[0001] The present invention refers to an electronic control and communication system applied
to a modular fluid distribution device. In particular, the electronic control and
communication system is configured for applications in the field of beverages, medicine
and in any case in all fields where a fluid can be classified as
"hazardous".
[0002] In recent years, also thanks to the spread of both wired and wireless information
connection networks, there has been an increasing need to be able to recover and process
"field" information of any technological process in order to optimise the performance
and efficiency thereof.
[0003] With reference to the field of beverages, for example, an essential requirement for
a professional drinks distribution apparatus for commercial enterprises is the possibility
of simultaneously dispensing beverages of different types, fizzy or not. Normally,
these processes take place without the possibility of recovering any information from
the devices involved in the management of the various fluids in these apparatuses.
Simply, in order to obtain the final beverage a concentrated syrup component is mixed
with water, which may or may not be fizzy, in different ratios according to the final
beverage that is wished to be made. In order to obtain the mixing, typically, inside
the hydraulic system of these apparatuses there are some components or valve systems
assigned to distributing, for example, the fizzy water in the different points where
the mixing with the single syrups takes place, or to distributing the different syrups
over independent ducts, which will then make the beverage with the water.
[0004] A typical example of such components or valve systems is illustrated in figure 1
and is represented by a distributor system with five inlets and a single outlet. In
this distributor system, controlled electronically, there is the possibility of sending
five different beverages over a single outlet, with the additional inlet for the water
component.
[0005] It is therefore clear how such a distributor system is rather bulky and heavy, since
it is equipped with the different magnetic cores for the solenoid valves. Moreover,
the system is rigid, in the sense that it is not possible to vary the number of inlets
or outlets in a simple manner because this, in fact, would mean the total redesigning
of the hydraulic manifold of the valves. In order to obtain a certain modularity in
the distributor systems, different independent modules have thus been used.
[0006] In general, fluid distributor systems are equipped, as an option, with a mechanical
flow control device capable of calibrating the flow rate with which the beverage is
dispensed and/or made up. However, these distributor systems, as already specified,
do not have the possibility of processing, managing and communicating any information
relative to the fluids that they are treating. On the other hand, it is increasingly
important to have some parameters available relative to the technological treatment
process of the fluids, like for example pressure, flow rate, temperature, etc.
[0007] Fluid distributor systems have thus been made in which the control of the flow of
fluid takes place through electronic devices, like for example the one described in
document
US 2014/263418 A1. Document
US 2014/263418 A1 refers in particular to a beverage distribution system, designed mainly for automatically
preparing and serving cocktails or similar beverages. The system is made up of a dosing
valve able to adapt directly to the bottles of the various base beverages, which communicates
remotely with automatic ordering and payment systems in order to facilitate and automate
the beverages serving operations.
[0008] Document
US 2014/263418 A1 focuses on the methods of communication that takes place inside the distribution
system. This distribution system does not, however, allow modulated and proportional
control of the fluid, so that in the distribution system according to document
US 2014/263418 A1 the dosing of the beverages is managed by time.
[0009] Another beverage distributor system, wherein the beverage dispensing is controlled
by a data processing apparatus, is disclosed for example in document
US 2011/0298583 A1. However, document
US 2011/0298583 A1 does not allow a modulated and proportional control of the dispensed beverage. Document
EP 1 498 647 A1 describes a flow controlling device with shape memory actuating means, but no system
for monitoring and controlling the fluid flow from a remote location is disclosed
in document
EP 1 498 647 A1.
[0010] The purpose of the present invention is therefore to make an electronic control and
communication system applied to a modular fluid distribution platform that is able
to solve the aforementioned drawbacks of the prior art in an extremely simple, cost-effective
and particularly functional manner.
[0011] In detail, a purpose of the present invention is to make a remote electronic control
and communication system, suitably developed for a modular fluid distribution platform,
which is able to send and receive, with a bi-directional communication mode, information
concerning the characteristic physical parameters of the fluid, and to make available
such information remotely, and furthermore to proportionally modulate the flow rate
of the fluid.
[0012] Another purpose of the present invention is to make a remote electronic control and
communication system applied to a modular fluid distribution platform that is completely
modular and thus easy to configure.
[0013] A further purpose of the present invention is to make a remote electronic control
and communication system applied to a modular fluid distribution platform that is
of extremely small size and weight.
[0014] These purposes according to the present invention are accomplished by a fluid distributor
device as outlined in claim 1.
[0015] Further characteristics of the invention are highlighted by the dependent claims,
which are an integral part of the present description.
[0016] In general, since the modular fluid distribution platform according to the present
invention has a component manufactured from a shape memory alloy as actuator element
for managing the fluid, the remote electronic control and communication system will
be configured to manage the current necessary to move such a component manufactured
from a shape memory alloy (typically consisting of a wire). The control can also be
of the proportional type, thus having the possibility to linearly modulate the flow
of fluid to be managed. The same remote electronic control and communication system
of the fluid distributor device can process, indirectly and thanks to the presence
of suitable sensor means, consisting of the same actuator element manufactured from
a shape memory alloy, some intrinsic parameters of the fluid like for example the
pressure, flow rate and temperature.
[0017] Indeed, thanks to the fact that by reading the electrical resistance of the wire
made of shape memory alloy it is possible to obtain the length of the wire itself,
and therefore the actual open position of the valve of the device, by reading the
energy injected it is possible to understand the force with which the wire is acting,
and thus indirectly the pressure of the system. Moreover, considering that the total
amount of energy necessary to reach the transition of the shape memory alloy is also
a function of the temperature of the system, it will also be simple to provide these
parameters without a further introduction into the system of specific sensors.
[0018] The electronic control and communication system is provided with an electronic board
that integrates a wireless remote communication module configured to make available
the "field" parameters of the fluid quoted earlier. Such a remote communication module
can interface, and therefore can communicate wirelessly, with portable devices such
as smartphones, tablets or similar, or can interface with the network and therefore
communicate with remote terminals via the web.
[0019] The possibility of having available and processing the data concerning the fluid
brings numerous advantages in terms of remote control of the apparatuses. Indeed,
it is for example possible, based on the flow rate and pressure information, to intervene
remotely on the mixing ratios of the two syrup and water components, or to intervene
on the final flow rate of the beverage, as well as to monitor the correct operation
of the devices, with an advantage on the efficiency and preciseness of the maintenance
interventions of the apparatuses. In general, the parameters of use and consumption
can also be available, like for example the number of beverages dispensed, the amount
of syrup used, etc.
[0020] The remote electronic control and communication system can also be advantageously
applied in the field of medicine, where necessarily the possibility of monitoring
the different process parameters is of even greater value. For example, in a specific
field like that of apparatuses for dialysis and, in particular, in the management
of the flows of dialysis liquids obtained as reconstitution of osmotic water with
concentrated saline solutions, it is advantageous to know in real time, remotely,
the main parameters of the dialysis liquid itself and monitor the correct operation,
in terms of pressure and flow rate in various points of the hydraulic circuit (in
general very complex), of the apparatuses. These controls can be carried out without
the introduction of further sensors, but rather carried out intrinsically through
the fluid distributor device.
[0021] The characteristics and advantages of an electronic control and communication system
applied to a modular fluid distribution platform according to the present invention
will become clearer from the following description, given as an example and not for
limiting purposes, referring to the attached schematic drawings, in which:
figure 1 is a perspective view of a known fluid distributor system, provided with
five inlets and a single outlet;
figure 2 is a transparent view of a single fluid distributor device that integrates
an electronic control and communication system according to the present invention;
figure 3 is a section view of the single fluid distributor device of figure 2;
figure 4 is an exploded view of the single fluid distributor device of figure 2;
figure 5 is a perspective view illustrating three distinct fluid distributor devices
connected together;
figure 6 is a graph showing the trend of the fluid flow rate as a function of the
degree of opening of a single fluid distributor device;
figure 7 is a schematic view of the control circuit of the actuator of a single fluid
distributor device;
figure 8 is a graph showing an average duty cycle of a single fluid distributor device;
figure 9 is a graph showing the trend of the pressure of the fluid as a function both
of the average duty cycle, and of the degree of opening of a single fluid distributor
device;
figure 10 is a graph showing the variation of the average value of the duty cycle
as a function of the variation in pressure of the fluid; and
figure 11 is a graph showing a possible pressure compensation procedure able to be
actuated through the electronic control and communication system according to the
present invention.
[0022] With reference to figures 2 to 5, a single fluid distributor device that integrates
an electronic control and communication system according to the present invention
is shown. The fluid distributor device, or modular fluid distributor, is wholly indicated
with reference numeral 10.
[0023] The fluid distributor device 10 substantially consists of a fluidic portion 12, in
which the fluids to be treated flow, and an actuator portion 14. The fluidic portion
12 is equipped with a plurality of interface and quick connection means 36 for putting
two or more analogous fluid distributor devices 10 in fluid connection with each other
and/or with an apparatus for treating fluids in which such fluid distributor devices
10 can be inserted. The fluidic portion 12 is also equipped with at least one adjustment
element 32 of the flow of fluid, which will be illustrated in detail herein after.
[0024] The actuator portion 14 comprises at least one actuator element 16 that carries out
the selective opening and closing of the fluid inlet 18 and outlet 20 ducts. Advantageously,
the actuator element 16 consists of a mechanical rod that operates by elastic deformation
under the action of at least one wire 22 manufactured from a shape memory alloy. The
wire 22 is capable of applying a force, preferably a traction force, on the actuator
element 16 due to the temperature variation (heating) determined by the Joule effect
by the passage of an electric current through the wire 22 itself.
[0025] The fluid distributor device 10 is thus provided with an electronic control and communication
system comprising a control board 24 in turn provided with power supply connections
26. The control board 24 is also provided with operational connection means 34, for
example consisting of one or more mechanical and electrical crimps, with the wire
22 manufactured from a shape memory alloy. The control board 24 is further provided
with a communication and control module capable of indirectly obtaining certain physical
parameters of the fluid through the characteristics of the wire 22 manufactured from
a shape memory alloy. Alternatively, but not forming part of the subject-matter claimed
by the present invention, the electronic control and communication system can be provided
with sensor means (not shown) capable of directly obtaining the aforementioned physical
parameters of the fluid.
[0026] The actuator portion 14 can also be equipped with at least one contrast element 28,
like for example a spring, configured for increasing the mechanical sealing load of
the actuator element 16. The fluidic portion 12, as shown in detail in figure 3, is
equipped with one or more fluid inlet ducts 18 and one or more fluid outlet ducts
20. The fluid inlet 18 and outlet 20 ducts all communicate with a single distribution
chamber 30 closed by an adjustment element 32 of the flow of fluid, advantageously
consisting of a separation membrane. The separation membrane 32, as well as separating
the fluidic portion 12 from the actuator portion 14, also determines the opening and
closing of the fluid outlet ducts 20.
[0027] The wire 22 manufactured from a shape memory alloy, by Joule effect determined by
the passage of a current controlled by the control board 24, deforms applying a traction
force on the actuator element 16. Consequently, the actuator element 16 flexes elastically,
lifting the separation membrane 32 and placing the fluid inlet ducts 18 in communication
with the fluid outlet ducts 20.
[0028] The control board 24 is configured for deforming in a modular and controllable manner
the wire 22 manufactured from a shape memory alloy, so as to determine a corresponding
modular and controllable traction force on the actuator element 16. Consequently,
the very precise control of the movement of the actuator element 16 is obtained. This,
in fact, allows a proportional control of the passage equivalent section of the fluids
in the fluidic portion 12 and, therefore, of the flow rate of the fluid exiting the
respective one or more outlet ducts 20. The modulable and proportional actuation modes
of the wire 22 manufactured from a shape memory alloy and of the actuator element
16 can also be varied remotely thanks to the communication and control module integrated
in the control board 24.
[0029] In particular, the separation membrane 32 is an essential element for ensuring the
transmission of the physical parameters of the fluid, notably the pressure p, to the
actuator element 16 comprising the wire 22 manufactured from a shape memory alloy,
so that such an actuator 16 can be used as a sensor without the wire 22 itself coming
into contact with the fluid. In other words, by using the separation membrane 32,
the actuator element 16 can simultaneously operate as actuator, and as sensor.
[0030] With reference to figure 3, it can be seen that the fluid, entering into the distribution
chamber 30 while the actuator element 16 is in closed position, generates a pressure
increase
p inside the distribution chamber 30 itself. The separation membrane 32, which has
the ability to deform under the effect of the pressure
p, would tend to lift. However, in the condition in which the fluid distributor device
10 is deactivated, the separation membrane 32 is kept in closed position by the contrast
element 28 or bias spring.
[0031] From the aforementioned operative condition, the force necessary to move (lift) the
actuator element 16, and therefore the force that the wire 22 manufactured from a
shape memory alloy must exert, will be lower as the pressure
p inside the distribution chamber 30 increases. It is possible, at this point, to put
the force exerted by the wire 22 manufactured from a shape memory alloy in relation
with the pressure
p to which the separation membrane 32 and, therefore, the fluid, is subjected. The
force exerted by the wire 22 manufactured from a shape memory alloy is in turn linked
to the energy supplied to the wire 22 itself to heat it, in order to make it carry
out a certain movement. Basically, by measuring the instantaneous electric current
supplied to the wire 22 to carry out a certain movement with the communication and
control module, also measurable by reading the electrical resistance, it is possible
to identify the pressure value
p present inside the distribution chamber 30, moment by moment, in dynamic conditions.
[0032] In greater detail, in static conditions, given a certain pressure condition
p inside the distribution chamber 30, which determines a certain deformation of the
separation membrane 32 and therefore a certain force on the wire 22 in order to have
a desired flow rate
q̇ (corresponding to a certain opening
â of the distribution module 10 - see figure 6), the average energy supplied to the
wire 22 to keep the desired flow rate
q̇ constant is in turn constant. A measurement of such energy can be obtained, for example,
by calculating the average value
d of the
"duty cycle" of the PWM
("pulse-width modulation") with which the wire 22 is controlled (see the control circuit of figure 7, in which
the wire 22 is represented by the electrical resistance RSMA).
[0033] In dynamic conditions, an analysis of the response transients to a flow rate step
shows, for the average
"duty cycle" d, a time constant
τ equal to about 0.5 seconds. After about 2.5 seconds all of the transient phenomena
can be considered exhausted (see figure 8). Hypothesising, therefore, that the transients
are negligible and by analysing the behaviour of the system in normal conditions,
it is possible to obtain the pressure value
p from the measurement of the average
"duty cycle" d and from the opening
â of the distribution module 10 (see figure 9). By subjecting the system to pressure
variations
Δp, corresponding variations of the average value
d of the
"duty cycle" are observed: if the pressure
p of the system increases, the average
"duty cycle" d decreases and vice-versa (see figure 10).
[0034] Moreover, starting from an indirect measurement of the pressure
p and knowing the opening/flow rate curve of the distribution module 10 (curve of figure
6) it is possible to implement a compensation procedure to keep the flow rate
q̇ constant even after pressure variations
Δp of the system. Given a certain opening
â of the distribution module 10, pressure increases
p cause an increase in the flow rate
q̇. Vice-versa, pressure decreases
p cause a decrease in the flow rate
q̇. If the distribution module 10 is in a normal operating condition and variations of
the average value
d of the
"duty cycle" are detected, it is possible to compensate pressure increases
p by reducing the opening of the valve and pressure decreases
p by increasing the opening
â of the distribution module 10, in this way keeping the desired flow rate
q̇ constant. A basic compensation procedure, carried out with software installed in
the electronic control and communication system and tested experimentally, is represented
in figure 11.
[0035] With reference to figure 5, it is highlighted how the fluid distributor device 10
according to the present invention is particularly compact and is equipped with a
parallelepiped configuration that facilitates the installation thereof in the most
common apparatuses for treating fluids. As stated earlier, each fluid distributor
device 10 is provided with interface and quick connection means 36, typically provided
in the fluidic portion 12, configured to carry out the coupling of many distribution
modules 10 and thus form manifolds of variable shape and size. The whole thing is
able to be made with maximum flexibility and simplicity.
[0036] Figure 5 shows an example of modularity in which it is highlighted how the interface
and quick connection means 36 of the single distribution modules 10 have been studied
specifically to allow easy connection between the distribution modules 10 themselves.
Of course, all or part of the interface and quick connection means 36 of each single
distribution module 10 can be kept closed, through corresponding suitably configured
plugs, in the operating condition in which such a distribution module 10 is not connected
to any contiguous distribution module. Another possibility is that the various fluid
inlet 18 and outlet 20 ducts are normally closed by a wall in the interface point.
Such a wall can be opened under mechanical thrust at the moment in which it is wished
to place the distribution module 10 in communication with other modules.
[0037] It has thus been seen that the electronic control and communication system applied
to a modular fluid distribution platform according to the present invention achieves
the purposes outlined earlier, in particular obtaining the following advantages:
- the remote electronic control and communication system exploits the ability of the
shape memory wire to operate simultaneously both as actuator, and as sensor, obtaining
some characteristic parameters of the fluid and making them available remotely. The
communication is of the bi-directional type, which makes it possible both to import
"field" information from the module, and also to intervene remotely on the operating
characteristics of the distributor device;
- the distributor device is completely modular, thus easy to configure, since it consists
of a plurality of valve elements able to be coupled together so as to define the desired
distribution system in terms of inlets/outlets for the fluid, being able to create
both a single duct with different outlets, and different independent ducts;
- the distributor device is easily modulable thanks to the fact that each single valve
element is of extremely small size and weight and is provided with quick interface
connections;
- the size and weight are particularly small also thanks to the use of an actuator consisting
of a wire made of shape memory alloy;
- each single valve element can also be designed with total separation, with the fluidic
portion completely independent and separated, through a suitable membrane, from the
actuator portion;
- the actuator with wire made of shape memory alloy can vary in a controlled and modular
manner the flow of fluid. There is thus proportional electronic control of the desired
flow rate of the fluid, as well as the normal ON/OFF opening and closing function;
- the use of the actuator manufactured from a shape memory alloy finally makes it possible
to obtain a completely silent valve system.
[0038] The electronic control and communication system applied to a modular fluid distribution
device of the present invention thus conceived can in any case undergo numerous modifications
and variants, as defined by the appended claims; moreover, all of the details can
be replaced by technically equivalent elements. In practice, the materials used, as
well as the shapes and sizes, can be whatever according to the technical requirements.
[0039] The scope of protection of the invention is therefore defined by the attached claims.
1. Fluid distributor device (10) comprising:
- a fluidic portion (12) in which the fluids to be treated flow, said fluidic portion
(12) being provided with one or more fluid inlet ducts (18) and one or more fluid
outlet ducts (20), said fluid inlet (18) and outlet (20) ducts being placed in communication
with a single distribution chamber (30) closed by at least one fluid flow adjustment
element (32) which determines the opening and closing of the fluid outlet ducts (20);
and
- an actuator portion (14), separated from the fluidic portion (12) by means of said
at least one fluid flow adjustment element (32) and comprising at least one actuator
element (16) operatively connected to said at least one fluid flow adjustment element
(32) to carry out the selective opening and closing of said fluid inlet (18) and outlet
(20) ducts,
wherein said at least one actuator element (16) is configured to activate said at
least one fluid flow adjustment element (32) and to put in communication the fluid
inlet ducts (18) with the fluid outlet ducts (20),
and wherein said at least one actuator element (16) is configured for operating under
the action of at least one wire (22) manufactured from a shape memory alloy, said
at least one wire (22) manufactured from a shape memory alloy being capable of imparting
a force onto said at least one actuator element (16) due to the temperature variation
determined by the Joule effect by the passage of an electric current through said
wire (22) manufactured from a shape memory alloy, the fluid distributor device (10)
being
characterised in that said at least one adjustment element (32) is made of a separation membrane configured
for rising as a result of the action of said at least one actuator element (16), thus
putting in communication the fluid inlet ducts (18) with the fluid outlet ducts (20)
and
in that it comprises an electronic control and communication system configured to manage
the passage of said electric current through said wire (22) manufactured from a shape
memory alloy, said electronic control and communication system in turn comprising
a control board (24) provided with operational connection means (34) with said wire
(22) manufactured from a shape memory alloy, said control board (24) integrating a
wireless remote communication module, interfaceable via the web with remote terminals
and/or with portable devices and configured to make available certain physical parameters
of the fluid on said remote terminals and/or said portable devices, wherein said control
board (24) is provided with a communication and control module capable of indirectly
obtaining certain physical parameters of the fluid through the characteristics of
said wire (22) manufactured from a shape memory alloy, said communication and control
module measuring the instantaneous electric current supplied to said wire (22) manufactured
from a shape memory alloy to identify the pressure value (
p) present inside said distribution chamber (30) based on the relationship between
the force exerted by said wire (22) manufactured from a shape memory alloy to move
said actuator element (16) and the pressure (p) to which said separation membrane
(32) is subjected.
2. Fluid distributor device (10) according to claim 1, characterised in that said control board (24) is configured for deforming in a modular and controllable
manner said wire (22) manufactured from a shape memory alloy, so as to determine a
corresponding modular and controllable force on said at least one actuator element
(16) and for allowing a proportional control of the passage equivalent section of
the fluids in the fluidic portion (12) and, therefore, of the flow rate (q̇) of the fluid exiting from the respective outlet ducts (20).
3. Fluid distributor device (10) according to claims 1 or 2, characterised in that said physical parameters of the fluid are selected from the group consisting of pressure
(p), flow rate (q̇) and temperature.
4. Fluid distributor device (10) according to any claims 1 to 3, characterised in that it comprises a plurality of interface and quick connection means (36) configured
for carrying out the coupling and connection of fluid between two or more contiguous
fluid distributor devices (10).
5. Fluid distributor device (10) according to claim 4, characterised in that said interface and quick connection means (36) are obtained on the fluidic portion
(12).
6. Fluid distributor device (10) according to claim 4 or 5, characterised in that at least one part of said interface and quick connection means (36) is provided with
respective plugs configured for maintaining closed said interface and quick connection
means (36) in the operating condition in which the corresponding fluid distributor
device (10) is not connected to any contiguous fluid distributor device (10).
7. Fluid distributor device (10) according to claim 4 or 5, characterised in that at least one part of said interface and quick connection means (36) is provided with
respective walls configured for maintaining closed said interface and quick connection
means (36) in the operating condition in which the corresponding fluid distributor
device (10) is not connected to any contiguous fluid distributor device (10), said
walls being openable under mechanical thrust when it is desired to put in communication
the corresponding fluid distributor device (10) with one or more contiguous fluid
distributor devices (10) .
8. Fluid distributor device (10) according to any preceding claims, characterised in that said control board (24) is provided with power supply connections (26) and in that said operational connection means (34) are made of one or more mechanical and electrical
crimps.
9. Fluid distributor device (10) according to any preceding claims, characterised in that the actuator portion (14) is provided with at least one contrast element (28) configured
for increasing the mechanical sealing load of said at least one actuator element (16).
10. Fluid distributor device (10) according to claim 9, characterised in that said at least one contrast element (28) is a spring.
11. Fluid distributor device (10) according to any preceding claims, characterised in that said at least one actuator element (16) consists of a mechanical rod configured for
operating by elastic deformation under the action of said wire (22) manufactured from
a shape memory alloy.
1. Flüssigkeitsverteilervorrichtung (10) umfassend:
- einen Flüssigkeitsabschnitt (12), durch den die zu verarbeitenden Flüssigkeiten
strömen, wobei der Flüssigkeitsabschnitt (12) mit einem oder mehreren Flüssigkeitseintrittskanälen
(18) und einem oder mehreren Flüssigkeitsaustrittskanälen (20) versehen ist, wobei
die Flüssigkeitseintrittskanäle (18) und die Flüssigkeitsaustrittskanäle (20) in Kommunikation
mit einer einzelnen Verteilerkammer (30) angeordnet sind, die durch wenigstens ein
Flüssigkeitsströmungseinstellelement (32) geschlossen ist, das die Öffnung und Schließung
der Flüssigkeitsaustrittskanäle (20) bewirkt; und
- einen Betätigungsabschnitt (14), der von dem Flüssigkeitsabschnitt (12) durch das
wenigstens eine Flüssigkeitsströmungseinstellelement (32) getrennt ist und wenigstens
ein Betätigungselement (16) umfasst, das mit dem wenigstens einen Flüssigkeitsströmungseinstellelement
(32) wirkverbunden ist, um die selektive Öffnung und Schließung der Flüssigkeitseintrittskanäle
(18) und Flüssigkeitsaustrittskanäle (20) vorzunehmen,
wobei das wenigstens eine Betätigungselement (16) ausgebildet ist, um das wenigstens
eine Flüssigkeitsströmungseinstellelement (32) zu betätigen und die Flüssigkeitseintrittskanäle
(18) mit den Flüssigkeitsaustrittskanälen (20) in Kommunikation zu versetzen, und
wobei das wenigstens eine Betätigungselement (16) ausgebildet ist, um unter der Wirkung
von wenigstens einem aus einer Formgedächtnislegierung hergestellten Draht (22) zu
agieren, wobei der wenigstens eine aus einer Formgedächtnislegierung hergestellte
Draht (22) in der Lage ist, eine Kraft auf das wenigstens eine Betätigungselement
(16) infolge einer durch Joule-Effekt bewirkten Temperaturänderung aufgrund des Fließens
eines elektrischen Stroms durch den aus einer Formgedächtnislegierung hergestellten
Draht (22) aufzubringen, wobei die Flüssigkeitsverteilervorrichtung (10)
dadurch gekennzeichnet ist, dass das wenigstens eine Einstellelement (32) aus einer Trennmembran hergestellt ist,
die ausgebildet ist, um durch die Wirkung des wenigstens einen Betätigungselements
(16) angehoben zu werden und dadurch die Flüssigkeitseintrittskanäle (18) mit den
Flüssigkeitsaustrittskanälen (20) in Kommunikation zu versetzen, sowie dadurch, dass
sie ein elektronisches Kontroll- und Kommunikationssystem umfasst, das ausgebildet
ist, um das Fließen des elektrischen Stroms durch den aus einer Formgedächtnislegierung
hergestellten Draht (22) zu steuern, wobei das elektronische Kontroll- und Kommunikationssystem
seinerseits eine Steuertafel (24) umfasst, die mit Mitteln zur Wirkverbindung (34)
mit dem aus einer Formgedächtnislegierung hergestellten Draht (22) versehen ist, wobei
in der Steuertafel (24) ein drahtloses Fernkommunikationsmodul integriert ist, das
über das Web mit entfernten Endgeräten und/oder tragbaren Geräten verbindbar und konfiguriert
ist, um bestimmte physikalische Parameter der Flüssigkeit auf den entfernten Endgeräten
und/oder tragbaren Geräten verfügbar zu machen, wobei die Steuertafel (24) mit einem
Kommunikations- und Steuermodul versehen ist, das in der Lage ist, bestimmte physikalische
Parameter der Flüssigkeit indirekt durch die Merkmale des aus einer Formgedächtnislegierung
hergestellten Drahtes (22) zu erhalten, wobei das Kommunikations- und Steuermodul
den momentanen elektrischen Strom misst, der in den aus einer Formgedächtnislegierung
hergestellten Draht (22) eingespeist wird, um den im Inneren der Verteilerkammer (30)
herrschenden Druckwert (p) basierend auf dem Verhältnis zwischen der von dem aus einer
Formgedächtnislegierung hergestellten Draht (22) zum Bewegen des Betätigungselements
(16) ausgeübten Kraft und dem Druck (p) zu erfassen, der auf die Trennmembran (32)
wirkt.
2. Flüssigkeitsverteilervorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Steuertafel (24) ausgebildet ist, um auf modulare und steuerbare Weise den aus
einer Formgedächtnislegierung hergestellten Draht (22) zu verformen, um eine entsprechende
modulare und steuerbare Kraft auf das wenigstens einen Betätigungselement (16) auszuüben
und eine proportionale Steuerung des äquivalenten Durchlassabschnitts der Flüssigkeiten
in dem Flüssigkeitsabschnitt (12) und dadurch der Strömungsgeschwindigkeit (q̇) der aus den jeweiligen Austrittskanälen (20) austretenden Flüssigkeit zu erlauben.
3. Flüssigkeitsverteilervorrichtung (10) nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die physikalischen Parameter der Flüssigkeit ausgewählt sind aus der Gruppe bestehend
aus Druck (p), Strömungsgeschwindigkeit (q̇) und Temperatur.
4. Flüssigkeitsverteilervorrichtung (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie eine Mehrzahl von Schnittstellen- und Schnellverbindungsmitteln (36) umfasst,
die ausgebildet sind, um die Flüssigkeitskopplung und -verbindung zwischen zwei oder
mehreren benachbarten Flüssigkeitsverteilervorrichtungen (10) vorzunehmen.
5. Flüssigkeitsverteilervorrichtung (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Schnittstellen- und Schnellverbindungsmittel (36) auf dem Flüssigkeitsabschnitt
(12) erhalten sind.
6. Flüssigkeitsverteilervorrichtung (10) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass wenigstens ein Teil der Schnittstellen- und Schnellverbindungsmittel (36) mit jeweiligen
Stopfen versehen ist, die ausgebildet sind, um die Schnittstellen- und Schnellverbindungsmittel
(36) in der Betriebsbedingung verschlossen zu halten, in der die entsprechende Flüssigkeitsverteilervorrichtung
(10) mit keiner angrenzenden Flüssigkeitsverteilervorrichtung (10) verbunden ist.
7. Flüssigkeitsverteilervorrichtung (10) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass wenigstens ein Teil der Schnittstellen- und Schnellverbindungsmittel (36) mit jeweiligen
Wänden versehen ist, die ausgebildet sind, um die Schnittstellen- und Schnellverbindungsmittel
(36) in der Betriebsbedingung verschlossen zu halten, in der die entsprechende Flüssigkeitsverteilervorrichtung
(10) mit keiner angrenzenden Flüssigkeitsverteilervorrichtung (10) verbunden ist,
wobei die Wände unter mechanischem Schub öffnungsfähig sind, wenn die entsprechende
Flüssigkeitsverteilervorrichtung (10) mit einer oder mehreren angrenzenden Flüssigkeitsverteilervorrichtungen
(10) in Kommunikation versetzt werden soll.
8. Flüssigkeitsverteilervorrichtung (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuertafel (24) mit Stromversorgungsverbindungen (26) versehen ist und dass
die Mittel zur Wirkverbindung (34) aus einem oder mehreren mechanischen und elektrischen
Crimpkontakten bestehen.
9. Flüssigkeitsverteilervorrichtung (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Betätigungsabschnitt (14) mit wenigstens einem Gegenelement (28) versehen ist,
das ausgebildet ist, um die mechanische Dichtungsbelastung des wenigstens einen Betätigungselements
(16) zu erhöhen.
10. Flüssigkeitsverteilervorrichtung (10) nach Anspruch 9, dadurch gekennzeichnet, dass das wenigstens eine Gegenelement (28) eine Feder ist.
11. Flüssigkeitsverteilervorrichtung (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das wenigstens eine Betätigungselement (16) aus einem mechanischen Stab besteht,
der dazu ausgebildet ist, um durch elastische Verformung unter der Wirkung des aus
einer Formgedächtnislegierung hergestellten Drahtes (22) zu agieren.
1. Dispositif distributeur de fluide (10) comprenant :
- une partie fluidique (12) dans laquelle les fluides à traiter circulent, ladite
partie fluidique (12) étant munie d'un ou plusieurs conduits d'entrée de fluide (18)
et d'un ou plusieurs conduits de sortie de fluide (20), lesdits conduits d'entrée
(18) et de sortie (20) de fluide étant placés en communication avec une unique chambre
de distribution (30) fermée par au moins un élément de réglage d'écoulement de fluide
(32) qui détermine l'ouverture et la fermeture des conduits de sortie de fluide (20)
; et
- une portion actionneur (14), séparée de la partie fluidique (12) au moyen dudit
au moins un élément de réglage d'écoulement de fluide (32) et comprenant au moins
un élément actionneur (16) connecté fonctionnellement audit au moins un élément de
réglage d'écoulement de fluide (32) pou exécuter l'ouverture et la fermeture sélective
desdits conduits d'entrée (18) et de sortie (20) de fluide,
dans lequel ledit au moins un élément actionneur (16) est configuré pour actionner
ledit au moins un élément de réglage d'écoulement de fluide (32) et pour mettre en
communication les conduits d'entrée de fluide (18) avec les conduits de sortie de
fluide (20), et dans lequel ledit au moins un élément actionneur (16) est configuré
pour fonctionner sous l'action d'au moins un fil (22) fabriqué à partir d'un alliage
à mémoire de forme, ledit au moins un fil (22) fabriqué à partir d'un alliage à mémoire
de forme étant capable d'appliquer une force sur ledit au moins un élément actionneur
(16) à cause de la variation de température déterminée par effet Joule par le passage
d'un courant électrique à travers ledit fil (22) fabriqué à partir d'un alliage à
mémoire de forme, le dispositif distributeur de fluide (10) étant
caractérisé en ce que ledit au moins un élément de réglage (32) est constitué d'une membrane de séparation
configurée pour se soulever en conséquence de l'action dudit au moins un élément actionneur
(16), en mettant ainsi en communication les conduits d'entrée de fluide (18) avec
les conduits de sortie de fluide (20) et
en ce qu'il comprend un système de commande et de communication électronique configuré pour
gérer le passage dudit courant électrique dans ledit fil (22) fabriqué à partir d'un
alliage à mémoire de forme, ledit système de commande et de communication électronique
comprenant à son tour une carte de commande (24) munie de moyens de connexion fonctionnelle
(34) avec ledit fil (22) fabriqué à partir d'un alliage à mémoire de forme, ladite
carte de commande (24) intégrant un module de communication sans fil à distance, pouvant
s'interfacer par le biais du Web avec des terminaux à distance et/ou avec des dispositifs
portables et configuré pour rendre disponibles certains paramètres physiques du fluide
sur lesdits terminaux à distance et/ou lesdits dispositifs portables, dans lequel
ladite carte de commande (24) est munie d'un module de communication et de commande
capable d'obtenir indirectement certains paramètres physiques du fluide par le biais
des caractéristiques dudit fil (22) fabriqué à partir d'un alliage à mémoire de forme,
ledit module de communication et de commande mesurant le courant électrique instantané
délivré audit fil (22) fabriqué à partir d'un alliage à mémoire de forme pour identifier
la valeur de pression (p) présente dans ladite chambre de distribution (30) sur la
base de la relation entre la force exercée par ledit fil (22) fabriqué à partir d'un
alliage à mémoire de forme pour déplacer ledit élément actionneur (16) et la pression
(p) à laquelle ladite membrane de séparation (32) est soumise.
2. Dispositif distributeur de fluide (10) selon la revendication 1, caractérisé en ce que ladite carte de commande (24) est configurée pour déformer d'une manière modulaire
et contrôlable ledit fil (22) fabriqué à partir d'un alliage à mémoire de forme, de
manière à entraîner une force modulaire et contrôlable correspondante sur ledit au
moins un élément actionneur (16) et pour permettre une commande proportionnelle de
la section équivalente de passage des fluides dans la partie fluidique (12) et, par
conséquent, du débit (q̇) du fluide sortant à partir des conduits de sortie respectifs (20).
3. Dispositif distributeur de fluide (10) selon la revendication 1 ou 2, caractérisé en ce que lesdits paramètres physiques du fluide sont sélectionnés à partir du groupe comprenant
une pression (p), un débit (q̇) et une température.
4. Dispositif distributeur de fluide (10) selon l'une quelconque des revendications 1
à 3, caractérisé en ce qu'il comprend une pluralité de moyens d'interface et de connexion rapide (36) configurés
pour exécuter le couplage et la connexion de fluide entre au moins deux dispositifs
distributeurs de fluide contigus (10).
5. Dispositif distributeur de fluide (10) selon la revendication 4, caractérisé en ce que lesdits moyens d'interface et de connexion rapide (36) sont obtenus sur la partie
fluidique (12).
6. Dispositif distributeur de fluide (10) selon la revendication 4 ou 5, caractérisé en ce qu'au moins une partie desdits moyens d'interface et de connexion rapide (36) est munie
de bouchons respectifs configurés pour maintenir fermés lesdits moyens d'interface
et de connexion rapide (36) dans la condition de fonctionnement dans laquelle le dispositif
distributeur de fluide correspondant (10) n'est pas connecté à un quelconque dispositif
distributeur de fluide contigu (10) .
7. Dispositif distributeur de fluide (10) selon la revendication 4 ou 5, caractérisé en ce qu'au moins une partie desdits moyens d'interface et de connexion rapide (36) est munie
de parois respectives configurées pour maintenir fermés lesdits moyens d'interface
et de connexion rapide (36) dans la condition de fonctionnement dans laquelle le dispositif
distributeur de fluide correspondant (10) n'est pas connecté à un quelconque dispositif
distributeur de fluide contigu (10), lesdites parois pouvant être ouvertes par une
poussée mécanique quant il est souhaité de mettre en communication le dispositif distributeur
de fluide correspondant (10) avec un ou plusieurs dispositifs distributeurs de fluide
contigus (10).
8. Dispositif distributeur de fluide (10) selon l'une quelconque des revendications précédentes,
caractérisé en ce que ladite carte de commande (24) est munie de connexions d'alimentation électrique (26)
et en ce que lesdits moyens de connexion fonctionnelle (34) sont constitués par un ou plusieurs
sertissages mécaniques et électriques.
9. Dispositif distributeur de fluide (10) selon l'une quelconque des revendications précédentes,
caractérisé en ce que la portion actionneur (14) est munie d'au moins un élément d'opposition (28) configuré
pour augmenter la charge d'étanchéité mécanique dudit au moins un élément actionneur
(16).
10. Dispositif distributeur de fluide (10) selon la revendication 9, caractérisé en ce que ledit au moins un élément d'opposition (28) est un ressort.
11. Dispositif distributeur de fluide (10) selon l'une quelconque des revendications précédentes,
caractérisé en ce que ledit au moins un élément actionneur (16) consiste en une tige mécanique configurée
pour fonctionner par déformation élastique sous l'action dudit fil (22) fabriqué à
partir d'un alliage à mémoire de forme.