FIELD OF INVENTION
[0001] The invention relates to a method according to the preamble of claim 1.
[0002] The invention also relates to a forming section according to the preamble of claim
10.
PRIOR ART
[0003] The task of a forming section is to remove water from fibre suspension fed by the
headbox. The consistency of fibre suspension fed onto the forming section is usually
1% and, after the forming section, the consistency of the web formed on the forming
section is again 18-20%.
[0004] When the web is manufactured of watery wood fibre stock, water in the pulp is removed
on the forming section through a forming wire or forming wires for starting the formation
of the web. Wood pulp fibres remain randomly distributed on the forming wire or between
the forming wires moving together.
[0005] Depending on the grade of the web being manufactured, different types of stocks are
used. The volume for which water can be removed from different stocks for achieving
a web of good quality is a function of many factors, such as e.g. a function of the
desired basis weight of the web, the design speed of the machine, and the desired
level of fines, fibres and fill materials in the finished product.
[0006] Many types of devices are known on the forming section i.e. the former of the web,
such as foil strips, suction boxes, hitch rolls, suction rolls, and rolls provided
with an open surface, which have been used in many different arrangements and arrays
when trying to optimise the volume, time and location of water being removed when
forming the web. The manufacture of the web is still partly art and partly science
in simply that removing water as quickly as possible does not produce an end-product
of best quality. In other words, manufacturing a high-quality end-product especially
with great speeds is a function of the volume of dewatering, the dewatering method,
the duration of dewatering, and the location of dewatering.
[0007] When it is desired to maintain or improve the quality of the end-product when transferring
to higher production speeds, many times unforeseeable problems are created as the
result of which either the production volume has to be decreased for maintaining the
desired quality or the desired quality has to be sacrificed for achieving the greater
production volume.
[0008] A forming section known from prior art is a hybrid former, which consists of a single-wire
section and a twin-wire section following it, whereby the lower wire forms a second
wire of the twin-wire section. The headbox feeds a pulp suspension jet at the beginning
of the single-wire section, after which a pulp layer, having received its initial
forming on the lower wire, moves onto the twin-wire section on which the formation
of the web is continued. On the single-wire section, the web is dewatered only in
one direction i.e. through the lower wire and, on the twin-wire section, the web is
dewatered in both directions.
[0009] The hybrid former can be used in a relatively large basis-weight range, whereby it
is possible by means of it to e.g. manufacture fine paper the basis weight of which
is in the range of 40-300 g/m
2. With a gap former, it is usually not possible to manufacture a web the basis weight
of which exceeds the value of 200 g/m
2. Thus, there are still a lot of hybrid formers in use and some old fourdrinier-wire
formers are modified into hybrid formers.
[0010] A problem related to the hybrid former is that the residual variation of the web
formed is dependent on the speed of the machine. The upper limit of the speed range
of the best hybrid formers today is about 1,300 m/min. If the speed of the hybrid
former is increased to a value of over 1,300 m/min, also the residual variation of
the web formed increases strongly. A web having too large a residual variation is
not a saleable product.
[0011] Fig. 3 of
WO specification 2007/096467 describes a hybrid former. A single-layer headbox feeds a pulp suspension jet onto
a lower wire at the beginning of a single-wire section on top of a forming board after
a breast roll. The forming board is provided with underpressure and there are two
successive dewatering zones. Dewatering starts in the first dewatering zone and continues
in the second i.e. the latter dewatering zone. The second dewatering zone consists
of cross-machine directional strips with which pulsating dewatering is induced in
pulp suspension travelling on the lower wire. On the single-wire section, the web
is dewatered only in one direction i.e. downwards. The single-wire section is followed
by a twin-wire section at the beginning of which an upper wire loop forms a gap with
the lower wire. Within the upper wire loop, there is a suction box, which is divided
into three successive compartments in which unequal underpressures can be used. The
lower surface of the first compartment of the suction box following the gap of the
twin-wire section is constituted of a curvilinear, stationary forming shoe provided
with thorough holes.
[0012] FI utility model 6487 again describes another hybrid former. A multi-layer headbox
feeds a pulp suspension jet onto a lower wire at the beginning of a single-wire section
immediately after a breast roll. On the single-wire section, there is a suction box
which can comprise dewatering strips either with or without suction, various suction
boxes, forming shoes or equivalents. The single-wire section is followed by a twin-wire
section at the beginning of which an upper wire loop forms a gap with the lower wire.
Within the upper wire loop, there is a suction box, which is divided into three successive
compartments in which unequal underpressures can be used. The lower surface of the
first compartment of the suction box following the gap of the twin-wire section is
constituted of a curvilinear, stationary forming shoe provided with thorough holes.
The distance between a slice opening of the headbox and a closing point of the gap
of the twin-wire section is in the range of 0.5-8 m, advantageously 0.3-3 m.
[0013] US patent 4154645 describes a web-forming unit for manufacturing a paper web. Within a forming wire
loop, there are a breast roll and a forming roll. On a section between the breast
roll and the forming roll below the forming wire, there are a forming board and a
combination of a wet suction box and a wire guiding shoe following it. A single-layer
headbox feeds a pulp suspension jet on top of a fourdrinier wire on a section following
the breast roll. The cover structure of the forming board below the forming wire can
be closed, perforated or strip covered. The surface of the forming board is most suitably
planar. Dewatering with an open-surfaced forming board takes place most suitably freely,
but also a suction effect can be combined with this.
[0014] Fig. 1 of
WO specification 2005/078187 shows a hybrid former in which two separate single-layer headboxes are used for forming
a twin-layer web. The first single-layer headbox feeds a pulp suspension jet at the
beginning of a fourdrinier-wire section, onto a first, stationary forming shoe located
immediately after a breast roll. The pulp suspension jet fed by the first single-layer
headbox falls on a section immediately after a leading edge of the first forming shoe.
At the beginning of the twin-wire section, a second single-layer headbox feeds a new
pulp suspension layer onto a second, stationary forming shoe which is located below
the fourdrinier wire at the beginning of the gap of the twin-wire section. At the
beginning of the twin-wire section, within an upper wire loop, there is a suction
box which is divided into three successive compartments in which unequal underpressures
can be used. The lower surface of the first compartment of the suction box following
the gap of the twin-wire section is constituted of a third, stationary forming shoe
provided with thorough holes. In the first, second and third forming shoe, there is
a curvilinear cover setting against the forming wire in which there are a leading
edge and a trailing edge. In the cover, there is an open surface which consists of
holes extending through the cover. The holes can consist of openings, grooves, slots
or equivalents. Under the cover is arranged underpressure with which water is removed
from the web. With such a forming shoe, non-pulsating dewatering is applied to the
web.
[0015] A problem related to arrangements according to prior art is that formation and tensile
strength ratio of the web are strongly dependent on a jet-wire ratio. Then, an optimum
has to be searched for the characteristics of the web in relation to both the formation
and the tensile strength ratio and usually the situation is such that the optima of
both factors are not realised with a certain jet-wire ratio. Then, one ends up with
a compromise in which with higher tensile strength ratios one has to be satisfied
with weaker formation.
[0016] In the arrangements according to prior art, it is important that an impact point
of a slice jet of the headbox can be accurately adjusted to the same point with each
run speed. The slice jet impacts in the arrangements according to prior art on the
section of the wire in which there are no dewatering strips below the wire, whereby
one has to be able to guide the slice jet accurately on the section in question. As
the location of the headbox cannot be moved in the machine direction, the location
of the impact point of the slice jet is adjusted by adjusting the position of the
upper slice of the headbox in the machine direction.
[0017] When manufacturing a web of two or more different pulps, either a multi-layer headbox
combined to a gap former or a hybrid former and two separate headboxes are usually
employed. A problem of the first combination are high investments. The latter combination
gives good layer purity, because a first partial web formed on the fourdrinier-wire
section has had time to drain sufficiently when a second partial web is brought onto
it at the beginning of the twin-wire section, but the production speed of the hybrid
former remains low due to the above reasons. If again a hybrid former according to
prior art employs a multi-layer headbox at the beginning of the fourdrinier-wire section,
layer purity suffers in the pulsating dewatering of the fourdrinier-wire section.
[0018] US 4,154,645 A also discloses a web forming section having a headbox and a forming shoe. However,
US 4,154,645 A further provides an arrangement for forming a multi layer paper board.
SUMMARY OF INVENTION
[0019] The arrangement according to the invention provides a surprising effect as the result
of which the layer purity of the multi-layer web is improved and the production speed
of the machine can be increased. In the invention, the impact of the slice jet on
the forming wire of the forming section is controlled better.
[0020] The principal characteristic features of the method according to the invention are
presented in the characterising part of claim 1.
[0021] The principal characteristic features of the forming section according to the invention
are presented in the characterising part of claim 10.
[0022] The other characteristic features of the invention are presented in the dependent
claims.
[0023] The forming section according to the invention utilises a multi-layer headbox and
a forming board formed of a stationary, straight-covered forming shoe provided with
suction and a strip cover provided with suction following it. By using the non-pulsating,
straight-covered forming shoe with suction at the beginning of the forming board,
the take-off and beading (stock jump) of the pulp jet can be substantially decreased,
because the pulp jet lands on the non-pulsating surface having a large open surface.
The immediate start of dewatering directly at the impact point damps impact energy.
The head of the forming board does not doctor water and does not, for its part, induce
the "stock jump". Also the direction of the jet is flexible. When the slice jet formed
of several different pulp suspension layers fed by the multi-layer headbox falls on
the section of the non-pulsating forming shoe, layer purity remains good because the
initial dewatering of the web occurs solely by means of underpressure. Then, two-directional
pressure pulses having a layer mixing effect formed by pulsating dewatering elements
are avoided. Dewatering occurring on the section of the non-pulsating forming shoe
is so great that, after it, pulsating dewatering can be applied to the web without
the layer purity suffering. The layer purity of the web is particularly good on that
surface which is on the side of the forming shoe i.e. the wire surface.
[0024] The open surface of the cover of the forming shoe receiving the slice jet of the
headbox is 30-90%, advantageously 40-70% of the section between the leading edge and
the trailing edge of the cover. Then, sufficient dewatering is provided on the section
of the forming shoe and the support surface of the wire remains large enough for avoiding
the deflection of the wire.
[0025] The arrangement according to the invention enables an extremely good formation of
the web in a wide jet-wire ratio range. The straight-covered forming shoe "freezes"
the slice jet of the headbox and differences in the speeds of the slice jet/wires
of the headbox will not affect formation so strongly. Then, the formation does not
weaken with jet-wire ratios which differ a lot from a so-called equal headbox situation
in which the speed of the slice jet of the headbox and the run speed of the wires
are equal. This means that it is possible to run on the forming section with a jet-wire
ratio diverging in one or the other direction from the equal headbox situation without
weakening the formation. Again, the use of a jet-wire ratio diverging from the equal
headbox ratio has been discovered to improve layer purity. Particularly the web surface
setting against the wire travelling on the forming board becomes very clean i.e. the
upper pulp layers will not be mixed with the lowest pulp layer in considerable amount.
The invention can advantageously utilise a jet-wire ratio diverging for ±5% or even
±10% from the equal headbox ratio.
[0026] The forming board provided with the non-pulsating, underpressurised forming shoe
enables, compared to a traditional forming board provided with a sole pulsating strip
cover, a greater speed difference between the pulp suspension jet fed by the headbox
and the forming wire. This property in itself facilitates and/or improves the forming
of layer structure in the web being manufactured. Dewatering intensified by means
of underpressure keeps single fibres fixed by layering particularly well fast in a
layer drained earlier. When the drained layer increases or it is increased on the
section of a suitable cutting field occurring in the machine direction and simultaneously
all pulsation occurring in dewatering is minimised, particularly good conditions are
provided, inter alia, for layering different fibre materials.
[0027] The poor quality of layering is visually seen as unevenness i.e. mottling when the
colour differences of layered pulps are great. When using the twin-layer headbox on
the fourdrinier-wire section, it is not possible to provide simultaneously good formation
and keep layers separate with the conventional pulsating forming board with a strip
cover. The forming board provided with a non-pulsating, underpressurised forming shoe
utilised here enables the use of cutting forces considerably greater than normal without
breaking the web. From this follow both good formation and good layer purity. Layer
purity is maintained because there is no need to perform formation with two-directional
turbulence like a conventional forming board with a strip cover requires.
[0028] Furthermore, the arrangement according to the invention has been discovered to have
an edge wave reducing effect with large slice openings. The straight-covered, underpressurised
forming shoe "freezes" the slice jet of the headbox, whereby the slice jet will not
impact edge rulers on the edges of the wire part. The forming of an edge wave can
thus be minimised or totally eliminated.
[0029] In the arrangement according to the invention, the impact point of the slice jet
of the headbox can vary in the machine direction in the range of 50-200 mm, whereby
the upper slice moving in the machine direction in the headbox is not necessarily
required for adjusting the impact point of the slice jet. This simplifies the structure
of the headbox and makes it sturdy and durable. Furthermore, a headbox provided with
an upper slice stationary in the machine direction is cheaper to manufacture than
a headbox provided with an upper slice moving in the machine direction. After the
change of the slice opening, the operator is not required to go to adjust the impact
point of the slice jet on the wire. Thus, the changes of the slice opening can be
done from the control room like with a gap former. The slice jet impacts the wire
in the arrangement according to the invention on the section of a perforated cover
having a certain length located below the wire. Thus, the slice jet would impact a
similar landing surface even though it came down 50-200 mm later. The later impact
of the slice jet on the wire naturally affects a little the dewatering capacity of
the perforated cover, but it can be compensated with a suitable length dimensioning
of the cover.
[0030] The arrangement according to the invention can be employed on all such forming sections
in which the beginning of the forming section consists of a single-wire former or
a hybrid former.
[0031] The use of the arrangement according to the invention in a hybrid former enables
an extremely short single-wire section, because dewatering is not tried to be maximised
on the single-wire section. The web can be guided relatively wet onto the twin-wire
section. Smaller dewatering on the single-wire section also affects the fact that
the residual variation of the web decreases.
[0032] In an advantageous embodiment according to the invention, the dewatering of the twin-wire
section of the hybrid former is both structurally and process-technically a combination
of two dewatering elements. The arrangement according to the invention enables a forming
section of a multi-layer web more cost-effective of its investment costs than prior
art, by means of which forming section, it is possible to manufacture a multi-layer
web in the high speed of 1,400-1,800 m/min. Furthermore, the arrangement according
to the invention enables the shortening of fourdrinier wire sections due to great
dewatering capacity.
[0033] The first dewatering element of the twin-wire section of the hybrid former is a stationary
forming shoe provided with a curvilinear cover and holes extending through the cover
in which underpressure can be used for adjusting and intensifying dewatering. The
aim is that the forming shoe will not induce pulsating dewatering even when dewatering
is intensified with underpressure. It is possible to consider that the forming shoe
is a curve of a "stationary roll" provided with an open surface. The cover has a large
open surface and it is connected by means of holes to an underpressure chamber within
the forming shoe. The holes in the cover of the forming shoe are formed so that pulsating
dewatering is avoided, which would have been induced if the holes were constituted
of cross-machine directional elongated slots. For providing this substantially constant
pressure, these holes are either openings, slots arranged substantially in the machine
direction, waved slots, embossed machine-directional contact surfaces for supporting
the fabric above the cover of the shoe etc. The cross-section of the holes can be
circular, quadratic, elliptical or polygonal.
[0034] The second dewatering element of the twin-wire section of the hybrid former is a
pulsating dewatering fitting which comprises stationary cross-machine directional
dewatering strips provided with slots, installed on one side of the forming wires.
In connection with the stationary strips, it is possible to use underpressure which
affects the pulp between the forming wires via slots between the strips. Into the
slots between the stationary dewatering strips, it is additionally possible to position
adjustably loaded dewatering strips on the opposite side of the forming wires in relation
to the dewatering strips. With these adjustable dewatering strips, the pulsating effect
applied to the web is further intensified.
[0035] With the non-pulsating forming shoe, it is possible to remove water from a very wet
web without breaking the structure of the web, because no peak of underpressure occurs
on the delivery side of the stationary forming shoe. With the underpressure connected
to the forming shoe, very effective dewatering is provided and, with adjusting the
underpressure level, it is possible to affect the dewatering distribution between
the upper and lower surface of the web, whereby it is possible to control, inter alia,
the fines distribution between the upper and lower surface of the web and the Z-directional
symmetry of the web.
[0036] The great dewatering capacity of the non-pulsating forming shoe enables the fact
that the consistency of the web going onto the twin-wire section can be optimised
according to the end-product being manufactured. In the headbox, it is possible to
use consistency lower than normal and a slice hole larger than normal. Lower feeding
consistency improves the formation of the web being formed.
[0037] The radius of the non-pulsating forming shoe and the machine directional length of
the shoe can be varied according to each intended use within a very large range. The
stationary forming shoe can also be constituted of several curves e.g. so that the
radius of the forming shoe is larger at the inlet end, but shortens progressively
as a spiral curve towards the outlet end. In such a case, the dewatering pressure
is no longer constant over the forming shoe, but it still remains non-pulsating. The
possibility to vary the radius in both above ways and the length of the shoe means
that non-pulsating dewatering is quite easily designed suitable for each application.
[0038] After the non-pulsating dewatering zone, the web is guided to the pulsating dewatering
zone in dry content in which the formation of the web can be improved with pulsating
dewatering.
[0039] In the combination of the non-pulsating and the pulsating dewatering zone, the balance
between formation and retention can be adjusted better and the strength characteristics
of the web can be optimised.
[0040] By using a forming board constituted of a non-pulsating forming shoe and a pulsating
strip cover on the single-wire section and dewatering constituted of a non-pulsating
forming shoe and a pulsating strip cover on the twin-wire section, the one-sidedness
of the web can be well controlled. The volume of water being removed through the forming
shoes can be adjusted by adjusting the underpressure prevailing in the forming shoes.
The control of one-sidedness (particularly the lower surface) is important for specific
paper grades. The adjustability of dewatering gives a good opportunity to optimise
the symmetry of the end-product. The controlled compression of the web is provided
with underpressure affecting the surface of the web.
[0041] In an advantageous embodiment of the invention, a dilution-adjusted headbox is used
by means of which it is possible to further decrease the residual variation occurring
on the single-wire section. The breast roll of the single-wire section has been additionally
transferred away from the customary position below the slice channel of the headbox
to the delivery side of the headbox and it has been lifted so that the height difference
of the upper surface of the lower wire travelling on top of the breast roll and the
lower surface of the slice opening of the headbox is in the range of 0-10 mm measured
at the topmost point of the breast roll. The horizontal distance between the vertical
plane drawn through the midpoint of the breast roll and the slice opening of the headbox
is in the range of 10-250 mm. The free flight in the air of the pulp suspension jet
discharging from the slice channel of the headbox is in the range of 100-500 mm. The
impact angle of the pulp suspension jet on the lower wire is in the range of 0-4 degrees.
The pulp suspension jet impacts the lower wire at the point of the stationary forming
shoe at the beginning of the forming board. With such an arrangement between the headbox
and the breast roll and with the stationary, straight-covered forming shoe at the
beginning of the forming board, it is ensured that the pulp suspension jet will not
be thrown in the air or become beaded (stock jump) when it impacts the lower wire.
The straight-covered forming shoe enables a small impact angle of the slice jet of
the headbox on the forming wire.
[0042] Applying the arrangement according to the invention in a hybrid former enables the
increase of speed to the range of 1,500-1,800 m/min without the residual variation
of the web increasing too much or the formation weakening too much. The arrangement
according to the invention is also well suitable in a situation in which webs of a
large range of basis weights are manufactured on the forming section.
[0043] The invention will now be described with reference to the figures of the accompanying
drawings.
BRIEF DESCRIPTION OF FIGURES
[0044]
Fig. 1 shows a schematic side view of a hybrid former.
Fig. 2 shows an enlargement of the beginning of a forming section on which the impact
of a pulp suspension jet fed by a headbox on a forming board is visible.
Fig. 3 shows an enlargement of the beginning of a forming section on which the mutual
positioning of a headbox, a breast roll and a forming board is visible.
Fig. 4 shows an enlargement of the beginning of a twin-wire section of the hybrid
former of Fig. 1.
Fig. 5 schematically shows a side view of a former in which there are two separate
partial web forming units.
Fig. 6 schematically shows another former in which there are two separate partial
web forming units.
DESCRIPTION OF ADVANTAGEOUS EMBODIMENTS
[0045] Fig. 1 shows a hybrid former in which there is a first single-wire section T1 and
a first twin-wire section K1 following it.
[0046] The first single-wire section T1 consists of a lower wire loop 11 and dewatering
fittings 40, 50, 60 arranged below the lower wire 11. A first headbox 30, which is
a twin-layer headbox, feeds from its slice channels 32a, 32b a pulp suspension jet
on top of the lower wire 11 onto a first forming shoe 40 located at the beginning
of the first single-wire section, immediately after a breast roll 12. The travel direction
of the lower wire 11 is designated with arrow S1 which is also the machine direction.
[0047] The first single-wire section T1 is followed by a first upper wire unit in which
there is a first upper wire 21 which forms the first twin-wire section K1 with the
lower wire 11. The first upper wire 21 has been formed an endless wire loop by means
of hitch and guide rolls 22a, 22b, 22c, 22d. The first guide roll 22a of the first
upper wire loop 21 is arranged above the lower wire 11 so that the first upper wire
21 and the lower wire 11 constitute a wedge-shaped gap G at the beginning of the first
twin-wire section K1. The web, which has received its initial forming on the first
single-wire section T1, is guided after this between the lower wire 11 and the first
upper wire 21 of the first twin-wire section K1. At the end of the first twin-wire
section K1, the lower wire 11 and the first upper wire 21 are separated from each
other. The travel direction of the first upper wire 21 is designated with arrow S2.
[0048] On the first single-wire section T1, there are two dewatering zones Z1, Z2.
[0049] The first dewatering zone Z1 of the first single-wire section T1 is located immediately
after the breast roll 12 and it is constituted of the non-pulsating first forming
shoe 40 and a pulsating strip cover 50 following it which together constitute a forming
board. In the non-pulsating first forming shoe 40, there is a cover provided with
holes which sets against the inner surface of the lower wire 11. The first forming
shoe 40 is connected to a source of underpressure (not shown in the figure), whereby
an underpressure effect P is applied to the web via the holes in the cover of the
first forming shoe 40. The cover of the first forming shoe 40 is straight at least
on the section between the impact point of the pulp suspension jet fed by the headbox
and the trailing edge of the cover. The first forming shoe 40 induces non-pulsating
dewatering in the stock passing on top of the lower wire 11. With the first forming
shoe 40, a lot of water can be removed from the stock.
[0050] The second dewatering zone Z2 of the first single-wire section T1 is located at the
point of the gap G of the first twin-wire section and it consists of a pulsating strip
cover 60. The strip cover 60 is connected to a source of underpressure (not shown
in the figure), whereby an underpressure effect P is applied to the web passing on
top of the lower wire 11 via slots between the cross-machine directional strips of
the strip cover 60.
[0051] At the beginning of the first twin-wire section K1, two successive dewatering zones
Z3, Z4 are formed.
[0052] The first dewatering zone Z3 of the first twin-wire section K1 consists of a second
forming shoe 70 in which there is a cover provided with holes which sets against the
inner surface of the upper wire 21. The second forming shoe 70 is connected to a source
of underpressure (not shown in the figure), whereby an underpressure effect P is applied
to the web via the holes in the cover of the second forming shoe 70. The second forming
shoe 70 is further arranged so that the stock setting to the gap G of the twin-wire
section K on the lower wire 11 will not impact the leading edge of the second forming
shoe 70 but will be guided to the section of the cover of the second forming shoe
70 after the leading edge. Thus, the leading edge of the second forming shoe 70 will
not remove water from the stock. The second forming shoe 70 induces non-pulsating
dewatering in the stock passing between the wires 11, 21. With the second forming
shoe 70, a lot of water can be removed from the stock.
[0053] The second dewatering zone Z4 of the first twin-wire section K1 consists of stationary
and adjustably loadable cross-machine directional dewatering strips 81, 83. The stationary
dewatering strips 81 are arranged within the upper wire 21 and between them there
are slots 82 via which underpressure P can be applied to the partially formed web
between the upper wire 21 and the lower wire 11 for removing water from it. Below
the lower wire 11 are arranged the adjustable dewatering strips 83 loaded against
the inner surface of the lower wire 11 which strips are located at the points of the
slots 82 between the stationary dewatering strips 81. The dewatering strips 81, 83
induce pulsating dewatering to the pulp passing between the wires 11, 21. With this
second strongly pulsating dewatering zone Z4 of the first twin-wire section K1, the
formation of the web being formed can be improved.
[0054] The second dewatering zone Z4 of the first twin-wire section K1 is followed by a
strip cover 14 causing pulsating dewatering arranged below the lower wire 11 and a
transfer suction box 13 following it by means of which it is ensured that the formed
web W follows the lower wire 11 after the twin-wire section K from which it is picked
up at a pick-up point (not shown in the figure) to further processing.
[0055] The arrangement according to Fig. 1 is particularly well suitable for manufacturing
twin-layer liner board in which better stock is brought onto the lower layer of the
multi-layer headbox than onto the upper layer. Then, this lower surface forms the
outer surface of exterior package board in the end-product.
[0056] Fig. 2 shows an enlargement of the beginning of the first single-wire section T1
in which the first headbox 30, the breast roll 12, the first forming shoe 40, and
the strip cover 50 are visible. The pulp suspension jet of the first headbox 30 impacts
the upper surface of the lower wire 11 at the point of the beginning of the first
forming shoe 40. On the cover 41 of the first forming shoe 40, there are a leading
edge 43 and a trailing edge 44. On the leading edge 43 of the cover 41, there is a
first section without holes 41A and, on the trailing edge 44 of the cover 41, there
is a second section without holes 41B. Between the sections without holes 41A, 41B
of the cover 41, there is an open surface which consists of holes 42 extending through
the cover 41. The holes 42 can consist of openings, grooves, slots or equivalents.
The open surface defined by holes 42 of the cover 41 of the forming shoe 40 is 30-90%,
advantageously 40-70% of the section with holes 42 between the section without holes
41A of the leading edge 43 of the cover 41 and the section without holes 41B of the
trailing edge 44 of the cover 41. Below the cover 41, underpressure P is arranged
by means of which the dewatering of the pulp is intensified. The impact point of the
pulp suspension fed by the first headbox 30 is located at the beginning of the section
with holes 42 after the section without holes 41A of the leading edge 43 of the cover
of the first forming shoe 40. The forming shoe 40 can also have been divided into
two or more blocks, whereby different underpressures can be used in the blocks and/or
the open surface of the cover 41 of the forming shoe 40 can be different in the blocks.
Then, the underpressure level can e.g. increase in the machine direction and equivalently
also the open surface increase in the machine direction. In some embodiments, this
also ensures the lubrication of the cover surface when water being removed from the
web lubricates the cover surface.
[0057] The trailing edge 44 of the first forming shoe 40 is followed by the pulsating strip
cover 50 in which there are cross-machine directional strips 51 between which there
are holes 52. Below the strip cover 50 is also arranged underpressure P which affects
through the holes 52 of the strip cover and intensifies the dewatering of the pulp.
Air A passing along the lower wire 11 is guided from the holes 42 at the beginning
of the section with holes of the first forming shoe 40 within the first forming shoe
40 and from the other holes 42 is guided water WT within the first forming shoe 40.
For minimising the impact angle of the pulp suspension jet fed by the twin-layer headbox
30, it is possible to use a small angular distortion on the leading edge 43 of the
cover 41 of the first forming shoe 40. At the impact point of the pulp suspension
jet fed by the first headbox 30 and after it, the surface of the cover 41 of the first
forming shoe 40 is however straight. The first forming shoe 40 and the strip cover
50 following it together constitute the forming board. The first forming shoe 40 receives
the pulp suspension jet of the first headbox 30 and quickly slows it down onto the
surface of the lower wire 11. Simultaneously, the first forming shoe 40 effectively
removes water from the web and after this the web can be exposed to the pulsating
dewatering of the strip cover 50.
[0058] Fig. 2 also illustrates with curve PP the non-pulsating dewatering induced by the
forming shoe 40 and the pulsating dewatering induced by the strip cover 50.
[0059] Fig. 3 shows another enlargement of the beginning of the first single-wire section
T1 in which the mutual positioning of the first headbox 30, the breast roll 12, the
first forming shoe 40, and the strip cover 50 following it is visible. In the first
headbox 30, there are two separate slice channels 32a, 32b which join in a common
slice opening 33. The breast roll 12 has been transferred away from the customary
position below the lower slice channel 32a of the first headbox 30 to the delivery
side of the headbox 30 and it has been lifted so that the height difference H between
the upper surface of the lower wire 11 travelling on top of the breast roll 12 and
the lower surface 31 of the slice opening 33 of the first headbox 30 is in the range
of 0-10 mm measured at the topmost point A of the breast roll 12. The horizontal distance
S1 between the vertical plane Y-Y drawn through the midpoint of the breast roll 12
and the slice opening 33 of the first headbox 30 is in the range of 0-250 mm. The
free flight in the air S2 of the pulp suspension jet discharging from the slice opening
33 of the first headbox 30 is in the range of 100-500 mm. The impact angle of the
pulp suspension jet on the lower wire 11 is in the range of 0-4 degrees. The pulp
suspension jet impacts the lower wire 11 at the beginning of the section with holes
of the first forming shoe 40. With such an arrangement between the headbox 30, the
breast roll 12, the first forming shoe 40, and the strip cover 50 following it, it
is assisted that the pulp suspension jet will not be thrown in the air or become beaded
(stock jump) when it impacts the lower wire 11.
[0060] Fig. 4 shows an enlargement of the beginning of the first twin-wire section K1 of
the hybrid former shown in Fig. 1 in which the gap G of the first twin-wire section
K1 and the stationary second forming shoe 70 are visible. In the second forming shoe
70, there is a curvilinear cover 71 setting against the inner surface of the upper
forming wire 21 in which cover there are a leading edge 73 and a trailing edge 74.
On the leading edge 73 of the cover 71, there is a first section without holes 71A
and, on the trailing edge 74 of the cover 71, there is a second section without holes
71B. Between the sections without holes 71A, 71B of the cover 71, there is an open
surface which consists of holes 72 extending through the cover 71. The holes 72 can
consist of openings, grooves, slots or equivalents. Below the cover 71, underpressure,
which is illustrated with an arrow with designation P, is arranged by means of which
water is removed from the pulp between the wires 11, 21. The holes 72 are arranged
on the cover 71 of the second forming shoe 70 so that the open surface of said cover
71 is large, most advantageously 40-90%, and so that they do not induce pressure pulses
on the web because of their design and/or arrangement. Pressure pulses can be induced
on the web if the forming wire 11, 21 passing on top of the cover 71 is not uniformly
supported for the whole surface of the cover 71. Pressure pulses are not induced if
the holes are constituted of openings or slots substantially in the longitudinal direction
of the machine. When the holes 72 are constituted of openings, they are most advantageously
arranged against the travel direction S of the wire 11, 21 passing over the cover
71 obliquely in relation to the cover 71 so that water is guided to them better. The
angle α between the central axis of the holes 72 and the tangent of the outer surface
of the cover 71 is in the range of 30-60 degrees.
[0061] The cover 71 of the second forming shoe 70 is formed curvilinear so that the radius
of curvature R of the cover 71 is in the range of 1-50 m. The overlap angle of the
wire 21 on the section of the cover 71 is in the range of 3-45 degrees, advantageously
5-30 degrees. The machine directional length S3 of the cover 71 is in the range of
200-1,000 mm. The underpressure level used in the second forming shoe 70 is in the
range of 2-15 kPa, advantageously in the range of 2-5 kPa. The cover 71 can also consist
of several parts having a different radius of curvature R. By varying the radius of
curvature R of the cover 71 of the second forming shoe 70 and/or by varying the underpressure
P prevailing in the second forming shoe 70 and/or the length S3 of the second forming
shoe, the volume and distribution of water removed from the web by the second forming
shoe 70 can be adjusted.
[0062] Fig. 5 schematically shows a side view of a former in which there are two separate
partial web forming units. The beginning of the forming section is for its substantial
parts equivalent to the hybrid former shown in Fig. 1. The first twin-wire section
K1 of the hybrid former is followed by a second upper wire unit in which a second
upper wire 111 forms a second fourdrinier-wire section T2. A second headbox 130, which
is a single-layer headbox, feeds a pulp suspension jet on the second upper wire 111
onto a breast roll 112 or immediate after the breast roll 112. On the second fourdrinier-wire
section T2, water is removed from pulp suspension travelling on top of the second
upper wire 111 with dewatering fittings 140 located below the second upper wire 111
which fittings can be suction boxes provided with a strip cover. A second partial
web W2 formed in the second upper wire unit is guided after this to a joining point
Y formed by an inner roll 113 of the second upper wire loop 111 of the second upper
wire unit and the lower wire loop 11 of the hybrid former in which point the second
partial web W1 is joined in the first partial web W1 formed in the hybrid former.
The joining point Y is followed by a short, second twin-wire section K2 on which the
joining of the partial webs W1, W2 is ensured. Water is removed from the web W joined
on this second twin-wire section K2 downwards with dewatering fittings 15 arranged
below the lower wire 11 of the hybrid former. The second twin-wire section K2 is followed
again by a single-wire section on which water is further removed from the joined web
W with dewatering fittings 16 arranged below the lower wire 11 of the hybrid former.
The single-wire section is followed by a pick-up point P in which the joined web W
is picked up from the lower wire 11 of the hybrid former by a pick-up suction roll
90 and brought on a pick-up felt 91 to the presser section.
[0063] Fig. 6 schematically shows another former in which there are two separate partial
web forming units. A first wire unit consists of a lower wire 11 on which is formed
a first fourdrinier wire unit T1. A first headbox 30, which is a twin-layer headbox,
feeds a pulp suspension jet onto a first forming board 40, 50 which is totally equivalent
to the forming board shown in Fig. 1. Water is removed from the web travelling on
top of the lower wire 11 on the fourdrinier-wire section following the first forming
board 40, 50 with dewatering fittings 55 arranged below the lower wire 11 which can
be suction boxes provided with a strip cover. The first fourdrinier wire unit T1 is
followed by a first upper wire unit in which there is a first upper wire 211. A second
headbox 230, which is a single-layer headbox, feeds a pulp suspension jet on the first
upper wire 211 onto a second forming board 240, 250 after a breast roll 212. Also
this second forming board 240, 250 is totally equivalent with the forming board 40,
50 shown in the embodiment of Fig. 1. On a second fourdrinier-wire section T2 following
the second forming board 240, 250, water is removed from the pulp suspension with
dewatering fittings 260 located below the first upper wire 211 which can be suction
boxes provided with a strip cover. A second partial web W2 formed in the upper wire
unit is guided after this to a joining point Y formed by an inner roll 213 of the
first upper wire loop 211 and the lower wire loop 11 in which point the second partial
web W1 is joined in the first partial web W1 formed in the lower wire unit. The joining
point Y is followed by a short twin-wire section K1 in which the joining of the partial
webs W1, W2 is ensured. Water is removed from the joined web W on this twin-wire section
K1 downwards with dewatering fittings 15 arranged below the lower wire 11 of the lower
wire unit. The twin-wire section K1 is followed again by a single-wire section on
which water is further removed from the joined web W with dewatering fittings 16 arranged
below the lower wire 11 of the lower wire unit. The single-wire section is followed
by a pick-up point P in which the joined web W is picked up from the lower wire 11
of the lower wire unit by a pick-up suction roll 90 and brought on a pick-up felt
91 to the presser section.
[0064] The embodiment shown in Fig. 6 can also employ a twin-layer headbox as the second
headbox 230. A straight-covered forming shoe 240 provided with holes and suction at
the beginning of the upper wire unit induces non-pulsating dewatering in the pulp
suspension travelling on top of the first upper wire 211 so that layer purity remains
good particularly on the lower surface of the web. With both twin-layer headboxes
30, 230, it is thus possible to feed pulp in which a first layer setting against the
forming wire 11, 211 consists of pulp of better quality and a second layer, setting
on top of the first layer consists of pulp of lesser quality. On the surfaces of the
joined web comes then the pulp of better quality i.e. having higher strength and better
surface properties and to the middle comes the pulp of lesser quality. The surface
layers of the joined web remain pure i.e. the lesser-quality pulp of the middle layer
is not able to mix in them at least in considerable amount.
[0065] The structure of the first forming shoe 40 on the first single-wire section T1 is
equivalent to the second forming shoe 70 on the first twin-wire section K1 with the
difference that the cover of the first forming shoe 40 is straight. By using underpressure
in the forming board 40, 50 in the range of 2-10, advantageously in the range of 5-7
kPa, and by using a jet-wire ratio diverging from the equal headbox ratio for ±5%,
advantageously ±10%, good layer purity is provided. The layer purity is formed particularly
good on the surface of the web setting against the lower wire 11. The pulp suspension
layer fed by the upper slice channel 32b of the first headbox 30 will not thus mix
very much with the pulp suspension layer fed by the lower slice channel 32a of the
first headbox 30.
[0066] From the lower slice channel 32a of the first headbox 30 is fed the pulp of better
quality and from the upper slice channel 32b of the first headbox 30 is fed the pulp
of lesser quality. The lower surface of the web setting against the lower wire 11
is then formed of better quality than the opposite upper surface of the web. The lower
surface of the web can then be used as the outer surface of board in which product
information is possibly printed and the inner surface of the web as the inner surface
of board.
[0067] The machine-directional length of the first single-wire section T1 is in the range
of 0.5-10.0 m and the consistency of the pulp suspension fed by the twin-layer headbox
30 is in the range of 0.1-3.0%. With high speeds, the first single-wire section T1
has to be short i.e. in the range of 0.5-3.0 m. In refurbishings, the first single-wire
section T1 is usually long due to the existing structure i.e. in the range of 8-10
m and then it is rarely shortened. A long first single-wire section T1 weakens the
residual variation of the web. With the arrangement according to the invention, it
has been possible to run at the speed of more than 1,600 m/min without the residual
variation considerably increasing on a hybrid former with a single-wire section of
8-10 m.
[0068] In the embodiments shown in Figs. 1 and 5, it is possible to remove from the water
volume included in the pulp suspension fed by the first headbox 30 on the first single-wire
section T1 about 40-60% downwards and on the first twin-wire section K1 about 30-50%
upwards and about 5% downwards. In a hybrid former applying the arrangement according
to the invention, it is possible to achieve relatively uniform dewatering from both
surfaces of the web. With the stationary forming shoe at the beginning of the first
twin-wire section K1, it is possible to remove a lot of water from a relatively wet
web, whereby there is no need to remove so much water on the single-wire section.
With the forming shoe, it is possible to remove about half of the total volume of
water being removed upwards on the first twin-wire section K1.
[0069] The embodiments of the figures show only one forming shoe in connection with the
forming board of the first single-wire section and at the beginning of the first twin-wire
section of the hybrid former, but there can also be several forming shoes, whereby
it is possible to e.g. use different underpressure levels in different forming shoes.
[0070] In the embodiments shown in Figs. 1 and 5, the second dewatering zone Z4 of the first
twin-wire section K1 consists of the stationary 81 and the adjustably loadable 83
dewatering strips. The second dewatering zone Z4 of the first twin-wire section K1
can also consist solely of the stationary dewatering strips 81. The stationary dewatering
strips 81 can form a straight path to the wires travelling on top of them. With underpressure
prevailing in the slots 82 of the stationary dewatering strips 81, the path of the
wires is slightly deflected in said slots 82, whereby pulsating dewatering is provided
in the web between the forming wires. The stationary dewatering strips 81 can also
be positioned so that they form a curvilinear path to the wires travelling on top
of them. The dewatering strips 81 are then at a small angle of about 0.5-2 degrees
in relation to each other. With such an arrangement, intensified pulsating dewatering
is provided in the web between the forming wires passing over the dewatering strips.
In both cases, the pulsating effect is further intensified if both the stationary
81 and adjustably loadable 83 dewatering strips are used.
[0071] The first headbox 30 shown at the beginning of the first single-wire section T1 in
Figs. 1, 5 and 6 is advantageously a twin-layer headbox, but it can also be a multi-layer
headbox. The second headbox 230 shown at the beginning of the second single-wire section
T2 in Fig. 6 is advantageously a single-layer headbox, but it can also be a twin-layer
headbox or a multi-layer headbox. In the headbox, there can be N pieces of slice channels
where N is a whole number which is greater than or equal to two.
[0072] In the embodiment shown in Fig. 5, there is only one upper wire unit after the first
twin-wire section K1, but the invention allows employing N pieces of upper wire units
whereby N is a whole number which is greater than or equal to 1.
[0073] In the embodiment shown in Fig. 6, there is only one upper wire unit after the first
fourdrinier-wire section T1, but the invention allows employing N pieces of upper
wire units whereby N is a whole number which is greater than or equal to 1.
[0074] The forming shoe 40 shown in Fig. 2 and the strip cover 50 following it can utilise
the same underpressure. With webs having low basis weight or pulps being easily drained,
very low underpressure can be used in the strip cover 50 in order to not remove too
much water from the web. With webs having high basis weight or pulps being poorly
drained, the web can be clogged too much on the section of the forming shoe 40. Then,
pulsation is intensified and dewatering increased on the section of the strip cover
50 by increasing the underpressure of the strip cover 50, whereby the clogged lower
surface of the web will be unclogged.
[0075] Above were described only some advantageous embodiments of the invention and it is
evident to those skilled in the art that several modifications can be made to them
within the scope of the enclosed claims.
1. A method on a forming section, comprising the following steps:
- forming a first single-wire section (T1) by a lower wire (11) circulating a breast
roll (12),
- forming at the beginning of the first single-wire section (T1) immediately after
the breast roll (12) a first dewatering zone (Z1) which consists of at least one stationary
first forming shoe (40), in which there are a leading edge (43) and a trailing edge
(44), a cover (41) provided with through holes (42) setting against an inner surface
of the lower wire (11) and underpressure (P) prevailing through the holes (42) of
the cover (41), which holes (42) are formed of openings or slots substantially in
the longitudinal direction of the machine, whereby non-pulsating dewatering is applied
to stock travelling on top of the lower wire (11) of the first single-wire section
(T1) on the section with holes (42) of the cover (41) of the first forming shoe (40),
- performing non-pulsating dewatering with the first forming shoe (40) of which the
open surface determined by the holes (42) of the cover (41) is 30-90%, advantageously
40-70%, of the section with holes (42) between a section without holes (41A) of the
leading edge (43) of the cover (41) and a section without holes (41B) of the trailing
edge (44) of the cover (41),
- feeding with a first headbox (30) a pulp suspension jet at an impact point after
the leading edge (43) of the first forming shoe (40),
- using as the first headbox (30) a multi-layer headbox,
characterised by the method further comprising the following steps:
- forming the cover of the forming shoe (40) straight at least on the section between
the impact point of the pulp suspension jet and the trailing edge (44) of the forming
shoe (40),
- arranging in the first dewatering zone (Z1) immediately after the forming shoe (40)
a pulsating strip cover (50).
2. A method according to claim 1, characterised by performing non-pulsating dewatering with the first forming shoe (40) by locating
the holes (42) going through the cover (41) obliquely against a travel direction of
the lower wire (11) so that an angle (α) between a central axes of the holes (42)
and a tangent of the outer surface of the cover (41) is 30-60 degrees.
3. A method according to claim 1 or 2, characterised by using a dilution-adjustable multi-layer headbox as the first headbox (30), which
is located in relation to the breast roll (12) so that a vertical height difference
(H) of an upper surface of the lower wire (11) travelling on top of the breast roll
(12) and a lower surface (31) of a slice opening (33) of the first headbox (30) is
in the range of 0-10 mm, and that a horizontal distance (S1) of a vertical plane Y-Y
passing through a central axis of the breast roll (12) and a slice opening (33) of
the first headbox (30) is in the range of 10-250 mm.
4. A method according to any one of claims 1-3,
characterised by the method further comprising the following steps:
- forming above the lower wire (11), after the first single-wire section (T1) a first
upper wire unit with a first upper wire (21), which first upper wire (21) forms with
the lower wire (11) a first twin-wire section (K1) in which there is a beginning in
which the lower wire (11) and the first upper wire (21) form a closing gap (G) and
an end in which the first upper wire (21) is separated from the lower wire (11),
- guiding the web initially formed on the first single-wire section (T1) to the first
twin-wire section (K1),
- forming at least two successive dewatering zones (Z3, Z4) on the first twin-wire
section (K1),
- forming the first dewatering zone (Z3) of the first twin-wire section (K1) from
at least one stationary second forming shoe (70) located at the beginning of the first
twin-wire section (K1), which shoe has a leading edge (73) and a trailing edge (74),
a curvilinear cover (71) provided with through holes (72) setting against the upper
wire (21) of the first twin-wire section and underpressure (P) prevailing through
the holes (72) of the cover (71), which holes (72) consists of openings or slots substantially
in the longitudinal direction of the machine, whereby non-pulsating dewatering is
applied on the stock travelling between the forming wires (11, 21) of the first twin-wire
section (K1) on the section with holes (72) of the cover (71) of the second forming
shoe (70),
- forming a latter, second dewatering zone (Z4) of the first twin-wire section (K1)
of stationary cross-machine directional dewatering strips (81) setting against one
side of the first twin-wire section between which strips there are slots (82), whereby
pulsating dewatering is applied on the stock travelling between the forming wires
(11, 21) of the twin-wire section (K1) with the stationary dewatering strips (81)
and underpressure (P) on the section of the stationary dewatering strips (81).
5. A method according to claim 4, characterised by forming adjustably loadable dewatering strips (83) on the second dewatering zone
(Z4) of the first twin-wire section (K1), which strips are located in relation to
the stationary dewatering strips (81) on the opposite side of the first twin-wire
section (K1), at the point of the slots (82) between the stationary dewatering strips
(81).
6. A method according to claim 4 or 5, characterised by performing non-pulsating dewatering with the second forming shoe (70), the open surface
determined by the holes (72) of the cover (71) of which is 30-90%, advantageously
40-70% of a section with holes (72) between a section without holes (71A) of a leading
edge (73) of the cover (71) and a section without holes (71B) of a trailing edge (74)
of the cover (71).
7. A method according to any one of claims 4-6, characterised by performing non-pulsating dewatering with the second forming shoe (70) the holes (72)
going through the cover (71) of which are located obliquely against a travel direction
of the upper wire (21) so that an angle (α) between a central axes of the holes (72)
and a tangent of an outer surface of the cover (72) is 30-60 degrees, preferably so
that an overlap angle of the upper wire (21) travelling over the second forming shoe
(70) on the section of the cover (71) of the second forming shoe (70) is 3-45 degrees,
most advantageously 5-30 degrees.
8. A method according to any one of claims 1-3, characterised by forming a second upper wire unit with a second upper wire (211) above the lower wire
(11) after the first single-wire section (T1), which second upper wire (211) forms
a second single-wire section (T2) at the beginning of which a second headbox (230),
which is a single-layer headbox, feeds a pulp suspension jet for forming a second
partial web (W2) and which second upper wire (211) further forms a second twin-wire
section (K2) with the lower wire (11), and on which second twin-wire section (K2)
there is a beginning in which the lower wire (11) and the second upper wire (211)
form a joining point (Y) of the partial webs and an end in which the second upper
wire (211) is separated from the lower wire (11), whereby to the first partial web
(W1) formed on the first fourdrinier-wire section (T1) of the beginning of the forming
section is joined the second partial web (W2) formed in the second upper wire unit
at the joining point (Y).
9. A method according to any one of claims 4-7, characterised by forming a second upper wire unit with a second upper wire (111) above the lower wire
(11) after the first single-wire section (K1), which second upper wire (111) forms
a second single-wire section (T2) at the beginning of which a second headbox (230),
which is a single-layer headbox, feeds a pulp suspension jet for forming a second
partial web (W2) and which second upper wire (111) further forms a second twin-wire
section (K2) with the lower wire (11), and on which second twin-wire section (K2)
there is a beginning in which the lower wire (11) and the second upper wire (111)
form a joining point (Y) of the partial webs and an end in which the second upper
wire (111) is separated from the lower wire (11), whereby to the first partial web
(W1) formed on the first single-wire section (T1) and the first twin-wire section
(K1) is joined the second partial web (W2) formed in the second wire unit at the joining
point (Y).
10. A forming section which comprises:
- a lower wire loop (11) which constitutes a first single-wire section (T1) following
a breast roll (12),
- the beginning of the first single-wire section (T1) comprises a first dewatering
zone (Z1) which consists of at least one stationary first forming shoe (40), in which
there are a leading edge (43) and a trailing edge (44), a cover (41) provided with
through holes (42) setting against the inner surface of the lower wire loop (11),
and underpressure (P) prevailable through the holes (42) of the cover (41), which
holes (42) consist of openings or slots substantially in the longitudinal direction
of the machine, whereby non-pulsating dewatering can be applied on the stock passing
on top of the lower wire (11) in the section provided with holes (42) of the cover
(41) of the first forming shoe (40), wherein the open surface of the cover defined
by the holes (42) in the cover (41) of the first forming shoe (40), meant for performing
non-pulsating dewatering, is 30-90%, advantageously 40-70%, of the section with holes
(42) between a section without holes (41A) of the leading edge (43) of the cover (41)
and a section without holes (41B) of the trailing edge (44) of the cover (41),
- a first headbox (30) by means of which a pulp suspension jet can be fed at an impact
point after the leading edge (43) of the first forming shoe (40),
wherein the first headbox (30) is a multi-layer headbox, characterised in that
- the cover of the first forming shoe (40) is straight at least on the section between
the impact point of the pulp suspension jet and the trailing edge (44) of the forming
shoe (40), and
- a pulsating strip cover (50) is provided immediately following the first forming
shoe (40).
11. A forming section according to claim 10, characterised in that the holes (42) going through the cover (41) of the first forming shoe (40) performing
non-pulsating dewatering are located obliquely against a travel direction of the lower
wire (11) so that an angle (α) between a central axis of the holes (42) and a tangent
of an outer surface of the cover (41) is 30-60 degrees, preferably the first headbox
(30) is a dilution-adjustable multi-layer headbox which is located in relation to
the breast roll (12) so that a vertical height difference (H) of an upper surface
of the lower wire (11) travelling on top of the breast roll (12) and a lower surface
(31) of a slice opening (33) of the first headbox (30) is in the range of 0-10 mm,
and that a horizontal distance (S1) of a vertical plane Y-Y passing through a central
axis of the breast roll (12) and a slice opening (33) of the first headbox (30) is
in the range of 0-250 mm.
12. A forming section according to any one of claims 10-11,
characterised in that it further comprises:
- a first upper wire unit which is formed above the lower wire (11), after the first
single-wire section (T1) on a first upper wire (21), which first upper wire (21) forms
with the lower wire loop (11) a first twin-wire section (K1) after the first single-wire
section (T1) in which first twin-wire section (K1) there is a beginning in which the
lower wire (11) and the first upper wire (21) form a closing gap (G) and an end in
which the first upper wire (21) is separated from the lower wire (11),
- at least two successive dewatering zones (Z3, Z4) on the first twin-wire section
(K1),
- the first dewatering zone (Z3) of the first twin-wire section (K1) consists of at
least one stationary second forming shoe (70) located at the beginning of the twin-wire
section (K1), which shoe has a leading edge (73) and a trailing edge (74), a curvilinear
cover (71) provided with thorough holes (72) setting against the inner surface of
the upper wire loop (21) and underpressure (P) prevailing through the holes (72) of
the cover (71), which holes (72) are formed of openings or slots substantially in
the longitudinal direction of the machine, whereby non- pulsating dewatering is applied
on the stock travelling between the forming wires (11, 21) of the first twin-wire
section (K1) on the section with holes (72) of the second forming shoe (70),
- the latter, second dewatering zone (Z4) of the first twin-wire section (K1) is formed
of stationary cross-machine directional dewatering strips (81) setting against one
side of the first twin-wire section (K1) between which strips there are slots (82),
whereby pulsating dewatering is applied on the stock travelling between the forming
wires (11, 21) of the first twin-wire section (K1) with the stationary dewatering
strips (81) and underpressure (P) on the section of the stationary dewatering strips
(81), preferably the second dewatering zone (Z4) of the first twin-wire section (K1)
further comprises adjustably loadable dewatering strips (83) which are located in
relation to the stationary dewatering strips (81) on the opposite side of the twin-wire
section (K), at the point of the slots (82) of the stationary dewatering strips (81).
13. A forming section according to claim 12, characterised in that the open surface determined by the holes (72) of the cover (71) of the second forming
shoe (70) performing non-pulsating dewatering is 30-90%, 40-70% of a section with
holes (72) between a section without holes (71A) of a leading edge (73) of the cover
(71) and a section without holes (71B) of a trailing edge (71) of the cover, preferably
the holes (72) going through the cover (71) of the second forming shoe (70) performing
non-pulsating dewatering are located obliquely against a travel direction of the upper
wire (21) so that an angle (α) between a central axes of the holes (72) and a tangent
of the outer surface of the cover (71) is 30-60 degrees, more preferably an overlap
angle of the upper wire (11, 21) travelling over the second forming shoe (70) performing
non-pulsating dewatering on the section of the cover (71) of the second forming shoe
(70) is 3-45 degrees, most advantageously 5-30 degrees.
14. A forming section according to any one of claims 10-11, characterised in that it comprises a second upper wire unit which is formed with a second upper wire (211)
above the lower wire (11) after the first single-wire section (T1), which second upper
wire (211) forms a second single-wire section (T2) for forming a second partial web
(W2) and which second upper wire (211) further forms a second twin-wire section (K2)
with the lower wire (11), and on which second twin- wire section (K2) there is a beginning
in which the lower wire (11) and the second upper wire (211) form a joining point
(Y) of the partial webs and an end in which the second upper wire (211) is separated
from the lower wire (11), whereby to the first partial web (W1) formed on the first
fourdrinier-wire section (T1) of the beginning of the forming section is joined the
second partial web (W2) formed in the second upper wire unit at the joining point
(Y).
15. A forming section according to any one of claims 12-13, characterised in that it comprises a second upper wire unit which is formed with a second upper wire (111)
above the lower wire (11) after the first twin-wire section (K1), which second upper
wire (111) forms a second single-wire section (T2) for forming a second partial web
(W2) and which second upper wire (111) further forms a second twin-wire section (K2)
with the lower wire (11), and on which second twin-wire section (K2) there is a beginning
in which the lower wire (11) and the second upper wire (111) form a joining point
(Y) of the partial webs and an end in which the second upper wire (111) is separated
from the lower wire (11), whereby to the first partial web (W1) formed on the first
single-wire section (T1) is joined the second partial web (W2) formed in the second
wire unit at the joining point (Y).
1. Verfahren an einer Formerpartie, das die folgenden Schritte aufweist:
ein Ausbilden einer ersten Einzelsiebpartie (T1) durch ein unteres Sieb (11), das
um eine Brustwalze (12) zirkuliert,
ein Ausbilden an dem Anfang der ersten Einzelsiebpartie (T1) unmittelbar nach der
Brustwalze (12) von einer ersten Entwässerungszone (Z1), die aus zumindest einem stationären
ersten Formschuh (40), in dem es einen Führungsrand (43) und einen Folgerand (44)
gibt, einer Abdeckung (41), die mit Durchgangslöchern (42) versehen ist, die gegen
eine Innenfläche des unteren Siebs (11) gesetzt sind, und einem Unterdruck (P) besteht,
der durch die Löcher (42) der Abdeckung (41) vorherrscht, welche Löcher (42) aus Öffnungen
oder Schlitzen im Wesentlichen in der Längsrichtung der Maschine ausgebildet sind,
wodurch ein nichtpulsierendes Entwässern auf einen Zellstoff aufgebracht wird, der
sich auf einer Oberseite des unteren Siebs (11) der ersten Einzelsiebpartie (T1) an
dem Abschnitt mit Löchern (42) der Abdeckung (41) des ersten Formschuhs (40) bewegt,
ein Durchführen eines nichtpulsierenden Entwässerns mit dem ersten Formschuh (40),
dessen offene Fläche, die durch die Löcher (42) der Abdeckung (41) bestimmt ist, 30-90%,
vorzugsweise 40-70% des Abschnitts mit Löchern (42) zwischen einem Abschnitt ohne
Löcher (41A) des Führungsrands (43) der Abdeckung (41) und einem Abschnitt ohne Löcher
(41B) des Folgerands (44) der Abdeckung (41) bestimmt ist,
ein Zuführen eines Pulpensuspensionsstrahls mit einem ersten Stoffauflauf (30) an
einem Auftreffpunkt nach dem Führungsrand (43) des ersten Formschuhs (40),
ein Verwenden eines Mehrschichtstoffauflaufs als den ersten Stoffauflauf (30),
dadurch gekennzeichnet, dass das Verfahren ferner die folgenden Schritte aufweist:
ein gerades Ausbilden der Abdeckung des Formschuhs (40) zumindest an dem Abschnitt
zwischen dem Auftreffpunkt des Pulpensuspensionsstrahls und dem Folgerand (44) des
Formschuhs (40),
ein Anordnen einer Pulsationsstreifenabdeckung (50) in der ersten Entwässerungszone
(Z1) unmittelbar nach dem Formschuh (40).
2. Verfahren nach Anspruch 1,
gekennzeichnet durch
eine Durchführen eines nichtpulsierenden Entwässerns mit dem ersten Formschuh (40)
durch ein Platzieren der Löcher (42), die durch die Abdeckung (41) gehen, schräg gegen
eine Bewegungsrichtung des unteren Siebs (11), sodass ein Winkel (α) zwischen Mittelachsen
der Löcher (42) und einer Tangente der äußeren Fläche der Abdeckung (41) 30-60 Grad
ist.
3. Verfahren nach Anspruch 1 oder 2,
gekennzeichnet durch
ein Verwenden eines Mehrschichtstoffauflaufs mit einstellbarer Verdünnung als den
ersten Stoffauflauf (30), der sich im Verhältnis zu der Brustwalze (12) derart befindet,
dass eine vertikale Höhendifferenz (H) einer oberen Fläche des unteren Siebs (11),
das sich an einer Oberseite der Brustwalze (12) bewegt, und einer unteren Fläche (31)
einer Auslassöffnung (33) des ersten Stoffauflaufs (30) in dem Bereich von 0-10 mm
ist, und dass eine horizontale Distanz (S1) einer vertikalen Ebene Y-Y, die durch
eine Mittelachse der Brustwalze (12) und einer Auslauföffnung (33) des ersten Stoffauflaufs
(30) hindurchführt, in dem Bereich 10-250 mm ist.
4. Verfahren nach einem von Ansprüche 1-3,
gekennzeichnet durch das Verfahren, das ferner die folgenden Schritte aufweist:
ein Ausbilden einer ersten oberen Siebeinheit mit einem ersten oberen Sieb (21) über
dem unteren Sieb (11) nach der ersten Einzelsiebpartie (T1), welches erste obere Sieb
(21) mit dem unteren Sieb (11) eine erste Doppelsiebpartie (K1) ausbildet, in der
es einen Anfang gibt, in dem das untere Sieb (11) und das erste obere Sieb (21) einen
sich schließenden Spalt (G) ausbilden, und ein Ende gibt, in dem das erste obere Sieb
(21) von dem unteren Sieb (11) getrennt wird,
ein Führen der Bahn, die anfänglich an der ersten Einzelsiebpartie (T1) ausgebildet
ist, zu der ersten Doppelsiebpartie (K1),
ein Ausbilden von zumindest zwei sukzessiven Entwässerungszonen (Z3, Z4) an der ersten
Doppelsiebpartie (K1),
ein Ausbilden der ersten Entwässerungszone (Z3) der ersten Doppelsiebpartie (K1) von
zumindest einem stationären zweiten Formschuh (70), der sich an dem Anfang der ersten
Doppelsiebpartie (K1) befindet, welcher Schuh einen Führungsrand (73) und einen Folgerand
(74) hat, wobei eine kurvenförmige Abdeckung (71) mit Durchgangslöchern (72) versehen
ist, die gegen das obere Sieb (21) der ersten Doppelsiebpartie gesetzt sind, und ein
Unterdruck (P) durch die Löcher (72) der Abdeckung (71) vorherrscht, welche Löcher
(72) aus Öffnungen oder Schlitzen im Wesentlichen in der Längsrichtung der Maschine
bestehen, wodurch ein nichtpulsierendes Entwässern an dem Zellstoff aufgebracht wird,
der sich zwischen den Formersieben (11, 21) der ersten Doppelsiebpartie (K1) an dem
Abschnitt mit Löchern (72) der Abdeckung (71) des zweiten Formschuhs (70) bewegt,
ein Ausbilden einer letzteren, zweiten Entwässerungszone (Z4) der ersten Doppelsiebpartie
(K1) von stationären Entwässerungsstreifen (81) in der Quermaschinenrichtung, die
gegen eine Seite der ersten Doppelsiebpartie gesetzt sind, zwischen welchen Streifen
es Schlitze (82) gibt, wodurch ein Pulsieren des Entwässerns an dem Zellstoff aufgebracht
wird, der sich zwischen den Formersieben (11, 21) der Doppelsiebpartie (K1) bewegt,
mit den stationären Entwässerungsstreifen (81) und einem Unterdruck (P) an dem Abschnitt
der stationären Entwässerungsstreifen (81).
5. Verfahren nach Anspruch 4,
gekennzeichnet durch
ein Ausbilden von einstellbaren lastbeaufschlagbaren Entwässerungsstreifen (83) an
der zweiten Entwässerungszone (Z4) der ersten Doppelsiebpartie (K1), welche Streifen
sich im Verhältnis zu den stationären Entwässerungsstreifen (81) auf der gegenüberliegenden
Seite der ersten Doppelsiebpartie (K1) an dem Punkt der Schlitze (82) zwischen den
stationären Entwässerungsstreifen (81) befinden.
6. Verfahren nach Anspruch 4 oder 5,
gekennzeichnet durch
ein Durchführen eines nichtpulsierenden Entwässerns mit dem zweiten Formschuh (70),
dessen offene Fläche, die durch die Löcher (72) der Abdeckung (71) bestimmt wird,
30-90%, vorzugsweise 40-70% eines Abschnitts mit Löchern (72) zwischen einem Abschnitt
ohne Löcher (71A) eines Führungsrands (73) der Abdeckung (71) und einem Abschnitt
ohne Löcher (71B) eines Folgerands (74) der Abdeckung (71) ist.
7. Verfahren nach einem von Ansprüchen 4-6,
gekennzeichnet durch
ein Durchführen eines nichtpulsierenden Entwässerns mit dem zweiten Formschuh (70),
dessen Löcher (72), die durch die Abdeckung (71) gehen, sich schräg gegen eine Bewegungsrichtung
des oberen Siebs (21) befinden, sodass ein Winkel (α) zwischen Mittelachsen der Löcher
(72) und einer Tangente einer äußeren Fläche (72) 30-60 Grad ist, sodass vorzugsweise
ein Überlappungswinkel des oberen Siebs (21), das sich über den zweiten Formschuh
(70) an dem Abschnitt der Abdeckung (71) des zweiten Formschuhs (70) bewegt, 3-45
Grad, am vorteilhaftesten 5-30 Grad ist.
8. Verfahren nach einem von Ansprüchen 1-3,
gekennzeichnet durch
ein Ausbilden einer zweiten oberen Siebeinheit mit einem zweiten oberen Sieb (211)
über dem unteren Sieb (11) nach der ersten Einzelsiebpartie (T1), welches zweite obere
Sieb (211) eine zweite Einzelsiebpartie (T2) ausbildet, an deren Anfang ein zweiter
Stoffauflauf (230), der ein Einzelschichtstoffauflauf ist, einen Pulpensuspensionsstrahl
zum Ausbilden einer zweiten Teilbahn (W2) zuführt und welches zweite obere Sieb (211)
ferner eine zweite Doppelsiebpartie (K2) mit dem unteren Sieb (11) ausbildet, und
an welcher zweiten Doppelsiebpartie (K2) es einen Anfang, an dem das untere Sieb (11)
und das zweite obere Sieb (211) einen Verbindungspunkt (Y) der Teilbahnen ausbildet,
und ein Ende gibt, an dem das zweite obere Sieb (211) von dem unteren Sieb (11) getrennt
wird, wodurch zu der ersten Teilbahn (W1), die an der ersten Fourdrinier-Siebpartie
(T1) am Anfang der Formerpartie ausgebildet wird, mit der zweiten Teilbahn (W2) verbunden
wird, die in der zweiten oberen Siebeinheit an dem Verbindungspunkt (Y) ausbildet
wird.
9. Verfahren nach einem von Ansprüche 4-7,
gekennzeichnet durch
ein Ausbilden einer zweiten oberen Siebeinheit mit einem zweiten oberen Sieb (111)
über dem unteren Sieb (11) nach der ersten Einzelsiebpartie (K1), welches zweite obere
Sieb (111) eine zweite Einzelsiebpartie (T2) ausbildet, an deren Anfang ein zweiter
Stoffauflauf (230), der ein Einzelschichtstoffauflauf ist, einen Pulpensuspensionsstrahl
zum Ausbilden einer zweiten Teilbahn (W2) zuführt, und welches zweite obere Sieb (111)
eine zweite Doppelsiebpartie (K2) mit dem unteren Sieb (11) ausbildet, und an welcher
zweiten Doppelsiebpartie (K2) es einen Anfang gibt, an dem das untere Sieb (11) und
das zweite obere Sieb (111) einen Verbindungspunkt (Y) der Teilbahnen ausbildet, und
an dessen Ende das zweite obere Sieb (111) von dem unteren Sieb (11) getrennt wird,
wodurch zu der ersten Teilbahn (W1), die an der ersten Einzelsiebpartie (T1) und der
ersten Doppelsiebpartie (K1) ausgebildet wird, die zweite Teilbahn (W2) an dem Verbindungspunkt
(Y) gefügt wird, die in der zweiten Siebeinheit ausgebildet wird.
10. Formerpartie, die folgendes aufweist:
ein unterer Siebkreislauf (11), der eine erste Einzelsiebpartie (T1) bildet, die einer
Brustwalze (12) folgt,
der Anfang der ersten Einzelsiebpartie (T1) eine erste Entwässerungszone (Z1) aufweist,
die zumindest aus einem stationären ersten Formschuh (40), in dem es einen Führungsrand
(43) und eine Folgerand (44) gibt, einer Abdeckung (41), die mit Durchgangslöchern
(42) versehen ist, die gegen die Innenfläche des unteren Siebkreislaufs (11) gesetzt
sind, und einem Unterdruck (P) besteht, der durch die Löcher (42) der Abdeckung (41)
vorherrschend ist, welche Löcher (42) aus Öffnungen oder Schlitzen im Wesentlichen
in der Längsrichtung der Maschine bestehen, wodurch ein nichtpulsierendes Entwässern
an dem Zellstoff aufgebracht werden kann, der an einer Oberseite des unteren Siebs
(11) in dem Abschnitt durchführt, der mit Löchern (42) der Abdeckung (41) des ersten
Formschuhs (40) versehen ist,
wobei die offene Fläche der Abdeckung, die durch die Löcher (42) in der Abdeckung
(41) des ersten Formschuhs (40) definiert ist, die zum Durchführen eines nichtpulsierenden
Entwässerns gedacht ist, 30-90%, vorzugsweise 40-70% von dem Abschnitt mit Löchern
(42) zwischen einem Abschnitt ohne Löcher (41A) des Führungsrands (43) der Abdeckung
(41) und einem Abschnitt ohne Löcher (41B) des Folgerands (44) der Abdeckung (41)
ist,
einen ersten Stoffauflauf (30), mittels welchem ein Pulpensuspensionsstrahl an einem
Auftreffpunkt zugeführt werden kann, nach dem Führungsrand (43) des ersten Formschuhs
(40),
wobei der erste Stoffauflauf (30) ein Mehrschichtstoffauflauf ist,
dadurch gekennzeichnet, dass
die Abdeckung des ersten Formschuhs (40) zumindest an dem Abschnitt zwischen dem Auftreffpunkt
des Pulpensuspensionsstrahls und dem Folgerand (44) des Formschuhs (40) gerade ist,
und
eine Pulsationsstreifenabdeckung (50) dem ersten Formschuh (40) unmittelbar folgend
vorgesehen ist.
11. Formerpartie nach Anspruch 10, dadurch gekennzeichnet, dass die Löcher (42), die durch die Abdeckung (41) des ersten Formschuhs (40) gehen, der
ein nichtpulsierendes Entwässern durchführt, sich schräg gegen eine Bewegungsrichtung
des unteren Siebs (11) befinden, sodass ein Winkel (α) zwischen einer Mittelachse
der Löcher (41) und einer Tangente einer äußeren Fläche der Abdeckung (41) 30-60 Grad
ist, vorzugsweise der erste Stoffauflauf (30) ein Mehrschichtstoffauflauf mit einstellbarer
Lösung ist, der sich im Verhältnis zu der Brustwalze (12) derart befindet, dass eine
vertikale Höhendifferenz (H) einer oberen Fläche des unteren Siebs (11), das sich
an einer Oberseite der Brustwalze (12) bewegt, und einer unteren Fläche (31) einer
Auslauföffnung (33) des ersten Stoffauflaufs (30) in einem Bereich von 0-10 mm ist,
und dass ein horizontaler Abstand (S1) einer vertikalen Ebene Y-Y, die durch eine
Mittelachse der Brustwalze (12) und einer Auslauföffnung (33) des ersten Stoffauflaufs
(30) hindurchführt, in dem Bereich von 0-250 mm ist.
12. Formerpartie nach einem von Ansprüchen 10-11,
dadurch gekennzeichnet, dass sie ferner folgendes aufweist:
eine erste obere Siebeinheit, die oberhalb des unteren Siebs (11) nach der ersten
Einzelsiebpartie (T1) an einem ersten oberen Sieb (21) ausgebildet ist, welches erste
obere Sieb (21) mit dem unteren Siebkreislauf (11) eine erste Doppelsiebpartie (K1)
nach der ersten Einzelsiebpartie (T1) ausbildet, in welcher ersten Doppelsiebpartie
(K1) es einen Anfang, in dem das untere Sieb (11) und das erste obere Sieb (21) einen
sich schließenden Spalt (G) ausbilden, und ein Ende gibt, in dem das erste obere Sieb
(21) von dem unteren Sieb (11) getrennt wird,
zumindest zwei aufeinanderfolgende Entwässerungszonen (Z3, Z4) an der ersten Doppelsiebpartie
(K1),
die erste Entwässerungszone (Z3) der ersten Doppelsiebpartie (K1) aus zumindest einem
stationären zweiten Formschuh (70), der sich am Anfang der Doppelsiebpartie (K1) befindet,
welcher Schuh einen Führungsrand (73) und einen Folgerand (74) hat, eine gekrümmte
Abdeckung (71), die mit Durchgangslöchern (72) versehen ist, die gegen die innere
Fläche des unteren Siebkreislaufs (21) gesetzt sind, und einem Unterdruck (P) besteht,
der durch die Löcher (72) der Abdeckung (71) vorherrscht, welche Löcher (72) aus Öffnungen
oder Schlitzen im Wesentlichen in der Längsrichtung der Maschine ausgebildet sind,
wodurch ein nichtpulsierendes Entwässern an dem Zellstoff aufgebracht wird, der sich
zwischen den Formsieben (11, 21) der ersten Doppelsiebpartie (K1) an dem Abschnitt
mit Löchern (72) des zweiten Formschuhs (70) bewegt,
die letztere, zweite Entwässerungszone (Z4) der ersten Doppelsiebpartie (K1) aus stationären
Entwässerungsstreifen (81) in der Quermaschinenrichtung ausgebildet ist, die gegen
eine Seite der ersten Doppelsiebpartie (K1) gesetzt sind, zwischen welchen Streifen
Schlitze (82) vorgesehen sind, wodurch ein Pulsieren des Entwässerns auf den Zellstoff
aufgebracht wird, der sich zwischen den Formsieben (11, 21) der ersten Doppelsiebpartie
(K1) mit den stationären Entwässerungsstreifen (81) und einem Unterdruck (P) an dem
Abschnitt der stationären Entwässerungsstreifen (81) bewegt, vorzugsweise die zweite
Entwässerungszone (Z4) der ersten Doppelsiebpartie (K1) ferner einstellbar beaufschlagungsfähige
Entwässerungsstreifen (83) aufweist, die sich im Verhältnis zu den stationären Entwässerungsstreifen
(81) auf der gegenüberliegenden Seite der Doppelsiebpartie (K1) an dem Punkt der Schlitze
(82) der stationären Entwässerungsstreifen (81) befinden.
13. Formerpartie nach Anspruch 12, dadurch gekennzeichnet, dass die offene Fläche, die durch die Löcher (72) der Abdeckung (71) des zweiten Formschuhs
(70) bestimmt ist, der das nichtpulsierende Entwässern durchführt, 30-90% ist, 40-70%
eines Abschnitts mit Löchern (72) zwischen einem Abschnitt ohne Löcher (71A) eines
Führungsrands (73) der Abdeckung (71) und einem Abschnitt ohne Löcher (71B) eines
Folgerands (71) der Abdeckung sich vorzugsweise die Löcher (72), die durch die Abdeckung
(71) des zweiten Formschuhs (70) gehen, der ein nichtpulsierendes Entwässern durchführt,
schräg gegen eine Bewegungsrichtung des oberen Siebs (21) befinden, sodass ein Winkel
(α) zwischen einer Mittelachse der Löcher (72) und einer Tangente der äußeren Fläche
der Abdeckung (71) 30-60 Grad, noch wünschenswerter ein Überlappungswinkel des oberen
Siebs (11, 21), das sich über den zweiten Formschuh (70) bewegt, der ein nichtpulsierendes
Entwässern an dem Abschnitt der Abdeckung (71) des zweiten Formschuhs (70) durchführt,
3-45 Grad, am vorteilhaftesten 5-30 Grad ist.
14. Formerpartie nach einem von Ansprüchen 10-11, dadurch gekennzeichnet, dass sie eine zweite obere Siebeinheit aufweist, die mit einem zweiten oberen Sieb (211)
über dem unteren Sieb (11) nach der ersten Einzelsiebpartie (T1) ausgebildet ist,
welches zweite obere Sieb (211) eine zweite Einzelsiebpartie (T2) zum Ausbilden einer
zweiten Teilbahn (W2) ausbildet, und welches zweite obere Sieb (211) ferner eine zweite
Doppelsiebpartie (K2) mit dem unteren Sieb (11) ausbildet, und an welcher zweiten
Doppelsiebpartie (K2) es einen Anfang, in dem das untere Sieb (11) und das zweite
obere Sieb (211) einen Verbindungspunkt (Y) der Teilbahnen ausbildet, und ein Ende
gibt, in dem das zweite obere Sieb (211) von dem unteren Sieb (11) getrennt wird,
wodurch zu der ersten Teilbahn (W1), die an der ersten Fourdrinier-Siebpartie (T1)
am Anfang des Formerabschnitts ausgebildet ist, die zweiten Teilbahn (W2), die in
der zweiten oberen Siebeinheit ausgebildet ist, an dem Verbindungspunkt (Y) gefügt
wird.
15. Formerpartie nach einem von Ansprüchen 12-13, dadurch gekennzeichnet, dass sie eine zweite obere Siebeinheit aufweist, die mit einem zweiten oberen Sieb (111)
über dem unteren Sieb (11) nach der ersten Doppelsiebpartie (K1) ausgebildet ist,
welches zweite obere Sieb (111) eine zweite Einzelsiebpartie (T2) zum Ausbilden einer
zweiten Teilbahn (W2) ausbildet und welches zweite obere Sieb (111) ferner mit dem
unteren Sieb (11) eine zweite Doppelsiebpartie (K2) ausbildet, und an welcher zweiten
Doppelsiebpartie (K2) es einen Anfang, in dem das untere Sieb (11) und das zweite
obere Sieb (111) einen Verbindungspunkt (Y) der Teilbahnen ausbildet, und ein Ende
gibt, in dem das zweite obere Sieb (111) von dem unteren Sieb (11) getrennt wird,
wodurch zu der ersten Teilbahn (W1), die an der ersten Einzelsiebpartie (T1) ausgebildet
ist, an dem Verbindungspunkt (Y) die zweite Teilbahn (W2) gefügt wird, die in der
zweiten Siebeinheit ausgebildet ist.
1. Procédé sur une section de formation, comprenant les étapes suivantes :
- la formation d'une première section à un seul fil (T1) par un fil inférieur (11)
suivant un rouleau de tête (12),
- la formation au début de la première section à un seul fil (T1) immédiatement après
le rouleau de tête (12) d'une première zone d'égouttage (Z1) qui est constituée d'au
moins un premier sabot de formation stationnaire (40), dans lequel il existe un bord
d'attaque (43) et un bord de fuite (44), un revêtement (41) pourvu de trous débouchants
(42) disposés contre une surface interne du fil inférieur (11) et une sous-pression
(P) régnant à travers les trous (42) du revêtement (41), lesquels trous (42) sont
formés d'ouvertures ou de fentes essentiellement dans la direction longitudinale de
la machine, moyennant quoi un égouttage non pulsant est appliqué sur les éléments
circulant dans la partie supérieure du fil inférieur (11) de la première section à
un seul fil (T1) sur la section pourvue de trous (42) du revêtement (41) du premier
sabot de formation (40),
- la réalisation d'un égouttage non pulsant avec le premier sabot de formation (40)
dont la surface ouverte déterminée par les trous (42) du revêtement (41) est de 30
à 90 %, de façon avantageuse de 40 à 70 %, de la section pourvue de trous (42) entre
une section sans trous (41A) du bord d'attaque (43) du revêtement (41) et une section
sans trous (41B) du bord de fuite (44) du revêtement (41),
- l'introduction à l'aide d'une première caisse de tête (30) d'un jet de suspension
de pâte à un point d'impact après le bord d'attaque (43) du premier sabot de formation
(40),
- l'utilisation en tant que première caisse de tête (30) d'une caisse de tête à couches
multiples,
caractérisé par le fait que le procédé comprend en outre les étapes suivantes :
- la formation du revêtement du sabot de formation (40) directement au moins sur la
section entre le point d'impact du jet de suspension de pâte et le bord de fuite (44)
du sabot de formation (40),
- l'agencement dans la première zone d'égouttage (Z1) immédiatement après le sabot
de formation (40) d'un revêtement de pulsation (50).
2. Procédé selon la revendication 1, caractérisé par la réalisation d'un égouttage non pulsant avec le premier sabot de formation (40)
en plaçant les trous (42) traversant le revêtement (41) obliquement contre une direction
de circulation du fil inférieur (11) de sorte qu'un angle (α) entre un axe central
des trous (42) et une tangente de la surface externe du revêtement (41) est de 30
à 60 degrés.
3. Procédé selon la revendication 1 ou 2, caractérisé par l'utilisation d'une caisse de tête à couches multiples ajustable par dilution en
tant que première caisse de tête (30), qui est située en relation avec le rouleau
de tête (12) de sorte qu'une différence de hauteur verticale (H) d'une surface supérieure
du fil inférieur (11) circulant dans la partie supérieure du rouleau de tête (12)
et d'une surface inférieure (31) d'une ouverture de règle (33) de la première caisse
de tête (30) se situe dans la plage de 0 à 10 mm, et qu'une distance horizontale (S1)
d'un plan vertical Y-Y passant par un axe central du rouleau de tête (12) et une ouverture
de règle (33) de la première caisse de tête (30) se situe dans la plage de 10 à 250
mm.
4. Procédé selon l'une quelconque des revendications 1 à 3,
caractérisé par le fait que le procédé comprend en outre les étapes suivantes :
- la formation au-dessus du fil inférieur (11), après la première section à un seul
fil (T1), d'une première unité de fil supérieur ayant un premier fil supérieur (21),
lequel premier fil supérieur (21) forme avec le fil inférieur (11) une première section
à fil double (K1) dans laquelle il existe un début dans lequel le fil inférieur (11)
et le premier fil supérieur (21) forment un espace de fermeture (G) et une fin dans
laquelle le premier fil supérieur (21) est séparé du fil inférieur (11),
- le guidage de la toile initialement formée sur la première section à un seul fil
(T1) jusqu'à la première section à fil double (K1),
- la formation d'au moins deux zones d'égouttage successives (Z3, Z4) sur la première
section à fil double (K1),
- la formation de la première zone d'égouttage (Z3) de la première section à fil double
(K1) à partir d'au moins un second sabot de formation stationnaire (70) situé au début
de la première section à fil double (K1), lequel sabot a un bord d'attaque (73) et
un bord de fuite (74), un revêtement curvilinéaire (71) pourvu de trous débouchants
(72) disposés contre le fil supérieur (21) de la première section à fil double et
une sous-pression (P) régnant à travers les trous (72) du revêtement (71), lesquels
trous (72) sont constitués d'ouvertures ou de fentes essentiellement dans la direction
longitudinale de la machine, moyennant quoi un égouttage non pulsant est appliqué
sur les éléments circulant entre les fils de formation (11, 21) de la première section
à fil double (K1) sur la section pourvue de trous (72) du revêtement (71) du second
sabot de formation (70),
- la formation d'une seconde et dernière zone d'égouttage (Z4) de la première section
à fil double (K1) de bandes d'égouttage stationnaires dans la direction transversale
(81) disposées contre un côté de la première section à fil double entre lesquelles
bandes il existe des fentes (82), moyennant quoi un égouttage pulsant est appliqué
sur les éléments circulant entre les fils de formation (11, 21) de la section à fil
double (K1) avec les bandes d'égouttage stationnaires (81) et une sous-pression (P)
sur la section des bandes d'égouttage stationnaires (81).
5. Procédé selon la revendication 4, caractérisé par la formation de bandes d'égouttage pouvant être chargées de manière ajustable (83)
sur la seconde zone d'égouttage (Z4) de la première section à fil double (K1), lesquelles
bandes sont situées en relation avec les bandes d'égouttage stationnaires (81) du
côté opposé de la première section à fil double (K1), au niveau des fentes (82) entre
les bandes d'égouttage stationnaires (81).
6. Procédé selon la revendication 4 ou 5, caractérisé par la réalisation d'un égouttage non pulsant avec le second sabot de formation (70),
dont la surface ouverte déterminée par les trous (72) du revêtement (71) est de 30
à 90%, de façon avantageuse de 40 à 70 % d'une section pourvue de trous (72) entre
une section sans trous (71A) d'un bord d'attaque (73) du revêtement (71) et une section
sans trous (71B) d'un bord de fuite (74) du revêtement (71).
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé par la réalisation d'un égouttage non pulsant avec le second sabot de formation (70),
dont les trous (72) traversant le revêtement (71) sont situés obliquement contre une
direction de circulation du fil supérieur (21) de sorte qu'un angle (α) entre un axe
central des trous (72) et une tangente d'une surface externe du revêtement (72) est
de 30 à 60 degrés, de préférence de sorte qu'un angle de chevauchement du fil supérieur
(21) circulant sur le second sabot de formation (70) sur la section du revêtement
(71) du second sabot de formation (70) est de 3 à 45 degrés, de la façon la plus avantageuse
de 5 à 30 degrés.
8. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé par la formation d'une seconde unité de fil supérieur avec un second fil supérieur (211)
au-dessus du fil inférieur (11) après la première section à un seul fil (T1), lequel
second fil supérieur (211) forme une seconde section à un seul fil (T2) au début de
laquelle une seconde caisse de tête (230), qui est une caisse de tête à une seule
couche, introduit un jet de suspension de pâte pour la formation d'une seconde toile
partielle (W2) et lequel second fil supérieur (211) forme en outre une seconde section
à fil double (K2) avec le fil inférieur (11), et sur laquelle seconde section à fil
double (K2) il existe un début dans lequel le fil inférieur (11) et le second fil
supérieur (211) forment un point de jonction (Y) des toiles partielles et une fin
dans laquelle le second fil supérieur (211) est séparé du fil inférieur (11), moyennant
quoi à la première toile partielle (W1) formée sur la première table plate (T1) du
début de la section de formation est jointe la seconde toile partielle (W2) formée
dans la seconde unité de fil supérieur au point de jonction (Y).
9. Procédé selon l'une quelconque des revendications 4 à 7, caractérisé par la formation d'une seconde unité de fil supérieur avec un second fil supérieur (111)
au-dessus du fil inférieur (11) après la première section à un seul fil (K1), lequel
second fil supérieur (111) forme une seconde section à un seul fil (T2) au début de
laquelle une seconde caisse de tête (230), qui est une caisse de tête à une seule
couche, introduit un jet de suspension de pâte pour la formation d'une seconde toile
partielle (W2) et lequel second fil supérieur (111) forme en outre une seconde section
à fil double (K2) avec le fil inférieur (11), et sur laquelle seconde section à fil
double (K2) il existe un début dans lequel le fil inférieur (11) et le second fil
supérieur (111) forment un point de jonction (Y) des toiles partielles et une fin
dans laquelle le second fil supérieur (111) est séparé du fil inférieur (11), moyennant
quoi à la première toile partielle (W1) formée sur la première section à un seul fil
(T1) et la première section à fil double (K1) est jointe la seconde toile partielle
(W2) formée dans la seconde unité de fil au point de jonction (Y).
10. Section de formation qui comprend :
- une boucle de fil inférieur (11) qui constitue une première section à un seul fil
(T1) après un rouleau de tête (12),
- le début de la première section à un seul fil (T1) comprend une première zone d'égouttage
(Z1) qui est constituée d'au moins un premier sabot de formation stationnaire (40),
dans lequel il existe un bord d'attaque (43) et un bord de fuite (44), un revêtement
(41) pourvu de trous débouchants (42) disposés contre la surface interne de la boucle
de fil inférieur (11), et une sous-pression (P) régnant à travers les trous (42) du
revêtement (41), lesquels trous (42) sont constitués d'ouvertures ou de fentes essentiellement
dans la direction longitudinale de la machine, moyennant quoi un égouttage non pulsant
peut être appliqué sur les éléments passant dans la partie supérieure du fil inférieur
(11) dans la section pourvue de trous (42) du revêtement (41) du premier sabot de
formation (40),
dans laquelle la surface ouverte du revêtement définie par les trous (42) dans le
revêtement (41) du premier sabot de formation (40), conçue pour la réalisation d'un
égouttage non puisant, est de 30 à 90 %, de façon avantageuse de 40 à 70 %, de la
section pourvue de trous (42) entre une section sans trous (41A) du bord d'attaque
(43) du revêtement (41) et une section sans trous (41B) du bord de fuite (44) du revêtement
(41),
- une première caisse de tête (30) au moyen de laquelle un jet de suspension de pâte
peut être introduit à un point d'impact après le bord d'attaque (43) du premier sabot
de formation (40),
dans laquelle la première caisse de tête (30) est une caisse de tête à couches multiples,
caractérisée en ce que
- le revêtement du premier sabot de formation (40) est directement au moins sur la
section entre le point d'impact du jet de suspension de pâte et le bord de fuite (44)
du sabot de formation (40), et
- un revêtement de pulsation (50) est prévu immédiatement après le premier sabot de
formation (40).
11. Section de formation selon la revendication 10, caractérisée en ce que les trous (42) traversant le revêtement (41) du premier sabot de formation (40) réalisant
un égouttage non pulsant sont situés obliquement contre une direction de circulation
du fil inférieur (11) de sorte qu'un angle (α) entre un axe central des trous (42)
et une tangente d'une surface externe du revêtement (41) est de 30 à 60 degrés, de
préférence la première caisse de tête (30) est une caisse de tête à couches multiples
ajustable par dilution qui est située en relation avec le rouleau de tête (12) de
sorte qu'une différence de hauteur verticale (H) d'une surface supérieure du fil inférieur
(11) circulant dans la partie supérieure du rouleau de tête (12) et d'une surface
inférieure (31) d'une ouverture de règle (33) de la première caisse de tête (30) se
situe dans la plage de 0 à 10 mm, et qu'une distance horizontale (S1) d'un plan vertical
Y-Y passant par un axe central du rouleau de tête (12) et une ouverture de règle (33)
de la première caisse de tête (30) se situe dans la plage de 0 à 250 mm.
12. Section de formation selon l'une quelconque des revendications 10 à 11,
caractérisée en ce qu'elle comprend en outre :
- une première unité de fil supérieur qui est formée au-dessus du fil inférieur (11),
après la première section à un seul fil (T1) sur un premier fil supérieur (21), lequel
premier fil supérieur (21) forme avec la boucle de fil inférieur (11) une première
section à fil double (K1) après la première section à un seul fil (T1) dans laquelle
première section à fil double (K1) il existe un début dans lequel le fil inférieur
(11) et le premier fil supérieur (21) forment un espace de fermeture (G) et une fin
dans laquelle le premier fil supérieur (21) est séparé du fil inférieur (11),
- au moins deux zones d'égouttage successives (Z3, Z4) sur la première section à fil
double (K1),
- la première zone d'égouttage (Z3) de la première section à fil double (K1) est constituée
d'au moins un second sabot de formation stationnaire (70) situé au début de la section
à fil double (K1), lequel sabot a un bord d'attaque (73) et un bord de fuite (74),
un revêtement curvilinéaire (71) pourvu de trous débouchants (72) disposés contre
la surface interne de la boucle de fil supérieur (21) et une sous-pression (P) régnant
à travers les trous (72) du revêtement (71), lesquels trous (72) sont formés d'ouvertures
ou de fentes essentiellement dans la direction longitudinale de la machine, moyennant
quoi un égouttage non pulsant est appliqué sur les éléments circulant entre les fils
de formation (11, 21) de la première section à fil double (K1) sur la section pourvue
de trous (72) du second sabot de formation (70),
- la seconde et dernière zone d'égouttage (Z4) de la première section à fil double
(K1) est formée de bandes d'égouttage stationnaires dans la direction transversale
(81) disposées contre un côté de la première section à fil double (K1) entre lesquelles
bandes il existe des fentes (82), moyennant quoi un égouttage pulsant est appliqué
sur les éléments circulant entre les fils de formation (11, 21) de la première section
à fil double (K1) avec les bandes d'égouttage stationnaires (81) et une sous-pression
(P) sur la section des bandes d'égouttage stationnaires (81), de préférence la seconde
zone d'égouttage (Z4) de la première section à fil double (K1) comprend en outre des
bandes d'égouttage pouvant être chargées de manière ajustable (83) qui sont situées
en relation avec les bandes d'égouttage stationnaires (81) du côté opposé de la section
à fil double (K), au niveau des fentes (82) des bandes d'égouttage stationnaires (81).
13. Section de formation selon la revendication 12, caractérisée en ce que la surface ouverte déterminée par les trous (72) du revêtement (71) du second sabot
de formation (70) réalisant un égouttage non pulsant est de 30 à 90 %, de 40 à 70
% d'une section pourvue de trous (72) entre une section sans trous (71A) d'un bord
d'attaque (73) du revêtement (71) et une section sans trous (71B) d'un bord de fuite
(71) du revêtement, de préférence les trous (72) traversant le revêtement (71) du
second sabot de formation (70) réalisant un égouttage non pulsant sont situés obliquement
contre une direction de circulation du fil supérieur (21) de sorte qu'un angle (α)
entre un axe central des trous (72) et une tangente de la surface externe du revêtement
(71) est de 30 à 60 degrés, de manière davantage préférée un angle de chevauchement
du fil supérieur (11, 21) circulant sur le second sabot de formation (70) réalisant
un égouttage non pulsant sur la section du revêtement (71) du second sabot de formation
(70) est de 3 à 45 degrés, de la façon la plus avantageuse de 5 à 30 degrés.
14. Section de formation selon l'une quelconque des revendications 10 à 11, caractérisée en ce qu'elle comprend une seconde unité de fil supérieur qui est formée avec un second fil
supérieur (211) au-dessus du fil inférieur (11) après la première section à un seul
fil (T1), lequel second fil supérieur (211) forme une seconde section à un seul fil
(T2) pour la formation d'une seconde toile partielle (W2) et lequel second fil supérieur
(211) forme en outre une seconde section à fil double (K2) avec le fil inférieur (11),
et sur laquelle seconde section à fil double (K2) il existe un début dans lequel le
fil inférieur (11) et le second fil supérieur (211) forment un point de jonction (Y)
des toiles partielles et une fin dans laquelle le second fil supérieur (211) est séparé
du fil inférieur (11), moyennant quoi à la première toile partielle (W1) formée sur
la première table plate (T1) du début de la section de formation est jointe la seconde
toile partielle (W2) formée dans la seconde unité de fil supérieur au point de jonction
(Y).
15. Section de formation selon l'une quelconque des revendications 12 à 13, caractérisée en ce qu'elle comprend une seconde unité de fil supérieur qui est formée avec un second fil
supérieur (111) au-dessus du fil inférieur (11) après la première section à fil double
(K1), lequel second fil supérieur (111) forme une seconde section à un seul fil (T2)
pour la formation d'une seconde toile partielle (W2) et lequel second fil supérieur
(111) forme en outre une seconde section à fil double (K2) avec le fil inférieur (11),
et sur laquelle seconde section à fil double (K2) il existe un début dans lequel le
fil inférieur (11) et le second fil supérieur (111) forment un point de jonction (Y)
des toiles partielles et une fin dans laquelle le second fil supérieur (111) est séparé
du fil inférieur (11), moyennant quoi à la première toile partielle (W1) formée sur
la première section à un seul fil (T1) est jointe la seconde toile partielle (W2)
formée dans la seconde unité de fil au point de jonction (Y).