BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to a multiple type air conditioner, and more particularly
to a simultaneous cooling-heating multiple type air conditioner configured to simultaneously
cool and heat.
Discussion of Related Art
[0002] Generally, an air conditioner is an appliance for cooling and heating an indoor space,
such as a residential interior space, a restaurant or an office. In order to effectively
cool and heat an indoor space divided into a plurality of rooms, multiple type air
conditioners, which can cool and heat respective rooms independently have been developed.
In particular, a multiple type air conditioner is configured in such a manner that
a plurality of indoor units are connected to a single outdoor unit, and the indoor
units are installed in respective rooms. Each indoor unit operates in either a cooling
mode or a heating mode, and conditions air of an indoor space.
[0003] However, conventional multiple type air conditioners are controlled to either cool
or heat all the rooms in one indoor space at the same time, and as such they can not
meet the demand of independently conditioning the respective rooms differently.
[0004] EP 1 526 341 discloses a multi-unit type air conditioner which may operate in a cooling major
mode or in a heating major mode.
SUMMARY OF THE INVENTION
[0005] It would be desirable to provide a simultaneous cooling-heating multiple type air
conditioner that is configured to be controlled steadily in a simultaneous cooling
and heating operation period.
[0006] The invention therefore provides a simultaneous cooling-heating multiple type air
conditioner as set out in claim 1.
[0007] Examples provide a simultaneous cooling-heating multiple type air conditioner including
a plurality of cooling-heating combined-use indoor units, each having an indoor heat
exchanger, a cooling-heating combined-use outdoor unit including a compressor, an
outdoor heat exchanger, and a refrigerant switching part installed at a discharge
side of the compressor for switching flow of refrigerant based on operation conditions
such as cooling-only operation, heating-only operation, cooling-initiative simultaneous
cooling and heating operation, and heating-initiative simultaneous cooling and heating
operation, and a distributor installed between the cooling-heating combined-use indoor
units and the cooling-heating combined-use outdoor unit for distributing the refrigerant
into passages of the cooling-heating combined-use indoor units based on the operation
conditions such as cooling-only operation, heating-only operation, cooling-initiative
simultaneous cooling and heating operation, and heating-initiative simultaneous cooling
and heating operation, wherein the air conditioner is controlled with an operation
domain including a plurality of operation zones which are divided according to a refrigerant
suction pressure and a refrigerant discharge pressure of the compressor, in which
the operation zone domain comprises a first operation zone in which a cooling-initiative
simultaneous cooling and heating operation mode is switched to a heating-initiative
simultaneous cooling and heating operation mode, a second operation zone in which
a mode switching between the cooling-initiative simultaneous cooling and heating operation
mode and the heating-initiative simultaneous cooling and heating operation does not
occur, and a third operation zone in which the heating-initiative simultaneous cooling
and heating operation mode is switched to the cooling-initiative simultaneous cooling
and heating operation mode.
[0008] In the first operation zone, the suction pressure of the compressor is less than
a first suction pressure, and a discharge pressure of the compressor is less than
a first discharge pressure. In the second operation zone the suction pressure of the
compressor ranges from the first suction pressure to a second suction pressure wherein
the second suction pressure is greater than the first suction pressure and the discharge
pressure of the compressor ranges from the first discharge pressure to a second discharge
pressure wherein the second discharge pressure is greater than the first discharge
pressure; and in the third operation zone the suction pressure of the compressor is
greater than the second suction pressure and the discharge pressure of the compressor
is greater than the second discharge pressure. The air conditioner operating in the
first operation zone and the third operation zone can be controlled to move to the
second operation zone by varying discharge flow rate of refrigerant discharged from
the
compressor or the number of revolutions of the outdoor fan.
[0009] The distributor may include a liquid header, a low pressure gas header, and a high
pressure gas header. The simultaneous cooling-heating multi-air conditioner according
to the present invention may further include a liquid refrigerant pipe for connecting
the cooling-heating outdoor unit to the liquid header, a low pressure gas pipe for
connecting the cooling-heating outdoor unit to the low pressure gas header, and a
high pressure gas pipe for connecting the cooling-heating outdoor unit to the high
pressure gas header.
[0010] Since the simultaneous cooling-heating multiple type air conditioner according to
the present invention switches its operation modes in an operation domain divided
into a plurality of operation zones based on the refrigerant suction pressure and
the refrigerant discharge pressure of the compressor, it can be steadily operated
and controlled during the simultaneous cooling and heating operation period.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
FIG 1 is a schematic view illustrating a simultaneous cooling-heating multiple type
air conditioner according to one embodiment of the present invention;
FIG 2 is a view illustrating the operation status of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1, which operates in a cooling-only operation
mode;
FIG 3 is a view illustrating the operation status of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1, which operates in a heating-only operation
mode;
FIG 4 is a view illustrating the operation status of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1, which operates in a cooling-initiative
simultaneous cooling-heating operation mode;
FIG 5 is a view illustrating the operation status of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1, which operates in a heating-initiative
simultaneous cooling-heating operation mode; and
FIG 6 is a view illustrating an operation domain of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1, which is controlled to perform a simultaneous
cooling-heating operation.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
[0012] Hereinafter, a simultaneous cooling-heating multiple type air conditioner according
to embodiments of the present invention will be described with reference to the accompanying
drawings.
[0013] A multiple type air conditioner in which some indoor units operate to cool air and
the other indoor units operate to heat air at the same time has been researched and
developed. The conventional multiple type air conditioner for simultaneous cooling-heating
operation is controlled based on a target discharge pressure and a target suction
pressure set for simultaneous cooling-heating operation of a compressor. In this instance,
depending on cooling to heating operation ratio of the indoor units operating in cooling
mode or in heating mode, the simultaneous cooling-heating multiple type air conditioner
performs a cooling-initiative simultaneous cooling and heating operation or a heating-initiative
simultaneous cooling and heating operation. Accordingly, since the multiple type air
conditioner for simultaneous cooling and heating operations is controlled case by
case based on the operation ratio of the indoor units, indoor temperature and outdoor
temperature, there is a no-controlled zone in which operation of the air conditioner
can not be controlled by the target discharge pressure and the target suction pressure.
[0014] Further, the conventional multiple type air conditioner performing simultaneous cooling
and heating operations is disadvantageous in that it cannot respond to a variety of
design specifications, a variety range of indoor temperatures and a variety range
of outdoor temperatures. Accordingly, since the conventional multiple type air conditioner
performing simultaneous cooling and heating operations does not have optimum operation
efficiency, it cannot sufficiently cool and heat an indoor space. Still further, since
the control scheme of the conventional multiple type air conditioner performing simultaneous
cooling and heating operations is very complicated, an operation mode switching time
between the cooling-initiative simultaneous cooling and heating operation and the
heating-initiative simultaneous cooling and heating operation is increased by 5 through
15 minutes, and noise occurs during the operation mode switching time. Further, damage
is caused to a compressor when trying to reduce the mode switching noise.
[0015] FIG 1 illustrates a simultaneous cooling-heating multiple type air conditioner 100
according to one embodiment of the present invention. In this example, the simultaneous
cooling-heating multiple type air conditioner 100 includes a first, a second, a third
and a fourth cooling-heating combined-use indoor units B1, B2, B3 and B4, a cooling-heating
combined-use outdoor unit A, and a distributor C.
[0016] The cooling-heating combined-use outdoor unit A includes a first and a second compressor
53 and 54, an outdoor heat exchanger 51, an outdoor heat exchanger fan 61 and a switching
part. The switching part includes a four-way valve 62. Suction parts of the first
and second compressors 53 and 54 are connected to each other through a combined-use
accumulator 52. The first compressor 53 is an inverter compressor that is configured
to vary compression capacity of refrigerant, and the second compressor 54 is a constant-speed
compressor having constant compression capacity of refrigerant.
[0017] A first discharge pipe 55 and a second discharge pipe 56 are connected to respective
discharge sides of the first and second compressors 53 and 54, and bridged by a bridging
part 57. The first and second discharge pipes 55 and 56 are further respectively connected
to a first and a second oil separator 58 and 59 in order to recover oil from refrigerant
discharged from the first and second compressors 53 and 54. The first and second oil
separators 58 and 59 are respectively connected to a first and a second recovery pipe
30 and 31 in order to guide the separated oil to respective suction sides of the first
and second compressors 53 and 54.
[0018] The bridging part 57 is connected to a high pressure gas pipe 63 in order to make
refrigerant discharged from the first and second compressors 53 and 54 bypass the
four-way valve 62. The bridging part 57 is connected to the four-way valve 62 via
a third discharge pipe 68.
[0019] An outdoor heat exchanger 51 is connected to the four-way valve 62 via a first connection
pipe 71. In the outdoor heat exchanger 51, refrigerant condenses or evaporates by
exchanging heat with outdoor air. In order to facilitate heat exchanging, an outdoor
fan 61 blows air into the outdoor heat exchanger 51. The outdoor heat exchanger 51
is configured to operate as a condenser during a cooling-only operation period or
a cooling-initiative simultaneous cooling-heating operation period, and is configured
to operate as an evaporator during a heating-only operation period or a heating-initiative
simultaneous cooling-heating operation period.
[0020] An outdoor electronic expansion valve 65 and an overcooling device 66 are installed
between or in the middle of the liquid pipe 72, connected between the outdoor heat
exchanger 51 and the distributor C. The outdoor electronic expansion valve 65 expands
refrigerant upon the heating-only operation and the heating-initiative simultaneous
cooling-heating operation. The overcooling device 66 cools the refrigerant moving
to the distributor upon the cooling-only operation and the cooling-initiative simultaneous
cooling-heating operation. The outdoor electronic expansion valve 65 expands the refrigerant
condensed in the first through fourth indoor heat exchangers 11, 21, 31 and 41 during
the heating-only operation period or the heating-initiative simultaneous cooling-heating
operation period before the refrigerant is introduced into the outdoor heat exchanger
51. The overcooling device 66 includes an overcooler 66a installed in such a manner
that it surrounds a part of the liquid pipe 72, a bypass pipe 66b installed between
the overcooler 66a and the distributor C in order to make a portion of the refrigerant
moving to the distributor bypass the distributor so as to be introduced into the overcooler
66a, an electronic expansion valve 66c installed in a part of the bypass pipe 66b,
and a recovery pipe 66d connected between the overcooler 66a and a third discharge
pipe 64.
[0021] The distributor C is installed between the cooling-heating combined-use outdoor unit
A and the first through fourth cooling-heating combined-use indoor units B1, B2, B3
and B4 and distributes the refrigerant to the first, second, third and fourth cooling-heating
combined-use indoor units B1, B2, B3 and B4 based on the operation conditions such
as cooling-only operation, heating-only operation, cooling-initiative simultaneous
cooling-heating operation and heating-initiative simultaneous cooling-heating operation.
The distributor C includes a high pressure gas header 81, a low pressure gas header
82, a liquid header 83 and control valves (not shown).
[0022] The first, second, third and fourth cooling-heating combined-use indoor units B1,
B2, B3 and B4 includes respective first, second, third and fourth electronic expansion
valves 12, 22, 32 and 42, and respective first, second, third and fourth indoor fans
15, 25, 35 and 45. The first, second, third and fourth electronic expansion valves
12, 22, 32 and 43 are installed on respective first, second, third and fourth connection
pipes 13, 23, 33 and 43 connected between the first, second, third and fourth indoor
heat exchangers 11, 21, 31 and 41 and the high pressure gas header 81.
[0023] The high pressure gas header 81 is connected to the high pressure gas pipe 63 of
the bridging part 57, and respective sides of the first, second, third and fourth
indoor heat exchangers 11, 21, 31 and 41. The low pressure gas header 82 is connected
to the lower pressure gas pipe 75, which the low pressure gas header 82 is connected
to the suction pipe 64, and connected to respective other sides of the first, second,
third and fourth heat exchangers 11, 21, 31, and 41. The high pressure gas header
81, the low pressure gas header 82 and the liquid header 83 can be respectively connected
to a high pressure gas pipe 63', a low pressure gas pipe 75' and a liquid pipe 72'
of a different outdoor unit (not shown).
[0024] Referring to FIG 2 through FIG 5, the operation statuses of the simultaneous cooling-heating
multiple type air conditioner shown in FIG 1 and flow of refrigerant according to
the operation methods will be described below.
[0025] FIG 2 illustrates the operation status of the simultaneous cooling-heating multiple
type air conditioner and the flow of refrigerant upon a cooling-only operation. The
refrigerant at a high pressure gas state discharged from the first and second compressors
53 and 54 pass through the first and second discharge pipes 55 and 56, and finally
flow into the outdoor heat exchanger 51 through the third discharge valve 68 and the
four-way valve 62. High pressure liquid refrigerant, obtained as the high pressure
gas refrigerant is condensed by the outdoor heat exchanger 51, is introduced into
the liquid header 83 via the overcooling device 66. The refrigerant discharged from
the liquid header 83 through the first, second, third and fourth indoor connection
pipes 13, 23, 33 and 43 is expanded by the first, second, third and fourth electronic
expansion valves 12, 22, 32 and 42, then evaporated by the first, second, third and
fourth indoor heat exchangers 11, 21, 31 and 41, and finally introduced into the low
pressure gas header 82. Low pressure gas refrigerant discharged from the low pressure
gas header 82 is introduced into the suction and discharge pipe 64 and then sucked
into the first and second compressors 53 and 54 via the accumulator 52.
[0026] FIG 3 illustrates the operation status of the simultaneous cooling-heating multiple
type air conditioner 100 and the flow of refrigerant in the air conditioner 100 upon
the heating-only operation. The high pressure gas refrigerant discharged from the
first and second compressors 53 and 54 pass through the first and second discharge
pipes 55 and 56, then pass through the bridging part 57 and the high pressure gas
pipe 63 and is finally introduced into the high pressure gas header 81 without passing
by way of the four-way valve 62. The refrigerant discharged from the high pressure
gas header 81 via fifth, sixth, seventh and eighth indoor connection pipes 14, 24,
34 and 44 is condensed in the first, second, third and fourth indoor heat exchangers
11, 21, 31 and 41. After that, the refrigerant is introduced into the liquid header
83, next discharged through the liquid pipe 72, then expanded by the outdoor electronic
expansion valve 65, and finally evaporated in the outdoor heat exchanger 51. The low
pressure gas refrigerant flows to the suction pipe 64 via the four-way valve 62, and
then is introduced into the first and second compressors 53 and 54 via the accumulator
52.
[0027] FIG 4 illustrates the operation status of the simultaneous cooling-heating multiple
type air conditioner 100 and the flow of refrigerant in the air conditioner 100 upon
the cooling-initiative simultaneous cooling and heating operation. For example, Fig.
4 illustrates a case in which the first, second, and third indoor units B1, B2 and
B3 operate in a cooling mode and the fourth indoor unit B4 operates in a heating mode.
The flow of refrigerant in the first, second and third indoor units B1, B2 and B3
operating in the cooling mode are similar to or the same as that shown in the cooling-only
operation mode shown in FIG 2. The operation shown in FIG 4 will thereby be described
below, mainly by referencing some of the differences of FIG 4 with respect to FIG
2.
[0028] A portion of the high pressure gas refrigerant discharged from the first and second
compressors 53 and 54 passes through the high pressure gas pipe 63 via the bridging
part 57, and is then introduced into the high pressure gas header 81. The refrigerant
flowing out of the high pressure gas header 81 passes through the indoor connection
pipe 44, is then condensed in the fourth indoor heat exchanger 41, and is finally
introduced into the liquid header 83. The refrigerant flowing out of the fourth indoor
unit B4 and the refrigerant flowing out of the outdoor heat exchanger 51, are introduced
into respective first, second and third indoor units B1, B2 and B3, via the liquid
header 83.
[0029] FIG 5 illustrates the operation status of the simultaneous cooling-heating multiple
type air conditioner 100 and the flow of refrigerant in the air conditioner 100 upon
the heating-initiative simultaneous cooling and heating operation. For example, FIG
5 illustrates a case in which the first, second, and third indoor units B1, B2 and
B3 operate in a heating mode and the fourth indoor unit B4 operates in a cooling mode.
The flow of refrigerant in the first, second and third indoor units B1, B2 and B3
operating in the heating mode are similar to or the same as that shown in the heating-only
operation shown in FIG 3. The refrigerant in the fourth indoor unit B4 flows differently.
High pressure liquid refrigerant is introduced into the fourth indoor unit B4, after
passing through the fourth connection pipe 43 from the liquid header 83. Prior to
arriving at the liquid header 83, the flow of refrigerant is similar to the flow of
refrigerant in FIG. 2. The refrigerant is then expanded in the fourth indoor electronic
expansion valve 42, and evaporated in the fourth indoor heat exchanger 41, and introduced
into the low pressure gas header 82. After that, the refrigerant passes through the
low pressure gas pipe 75, and flows into the third discharge pipe 64 so that it is
mixed with the refrigerant evaporated by the outdoor heat exchanger 51.
[0030] FIG 6 illustrates the operation domain 150 of the simultaneous cooling-heating operation
of the first, second, third and fourth cooling-heating combined-use indoor units B1,
B2, B3 and B4. The operation domain 150 is characterized by or divided into a plurality
of operation zones. The multi-type air conditioner operates in a particular zone depending
on refrigerant suction pressures and refrigerant discharge pressures of the first
and second compressors 53 and 54. The refrigerant discharge pressure may be set by
a value measured by pressure sensors installed to the discharge pipes of the first
and second compressors 53 and 54, or set by a value measured by a pressure sensor
installed to the third discharge pipe.
[0031] The operation domain may be characterized and divided in a matrix form and includes
a first operation zone R1, a second operation zone R2 and a third operation zone R3.
In the first operation zone R1, the suction pressure of the first and second compressors
53 and 54 is less than a first suction pressure P1, and the discharge pressure of
the first and second compressors 53 and 54 is less than a first discharge pressure
P3. In the second operation zone R2, the suction pressure of the first and second
compressors 53 and 54 is equal to or greater than the first suction pressure P1 and
less than a second suction pressure P2. The second suction pressure P2 is greater
than the first suction pressure P1 (P2>P1). In the second operation zone R2, the discharge
pressure of the first and second compressors 53 and 54 is equal to or greater than
the first discharge pressure P3 and is equal to or less than a second discharge pressure
P4. The second discharge pressure P4 is greater than the first discharge pressure
P3 (P4>P3). In the third operation zone R3, the suction pressure of the first and
second compressors 53 and 54 is greater than the second suction pressure P2 and the
discharge pressure of the first and second compressors 53 and 54 is greater than the
second discharge pressure P4. To further illustrate this example, the first suction
pressure P1 may be 725kPa (gauge pressure), the second suction pressure P2 may be
987 kPa (gauge pressure), the first discharge pressure P3 may be 2565 kPa (gauge pressure)
and the second discharge pressure P4 may be 2985 kPa (gauge pressure).
[0032] The simultaneous cooling-heating multiple type air conditioner 100 performs switching
of the cooling-initiative simultaneous cooling and heating operation mode when operating
in the first operation zone R1. That is, the simultaneous cooling-heating multiple
type air conditioner 100 performing the cooling-initiative simultaneous cooling and
heating operation switches its operation mode so as to perform the heating-initiative
simultaneous cooling and heating operation when the suction pressure or the discharge
pressure of the first and second compressors 53 and 54 decreases and it comes into
the range of the first operation zone R1.
[0033] In the third operation zone R3, the simultaneous cooling-heating multiple type air
conditioner 100 switches its operation mode from the heating-initiative simultaneous
cooling and heating operation to the cooling-initiative simultaneous cooling and heating
operation. That is, the simultaneous cooling-heating multiple type air conditioner
100 performing the heating-initiative simultaneous cooling and heating operation switches
to the cooling-initiative simultaneous cooling and heating operation when at least
one of the suction pressure and the discharge pressure of the first and second compressors
53 and 54 increases and it comes into the third operation zone R3.
[0034] The second operation zone R2 is a normal operation zone in which operation mode switching
does not occur in this operation zone. As an example, the simultaneous cooling-heating
multiple type air conditioner 100 performing the heating-initiative simultaneous cooling
and heating operation in the first operation zone R1, keeps or maintains the heating-initiative
simultaneous cooling and heating operation even if the suction pressure or the discharge
pressure of the first and second compressors 53 and 54 increases provided it comes
into the second operation region R2. As an alternative example, the simultaneous cooling-heating
multiple type air conditioner 100 performing the cooling-initiative simultaneous cooling
and heating operation in the third operation zone R3, keeps or maintains the cooling-initiative
simultaneous cooling and heating operation even if the suction pressure or the discharge
pressure of the first and second compressors 53 and 54 decreases provided it comes
into the second operation zone R2.
[0035] The simultaneous cooling-heating multiple type air conditioner 100 operating in the
first operation zone R1 and the third operation zone R3 is controlled to move to the
second operation zone R2. There can be a variety of control methods. For example,
the refrigerant discharge flow of the first and second compressors 53 and 54 can be
controlled. The frequency of the first compressor 53 may be varied or the refrigerant
discharge flow can be varied by on/off control of the second compressor 54. Further,
the number of rotations of the outdoor fan 61 can be varied. For example, when the
simultaneous cooling-heating multiple type air conditioner 100 performs the cooling-initiative
simultaneous cooling and heating operation in the third operation zone R3, if the
refrigerant discharge flow of the first and second compressors 53 and 54 is increased
or the number of rotation of the outdoor fan 61 is increased, operation of the simultaneous
cooling-heating multiple type air conditioner 100 moves to the second operation zone
R2. The time it takes for the first operation zone R1 or the third operation zone
R3 to move to second operation zone R2 can be greatly reduced, for example, to approximately
3 minutes or less. In contrast, conventional operation zone switching time is about
5 to 15 minutes. Accordingly, since the time when the simultaneous cooling-heating
multiple type air conditioner 100 steadily operates in the second operation zone R2
is increased, optimum air conditioning cycle efficiency can be realized and the control
scheme can be simplified.
[0036] Various embodiments of the present invention are explained above, but the present
invention is not limited to the above-stated embodiments. Those skilled in the art
will appreciate that many variations and modifications can be made to the preferred
embodiments without departing from the scope of the claims.
1. A simultaneous cooling-heating multiple type air conditioner (100) including:
a plurality of cooling-heating combined-use indoor units (B1, B2, B3, B4);
a cooling-heating combined-use outdoor unit (A) including a compressor, an outdoor
heat exchanger (51), and a switching part (62) installed at a discharge side of the
compressor, for switching flow of refrigerant based on operation conditions comprising
a cooling-only operation mode, a heating-only operation mode, a cooling-initiative
simultaneous cooling and heating operation mode, and a heating-initiative simultaneous
cooling and heating operation mode; and
a distributor (C) installed between the cooling-heating combined-use outdoor unit
and the cooling-heating combined-use indoor units, the distributor being configured
to distribute the refrigerant to the cooling-heating combined-use indoor units based
on the operation conditions,
characterized in that the air conditioner (100) is arranged to operate in an operation domain (150) having
a plurality of operation zones divided by a refrigerant suction pressure and a refrigerant
discharge pressure of the compressor (53, 54), wherein the operation domain comprises:
a first operation zone (R1) in which a suction pressure of the compressor is less
than a first suction pressure (P1) and a discharge pressure of the compressor is less
than a first discharge pressure (P3), and therefore the air conditioner switches from
the cooling-initiative simultaneous cooling and heating operation mode to the heating-initiative
simultaneous cooling and heating operation mode;
a second operation zone (R2) in which suction pressure of the compressor is in a range
from the first suction pressure (P1) to a second suction pressure (P2), wherein the
second suction pressure is greater than the first suction pressure, and the discharge
pressure of the compressor is in a range from the first discharge pressure (P3) to
a second discharge pressure (P4), wherein the second discharge pressure is greater
than the first discharge pressure, and therefore the cooling-initiative simultaneous
cooling and heating operation mode or the heating-initiative simultaneous cooling
and heating operation mode is not switched to different modes; and
a third operation zone (R3) in which the suction pressure of the compressor is greater
than the second suction pressure (P2) and the discharge pressure of the compressor
is greater than the second discharge pressure P4, and therefore the air conditioner
switches from the heating-initiative simultaneous cooling and heating operation mode
to the cooling-initiative simultaneous cooling and heating operation mode, wherein
either:
(a) discharge flow of refrigerant from the compressor is controlled in such a manner
that the air conditioner operating in the first operation zone is controlled to move
to the second operation zone, and discharge flow of refrigerant from the compressor
is controlled in such a manner that the air conditioner operating in the third operation
zone is controlled to move to the second operation zone; or
(b) the air conditioner further comprises an outdoor fan (61) for blowing outdoor
air to the outdoor heat exchanger, wherein the number of revolutions of the outdoor
fan is controlled in such a manner that the air conditioner operating in the first
operation zone is controlled to move to the second operation zone, and wherein the
number of revolutions of the outdoor fan is controlled in such a manner that the air
conditioner operating in the third operation zone is controlled to move to the second
operation zone.
2. The simultaneous cooling-heating multiple type air conditioner according to any preceding
claim, wherein the distributor further includes a liquid header (83), a low pressure
gas header (82) and a high pressure gas header (81).
3. The simultaneous cooling-heating multiple type air conditioner according to any preceding
claim, further comprising:
a liquid refrigerant pipe (72) connected between the cooling-heating combined-use
outdoor unit and the liquid header;
a low pressure gas pipe (75) connected between the cooling-heating combined-use outdoor
unit and the low pressure gas header; and
a high pressure gas pipe (63) connected between the cooling-heating combined-use outdoor
unit and the high pressure gas header.
1. Mehrfunktionsklimaanlage zum Heizen und Kühlen (100) folgendes aufweisend:
eine Mehrzahl von Mehrfunktionsinneneinheiten zum Heizen und Kühlen (B1, B2, B3, B4);
eine Mehrfunktionsaußeneinheit zum Heizen und Kühlen (A) aufweisend einen Kompressor,
einen Außen-Wärmeaustauscher (51), und ein auf einer Ausstoßseite des Kompressors
untergebrachtes Schaltungsteil (62) zum Umschalten des Flusses von Kühlmittel auf
Basis der Betriebsbedingungen, umfassend einen Nurkühlbetriebmodus, einen Nurheizbetriebsmodus,
einen selbstkühlenden Mehrfunktionsbetriebsmodus zum Kühlen und Heizen, und einen
selbstheizenden Mehrfunktionsbetriebsmodus zum Kühlen und Heizen; und
einen zwischen den Mehrfunktionsaußeneinheiten zum Heizen und Kühlen und den Mehrfunktionsinneneinheiten
zum Heizen und Kühlen untergebrachten Verteiler (C), wobei der Verteiler zur Verteilung
des Kühlmittels an die Mehrfunktionsinneneinheiten zum Heizen und Kühlen auf Basis
der Betriebsbedingungen ausgelegt ist,
dadurch gekennzeichnet, dass die Klimaanlage (100) zum Betrieb in einer Betriebsdomäne (150) mit einer Mehrzahl
von Betriebszonen konfiguriert ist, die durch einen Kühlmittel-Ansaugdruck und einen
Kühlmittel-Ausstoßdruck des Kompressors (53, 54) unterteilt sind, wobei die Betriebsdomäne
umfasst:
eine erste Betriebszone (Rl), in der ein Ansaugdruck des Kompressors geringer ist
als ein erster Ansaugdruck (P1) und ein Ausstoßdruck des Kompressors geringer ist
als ein erster Ausstoßdruck (P3), und daher die Klimaanlage von dem selbstkühlenden
Mehrfunktionsbetriebsmodus zum Kühlen und Heizen in den selbstheizenden Mehrfunktionsbetriebsmodus
zum Kühlen und Heizen umschaltet;
eine zweite Betriebszone (R2), in der der Ansaugdruck des Kompressors in einem Bereich
des ersten Ansaugdrucks (P1) bis zu einem zweiten Ansaugdruck (P2) vorliegt, wobei
der zweite Ansaugdruck größer ist als der erste Ansaugdruck, und der Ausstoßdruck
des Kompressors in einem Bereich des ersten Ausstoßdrucks (P3) bis zu einem zweiten
Ausstoßdruck (P4) vorliegt, wobei der zweite Ausstoßdruck größer ist als der erste
Ausstoßdruck, und daher der selbstkühlende Mehrfunktionsbetriebsmodus zum Kühlen und
Heizen oder der selbstheizende Mehrfunktionsbetriebsmodus zum Kühlen und Heizen nicht
in verschiedene Modi umgeschaltet wird; und
eine dritte Betriebszone (R3), in der der Ansaugdruck des Kompressors größer ist als
der zweite Ansaugdruck (P2) und der Ausstoßdruck des Kompressors größer ist als der
zweite Ausstoßdruck P4, und daher die Klimaanlage von dem selbstheizenden Mehrfunktionsbetriebsmodus
zum Kühlen und Heizen in den selbstkühlenden Mehrfunktionsbetriebsmodus zum Kühlen
und Heizen umschaltet, wobei entweder:
(a) Kühlmittelausstrom aus dem Kompressor so gesteuert wird, dass die Klimaanlage,
die in der ersten Betriebszone arbeitet, gesteuert wird, um sich zu der zweiten Betriebszone
zu bewegen, und Kühlmittelausstrom aus dem Kompressor so gesteuert wird, dass die
Klimaanlage, die in der dritten Betriebszone arbeitet, gesteuert wird, um sich in
die zweite Betriebszone zu bewegen; oder
(b) die Klimaanlage weiter einen Außenventilator (61) zum Blasen von Außenluft zu
dem Außen-Wärmeaustauscher umfasst, wobei die Anzahl von Umdrehungen des Außen-Wärmeaustauschers
so gesteuert wird, dass die Klimaanlage, die in der ersten Betriebszone arbeitet,
gesteuert wird, um sich zur zweiten Betriebszone zu bewegen, und wobei die Anzahl
von Umdrehungen des Au ßenventilators so gesteuert wird, dass die Klimaanlage, in
der dritten Betriebszone arbeitet, gesteuert wird, um sich in die zweite Betriebszone
zu bewegen.
2. Mehrfunktionsklimaanlage zum Heizen und Kühlen nach einem der vorangehenden Ansprüche,
wobei der Verteiler weiter ein Flüssigkeitsgrundrohr (83), ein Niederdruckgas-Grundrohr
(82) und ein Hochdruckgas-Grundrohr (81) einschließt.
3. Mehrfunktionsklimaanlage zum Heizen und Kühlen nach einem der vorangehenden Ansprüche,
weiter aufweisend:
ein Flüssigkühlmittelrohr (72), das zwischen der Mehrfunktionsaußeneinheit zum Heizen
und Kühlen und dem Flüssigkeitsgrundrohr verbunden ist;
ein Niederdruckgasrohr (75), das zwischen der Mehrfunktionsaußeneinheit zum Heizen
und Kühlen und dem Niederdruckgas-Grundrohr verbunden ist; und
ein Hochdruckgasrohr (63), das zwischen der Mehrfunktionsaußeneinheit zum Heizen und
Kühlen und dem Hockdruckgas-Grundrohr verbunden ist.
1. Climatiseur multiple à refroidissement et chauffage simultanés (100) comprenant :
une pluralité d'unités d'intérieur à usage combiné de refroidissement et de chauffage
(B1, B2, B3, B4) ;
une unité d'extérieur à usage combiné de refroidissement et de chauffage (A) comprenant
un compresseur, un échangeur thermique d'extérieur (51), et une partie de commutation
(62) installée au niveau d'un côté d'évacuation du compresseur, afin de déclencher
l'écoulement d'un réfrigérant sur la base de conditions de fonctionnement comprenant
un mode de refroidissement seul, un mode de chauffage seul, un mode de refroidissement
et de chauffage simultanés à initiative de refroidissement, et un mode de refroidissement
et de chauffage simultanés à initiative de chauffage ; et
un distributeur (C) installé entre l'unité d'extérieur à usage combiné de refroidissement
et de chauffage et les unités d'intérieur à usage combiné de refroidissement et de
chauffage, le distributeur étant configuré pour distribuer le réfrigérant aux unités
d'intérieur à usage combiné de refroidissement et de chauffage sur la base des conditions
de fonctionnement ;
caractérisé en ce que le climatiseur (100) est prévu pour fonctionner dans un domaine d'exploitation (150)
ayant une pluralité de zones de fonctionnement divisées par une pression d'aspiration
de réfrigérant et une pression de décharge de réfrigérant du compresseur (53, 54),
dans lequel le domaine d'exploitation comprend :
une première zone de fonctionnement (R1) dans laquelle une pression d'aspiration du
compresseur est inférieure à une première pression d'aspiration (P1) et une pression
de décharge du compresseur est inférieure à une première pression de décharge (P3),
et, par conséquent, le climatiseur passe du mode de refroidissement et de chauffage
simultanés à initiative de refroidissement au mode de refroidissement et de chauffage
simultanés à initiative de chauffage ;
une seconde zone de fonctionnement (R2) dans laquelle la pression d'aspiration du
compresseur se trouve dans des limites comprises entre la première pression d'aspiration
(P1) et une seconde pression d'aspiration (P2), dans lequel la seconde pression d'aspiration
est supérieure à la première pression d'aspiration, et la pression de décharge du
compresseur est comprise entre la première pression de décharge (P3) et une seconde
pression de décharge (P4), dans lequel la seconde pression de décharge est supérieure
à la première pression de décharge, et, par conséquent, le mode de refroidissement
et de chauffage simultanés à initiative de refroidissement ou le mode de refroidissement
et de chauffage simultanés à initiative de chauffage n'est pas abandonné pour des
modes différents ; et
une troisième zone de fonctionnement (R3) dans laquelle la pression d'aspiration du
compresseur est supérieure à la seconde pression d'aspiration (P2) et la pression
de décharge du compresseur est supérieure à la seconde pression de décharge (P4),
et, par conséquent, le climatiseur passe du mode de refroidissement et de chauffage
simultanés à initiative de chauffage au mode de refroidissement et de chauffage simultanés
à initiative de refroidissement, dans lequel :
(a) le débit de décharge du réfrigérant depuis le compresseur est régulé de sorte
que le climatiseur qui fonctionne dans la première zone de fonctionnement soit contrôlé
pour passer à la seconde zone de fonctionnement, et le débit de décharge du réfrigérant
depuis le compresseur est régulé de sorte que le climatiseur qui fonctionne dans la
troisième zone de fonctionnement soit contrôlé pour passer à la seconde zone de fonctionnement
; ou
(b) le climatiseur comprend en outre un ventilateur d'extérieur (61) destiné à souffler
l'air extérieur vers l'échangeur thermique d'extérieur, dans lequel le nombre de tours
du ventilateur d'extérieur est contrôlé de sorte que le climatiseur qui fonctionne
dans la première zone de fonctionnement soit contrôlé pour passer à la seconde zone
de fonctionnement, et dans lequel le nombre de tours du ventilateur d'extérieur est
contrôlé de sorte que le climatiseur qui fonctionne dans la troisième zone de fonctionnement
soit contrôlé pour passer à la seconde zone de fonctionnement.
2. Climatiseur multiple à refroidissement et chauffage simultanés selon la revendication
précédente, dans lequel le distributeur comprend en outre un collecteur de liquide
(83), un collecteur de gaz à basse pression (82), et un collecteur de gaz à haute
pression (81).
3. Climatiseur multiple à refroidissement et chauffage simultanés selon l'une quelconque
des revendications précédentes, comprenant en outre :
un tuyau de réfrigérant liquide (72) relié entre l'unité d'extérieur à usage combiné
de refroidissement et de chauffage et le collecteur de liquide ;
un tuyau de gaz à basse pression (75) relié entre l'unité d'extérieur à usage combiné
de refroidissement et de chauffage et le collecteur de gaz à basse pression ; et
un tuyau de gaz à haute pression (63) relié entre l'unité d'extérieur à usage combiné
de refroidissement et de chauffage et le collecteur de gaz à haute pression.