux (10) permettant à la couronne annulaire (8) de pivoter sur le
vilebrequin (7).
2. Machine hydraulique rotative selon la revendication 1, dans laquelle les secteurs
à section cylindrique définissant le développement des cylindres (5) et les sièges
de logement (4) présentent des axes respectifs de développement étant parallèles réciproquement,
parallèles à l'axe (C) de rotation des cylindres (5) et perpendiculaires à l'axe de
rotation (R) de l'arbre rotatif (2).
3. Machine hydraulique rotative selon la revendication 2, dans laquelle chaque cylindre
(5) comprend une cloison externe (14) comportant un développement à secteur cylindrique
et chaque siège de logement (4) comprend une surface (15) comportant un développement
à secteur cylindrique ; la cloison externe (14) pouvant coulisser en contact avec
la surface (15).
4. Machine hydraulique rotative selon la revendication 3, dans laquelle la surface (15)
du siège de logement (4) et la cloison externe (14) du cylindre (5) ont un développement
supérieur à un développement d'un demi-cylindre.
5. Machine hydraulique rotative selon la revendication 3, dans laquelle la chambre de
compensation (16) est définie par une partie aplatie de la cloison externe (14) du
cylindre (5) en combinaison avec la surface (15) du siège de logement (4).
6. Machine hydraulique rotative selon l'une quelconque des revendications précédentes,
dans laquelle la chambre de compensation (16) est en communication fluidique avec
une chambre d'expansion (11) définie entre le piston (6) et le cylindre (5) afin de
recevoir un fluide sous pression fourni à la chambre d'expansion (11).
7. Machine hydraulique rotative selon l'une quelconque des revendications précédentes,
dans laquelle chaque piston (6) est accouplé de façon coulissante au cylindre (5)
respectif le long d'un axe coulissant (P) ; la chambre de compensation (16) étant
traversée par l'axe coulissant (P).
8. Machine hydraulique rotative selon la revendication 7, dans laquelle la chambre de
compensation (16) présente une dimension maximum en correspondance de l'axe coulissant
(P).
9. Machine hydraulique rotative selon l'une quelconque des revendications précédentes,
comprenant la couronne annulaire (8) étant calée de façon rotative sur le vilebrequin
(7) de l'arbre rotatif (2) ; chaque piston (6) dans chaque cylindre (5) étant solidaire
d'une surface externe (8a) de la couronne annulaire (8) le long d'une direction coïncidant
avec un axe coulissant (P) de chacun desdits pistons (6).
10. Machine hydraulique rotative selon la revendication 9, comprenant une chambre de compensation
(18) supplémentaire agissant entre le piston (6) et la surface externe (8a) de la
couronne annulaire (8).
11. Machine hydraulique rotative selon la revendication 10, dans laquelle la chambre de
compensation (18) supplémentaire est traversée par l'axe coulissant (P) et présente
une dimension maximum en correspondance de l'axe coulissant (P).