TECHNICAL FIELD
[0001] The present invention relates to a toy block comprising a sawtooth structure and
at least one magnet for connecting to a similar block.
BACKGROUND ART
[0002] A plurality of products, as toy blocks utilizing magnets, have been distributed so
far. Those toy blocks commonly use a coupling force (or an assembling force) generated
by the magnets. How to couple the magnets to the toy blocks and the coupling structure
are important. A method using a cap was generally used in the conventional art. However,
a magnet block utilizing such method using the cap had a sawtooth structure merely
on a surface thereof. This has brought about many disadvantages in making structures.
[0003] First, the magnet block utilizing the method using the cap is useful upon building
a structure. However, when a stereoscopic structure, namely, a three-dimensional structure
is built, such structure may be easily collapsed even due to a small impact around
it. In addition, the very structure is difficult to be sustained due to getting twisted
easily.
[0004] Also, when a structure is built using the magnet blocks having the sawtooth structure
merely on their surfaces, for example, when a structure is generated using triangular
blocks, square or rectangular blocks, pentagonal blocks and the like, those blocks
are not aligned at edges thereof. This lowers completion of the structure and causes
a limitation in completion of a stereoscopic structure.
[0005] That is, the failure of an accurate adjustment of a coupling angle has caused assembled
surfaces generated by assembling the blocks or extending surfaces of the blocks to
be non-smooth, when viewed from various angles, and made outer surfaces of the structure
uneven.
[0006] Accordingly, it is fully required to develop an invention, which is capable of making
an appearance of a structure aesthetic by forming assembled surfaces of blocks or
extending surfaces of the blocks to be smooth, when viewed from various angels, in
a manner of allowing an assembly angel (a coupling angle or a joint angle) between
the blocks to be accurately (or finely) adjusted.
[0007] KR 1020110068132A discloses a toy block which allows smooth adjustment of an angle at the point of
attachment when two blocks are assembled.
DISCLOSURE
Technical Problem
[0008] The present invention has been made keeping in mind the drawbacks of the related
art, and a first object of the invention is to provide a sawtooth structure having
a fine assembly angle (a coupling angle or a joint angle) adjustment function.
[0009] A second object of the invention is to provide a toy block having a sawtooth structure
with a fine assembly angle adjustment function.
[0010] A third object of the invention is to provide a toy set having a plurality of toy
blocks each having a sawtooth structure with a fine assembly angle adjustment function.
Technical Solution
[0011] In order to achieve the above object, a toy block according to claim 1 is provided.
[0012] Preferably, the inner sawtooth portion of the external sawtooth structure may be
formed on the inner surface of the external sawtooth structure, and the outer sawtooth
portion of the internal sawtooth structure may be formed on the outer surface of the
internal sawtooth structure. The inner sawtooth portion of the external sawtooth structure
may be divided into an inner sawtooth area and an inner non-sawtooth area. The outer
sawtooth portion of the internal sawtooth structure may be divided into an outer sawtooth
area and an outer non-sawtooth area.
[0013] Preferably, a flat area of the inner surface occupied by the inner non-sawtooth area
of the external sawtooth structure may be greater than a flat area of the inner surface
occupied by the inner sawtooth area of the external sawtooth structure by more than
a predetermined ratio. A flat area of the outer surface occupied by the outer non-sawtooth
area of the internal sawtooth structure may be greater than a flat area of the outer
surface occupied by the outer sawtooth area of the internal sawtooth structure by
more than the predetermined ratio.
[0014] Preferably, the predetermined ratio may be greater than 1 and smaller than 10.
[0015] Preferably, the internal sawtooth structure may be spaced from the external sawtooth
structure so as to be rotatable in the external sawtooth structure. The outer sawtooth
area of the outer sawtooth portion of the internal sawtooth structure may go over
the inner sawtooth area of the inner sawtooth portion of the external sawtooth structure.
[0016] Preferably, the number of inner sawteeth constructing the inner sawtooth portion
of the external sawtooth structure and the number of inner sawteeth constructing the
outer sawtooth portion of the internal sawtooth structure may be in a ratio of 1:1.
[0017] Preferably, the number of inner sawteeth constructing the inner sawtooth portion
of the external sawtooth structure and the number of inner sawteeth constructing the
outer sawtooth portion of the internal sawtooth structure may be in a ratio of 1:n
or 1:1/n (n=natural number more than 2 and less than 4). The outer non-sawtooth area
of the internal sawtooth structure may be sufficiently greater than the outer sawtooth
area of the internal sawtooth structure, such that at least two inner sawteeth of
the external sawtooth structure can enter between the outer sawteeth of the internal
sawtooth structure, when the number of inner sawteeth constructing the inner sawtooth
portion of the external sawtooth structure is greater than the number of inner sawteeth
constructing the outer sawtooth portion of the internal sawtooth structure. The inner
non-sawtooth area of the external sawtooth structure may be sufficiently greater than
the inner sawtooth area of the external sawtooth structure, such that at least two
outer sawteeth of the inner sawtooth structure can enter between the inner sawteeth
of the external sawtooth structure, when the number of the outer sawteeth constructing
the outer sawtooth portion of the internal sawtooth structure is greater than the
number of outer sawteeth constructing the inner sawtooth portion of the external sawtooth
structure.
[0018] Preferably, at least one of the inner sawtooth of the external sawtooth structure
or the outer sawtooth of the internal sawtooth structure may have a symmetric shape
in left and right directions based on a peak.
[0019] Preferably, at least one of the inner sawtooth of the external sawtooth structure
or the outer sawtooth of the internal sawtooth structure may have an asymmetric shape
in the left and right directions based on the peak.
[0020] Preferably, when both the inner sawtooth of the external sawtooth structure and the
outer sawtooth of the internal sawtooth structure have the asymmetric shape in the
left and right directions based on the peak, the inner sawteeth of the external and
internal and the outer sawteeth of the internal sawtooth structure may be arranged
in such a manner of minimizing rotation resistance in one direction and maximizing
rotation resistance in an opposite direction.
[0021] Preferably, the external sawtooth structure may further include a surface sawtooth
portion having at least two surface sawteeth or the internal sawtooth structure may
further include a surface sawtooth portion having at least two surface sawteeth.
[0022] Preferably, the number of inner sawteeth of the external sawtooth structure and the
number of surface sawteeth of the external sawtooth structure may be the same as each
other. The inner sawteeth and the surface sawteeth of the external sawtooth structure
may be arranged by a first arrangement method of arranging the inner sawtooth and
the surface sawtooth of the external sawtooth structure on the same position, and
a second arrangement method of arranging the surface sawtooth of the external sawtooth
structure between the inner sawteeth of the external sawtooth structure.
[0023] Preferably, the number of inner sawteeth of the external sawtooth structure and the
number of surface sawteeth of the external sawtooth structure may be different from
each other, and the inner sawteeth and the surface sawteeth of the external sawtooth
structure may be arranged in a manner of arranging the surface sawtooth between the
inner sawteeth of the external sawtooth structure.
[0024] The number of outer sawteeth of the internal sawtooth structure may preferably be
the same as or greater than the number of surface sawteeth of the internal sawtooth
structure.
[0025] The internal sawtooth structure may preferably have a shape of a cone with an upper
portion cut off, and be provided with a space having a magnet accommodating portion
of more than a predetermined size for accommodating at least one magnet therein.
[0026] Preferably, the internal sawtooth structure may be completely accommodated in the
external sawtooth structure. A stopping jaw may be formed on a lower portion of the
inner surface of the external sawtooth structure, so as to prevent separation of the
internal sawtooth structure to outside when the internal sawtooth structure is accommodated
in the external sawtooth structure.
[0027] Preferably, the external sawtooth structure may have a cylindrical outer shape which
is wide in width and long in length. The inner shape of the external sawtooth structure
may include an accommodating space for accommodating the internal sawtooth structure
therein.
[0028] Preferably, a fixing force-reinforcing unit may further be formed on a lower circumferential
portion of the external sawtooth structure to reinforce a fixing force of the external
sawtooth structure.
[0029] Preferably, the fixing force-reinforcing unit may include a stepped portion having
at least one step, formed along the circumferential portion. At least a part of the
stepped portion may be provided with a portion having a radius greater than a radius
of the external sawtooth structure. The stepped portion may include a portion having
at least two types of radiuses.
[0030] Preferably, the stepped portion may include a first stepped portion and at least
one second stepped portion. The maximum radius of the first stepped portion may be
greater than that of the second stepped portion. The first stepped portion may be
arranged closer to the surface sawtooth portion of the external sawtooth structure
than the second stepped portion. A ratio that the radius of the first stepped portion
is reduced when the first stepped portion is getting away from the surface sawtooth
portion of the external sawtooth structure may be greater than a ratio that the radius
of the second stepped portion is reduced when the second stepped portion is getting
away from the surface sawtooth portion of the external sawtooth structure.
[0031] The present disclosure provides a toy block having the sawtooth structure.
[0032] Preferably, the toy block may be polyhedral, and the sawtooth structure may be mounted
to at least one of a plurality of surfaces constructing the polyhedron.
[0033] Preferably, the polyhedron may essentially include at least one flat surface, and
selectively include at least one curved surface.
Advantageous Effects
[0034] According to the present disclosure, an assembly angle of blocks which are assembled
by a magnetic force of magnets may be accurately adjustable.
[0035] According to the present disclosure, by the accurate adjustment of the assembly angle
of the blocks, an assembled surface generated by assembling the blocks or an extending
surface of the blocks may become smooth, when viewed from various angles, and also
outer surfaces of the block structure may be even. This may allow the assembled surface
or extending surface of the blocks to be aesthetic.
DESCRIPTION OF DRAWINGS
[0036]
FIG. 1 is an exploded view of a sawtooth structure in accordance with one exemplary
embodiment disclosed herein.
FIG. 2 is an outer view of an external sawtooth structure in accordance with the one
exemplary embodiment disclosed herein.
FIG. 3 is an inner view of the external sawtooth structure in accordance with the
one exemplary embodiment disclosed herein.
FIG. 4 is an outer view of an internal sawtooth structure in accordance with the one
exemplary embodiment disclosed herein.
FIG. 5 is a view illustrating an engaged state between an inner portion of the external
sawtooth structure and an outer portion of the internal sawtooth structure in accordance
with the one exemplary embodiment disclosed herein.
FIG. 6 is a view illustrating an exemplary embodiment disclosed herein, in which a
ratio between an inner sawtooth of the external sawtooth structure and an outer sawtooth
of the internal sawtooth structure is 1:2.
FIG. 7 is a view illustrating an exemplary embodiment disclosed herein, in which the
ratio between the inner sawtooth of the external sawtooth structure and the outer
sawtooth of the internal sawtooth structure is 2:1.
FIG. 8 is a view illustrating an exemplary embodiment, in which the external sawtooth
structure comprises 24 inner sawteeth and the internal sawtooth structure comprises
24 outer sawteeth to adjust an assembly angle more accurately.
FIG. 9 is a view illustrating an exemplary embodiment, in which a ratio between an
inner sawtooth portion and a non-sawtooth portion of the external sawtooth structure
is 1:4.
FIG. 10 is a view illustrating an exemplary embodiment, in which two outer sawteeth
of the internal sawtooth structure are present between the neighboring inner sawteeth
of the external sawtooth structure when the ratio between the inner sawtooth portion
and the non-sawtooth portion of the external sawtooth structure is 1:4.
FIG. 11 is a view illustrating one exemplary embodiment, in which the inner sawtooth
of the external sawtooth structure has an asymmetric shape and the outer sawtooth
of the internal sawtooth structure has a symmetric shape.
FIG. 12 is a view illustrating one exemplary embodiment, in which asymmetric sawteeth
are arranged in a manner of maximizing rotation resistance in one direction and minimizing
it in another direction due to both of the inner sawtooth of the external sawtooth
structure and the outer sawtooth of the internal sawtooth structure having the asymmetric
shape.
FIG. 13 is a view illustrating one exemplary embodiment of the external sawtooth structure
with a stepped portion.
FIG. 14 is a view illustrating an exemplary embodiment of a toy block disclosed herein,
which has the sawtooth structure engaged with a block.
FIG. 15 is a sectional view illustrating an assembled state between toy blocks with
magnets in accordance with another exemplary embodiment disclosed herein.
FIG. 16 is a perspective view illustrating an assembled state of a sawtooth structure
in accordance with the another exemplary embodiment disclosed herein.
FIG. 17 is an exploded view of the sawtooth structure of FIG. 16.
FIG. 18 is a longitudinal sectional view of FIG. 16.
FIG. 19 is a sectional view taken along the line 'I-I' of FIG. 18.
FIG. 20 is a longitudinal sectional view of a sawtooth structure in accordance with
another exemplary embodiment disclosed herein.
FIG. 21 is a view illustrating a state where a sawtooth structure is stuck in a block
with a curved surface.
FIG. 22 is a view of a sawtooth structure formed between two blocks, which illustrates
a usage state of the present disclosure which is capable of finely adjusting a rotation
for the assembly of the blocks.
FIG. 23 is a view illustrating an exemplary embodiment of a toy set comprising various
shapes of blocks in accordance with the present disclosure.
BEST MODE
[0037] FIG. 1 is an exploded view of a sawtooth structure 10 in accordance with one exemplary
embodiment disclosed herein. FIG. 2 is an outer view of an external sawtooth structure
100 disclosed herein. FIG. 3 is an inner view of the external sawtooth structure 100
disclosed herein. FIG. 4 is an outer view of an internal sawtooth structure 200 disclosed
herein. A sawtooth structure 10 according to the present disclosure may include an
external sawtooth structure 100 and an internal sawtooth structure 200. An inner sawtooth
portion 110 may be formed on at least a part of an inner surface of the external sawtooth
structure 100. An outer sawtooth portion 210, which corresponds to the inner sawtooth
portion 110 of the external sawtooth structure 100, may be formed on at least a part
of an outer surface of the internal sawtooth structure 200. A magnet accommodating
portion 230 for accommodating a magnet therein may be formed in the internal sawtooth
structure 200. Accordingly, blocks 300 each having the sawtooth structure 10 mounted
thereto may be assembled with each other by a magnetic force of the magnet accommodated
in the magnet accommodating portion 230.
[0038] As illustrated in FIGS. 1 to 5, the internal sawtooth structure 200 may be mounted
or coupled into the external sawtooth structure 100. A clearance space more than a
predetermined interval may be formed between the external sawtooth structure 100 and
the internal sawtooth structure 200. The clearance space may allow the internal sawtooth
structure 200 to be rotatable in the external sawtooth structure 100. When the clearance
space is excessively small, a sawtooth mountain of an outer sawtooth 211-1 of the
outer sawtooth portion 210 of the internal sawtooth structure 200 may not be able
to go over an inner sawtooth 111-1 of the inner sawtooth portion 110 of the external
sawtooth structure 100. This may cause a difficulty in rotation of the internal sawtooth
structure 200, so as to disable a fine adjustment of a block-assembling angle as the
core effect of the present disclosure. On the other hand, when the clearance space
is excessively great, the internal sawtooth structure 200 may freely rotate, without
appropriate resistance, within the external sawtooth structure 100. This may make
it impossible to maintain the fine adjustment of the block-assembling angle as the
core effect of the present disclosure. Therefore, the clearance space may preferably
be decided as great or small as preventing the free rotation of the internal sawtooth
structure 200 and as having appropriate resistance when the outer sawtooth 211-1 of
the internal sawtooth structure 200 goes over the inner sawtooth 111-1 of the external
sawtooth structure 100. To this end, a virtual outer line connecting sawtooth mountains
of the outer sawteeth 211-1 of the internal sawtooth structure 200 may preferably
be greater than or the same as a radius of a virtual outer line connecting sawtooth
mountains of the inner sawteeth 111-1 of the external sawtooth structure 100.
[0039] As illustrated in FIGS. 9 and 10, the inner sawtooth portion 110 of the external
sawtooth structure 100 may be formed along an inner surface of the external sawtooth
structure 100. The inner sawtooth portion 110 of the external sawtooth structure may
be divided into an inner sawtooth area 111 with sawteeth and an inner non-sawtooth
area 112 without a sawtooth. The inner non-sawtooth area 112 of the external sawtooth
structure may preferably be formed in an alternating manner with the inner sawtooth
area 111. That is, the inner sawtooth portion 110 of the external sawtooth structure
100 may have a structure that any sawtooth is not formed next a sawtooth. A flat area
of the inner surface which is occupied by the inner non-sawtooth area 112 of the external
sawtooth structure may preferably be greater than a flat area of the inner surface
which is occupied by the inner sawtooth area 111 of the external sawtooth structure
by more than a predetermined ratio. The ratio may be greater than or equal to 1 and
smaller than 10, preferably, greater than 1 and smaller than or equal to 4.
[0040] Referring to FIG. 10, when the non-sawtooth area is greater than the sawtooth area
of the inner sawtooth portion 110 of the external sawtooth structure, the outer sawtooth
portion 210 of the internal sawtooth structure 200 may preferably be formed in such
a manner that the sawtooth area thereof is greater than a non-sawtooth area. This
may allow for the fine angle adjustment. That is, when a relatively small number of
sawteeth are provided on the inner sawtooth portion 110 of the external sawtooth structure,
it may be preferable that a relative great number of sawteeth are provided on the
outer sawtooth portion 210 of the internal sawtooth structure. This structure may
be more effective in view of the fine angle adjustment because one sawtooth of the
inner sawtooth portion 110 of the external sawtooth structure goes over many sawteeth
of the outer sawtooth portion 210 of the internal sawtooth structure.
[0041] Meanwhile, the outer sawtooth portion 210 of the internal sawtooth structure 200
may be formed along an outer surface of the internal sawtooth structure 200. The outer
sawtooth portion 210 of the internal sawtooth structure may be divided into an outer
sawtooth area 211 with sawteeth and an outer non-sawtooth area 212 without a sawtooth.
The outer non-sawtooth area 212 of the internal sawtooth structure 200 may preferably
be formed in an alternating manner with the outer sawtooth area 211. A flat area of
the outer surface which is occupied by the outer non-sawtooth area 212 of the internal
sawtooth structure 200 may be greater than a flat area of the outer surface occupied
by the outer sawtooth area 211 of the internal sawtooth structure by more than the
predetermined ratio. The ratio may be greater than or equal to 1 and smaller than
10, preferably, greater than 1 and smaller than or equal to 4.
[0042] When a relatively small number of sawteeth are provided on the outer sawtooth portion
210 of the internal sawtooth structure, it may be preferable that a relative great
number of sawteeth are provided on the inner sawtooth portion 110 of the external
sawtooth structure. This structure may be more effective in view of the fine angle
adjustment because one sawtooth of the outer sawtooth portion 210 of the internal
sawtooth structure goes over many sawteeth of the inner sawtooth portion 110 of the
external sawtooth structure.
[0043] As illustrated in FIGS. 6 and 7, the number of sawteeth of the inner sawtooth portion
110 of the external sawtooth structure and the number of sawteeth of the outer sawtooth
portion 210 of the internal sawtooth structure may be in the ratio of 1:1, 1:n or
n:1 (n = an integer more than 2). The number n may preferably be more than 2 and less
than 4. When the number n exceeds 4, a great difference of the number of sawteeth
may be caused, which may result in a difficulty in the fine angle adjustment.
[0044] It may be better for each of the external sawtooth structure 100 and the internal
sawtooth structure 200 to be provided with more sawteeth in view of the fine angle
adjustment. For example, the fine angle adjustment may be improved more when each
of the external sawtooth structure 100 and the internal sawtooth structure 200 is
provided with 12 sawteeth than when each of the external sawtooth structure 100 and
the internal sawtooth structure 200 is provided with 6 sawteeth. FIG. 8 illustrates
an exemplary embodiment, in which the assembly angle (or the assembling angle) can
be adjusted more accurately by providing 24 inner sawteeth for the external sawtooth
structure and 24 outer sawteeth 221-1 for the internal sawtooth structure. However,
when the external sawtooth structure 100 and the internal sawtooth structure 200 are
provided with an excessive number of sawteeth, respectively, a physical size of the
external sawtooth structure 100 or the internal sawtooth structure 200 may be limited
and accordingly a sawtooth cannot be large in physical size. When the sawtooth has
an excessively small physical size, abrasion resistance or durability of the sawtooth
may be lowered although there may be a deviation according to a material of the sawtooth
constructing the sawtooth structure 10. Therefore, it may substantially be important
to select an appropriate number of sawteeth according to the physical size of the
sawtooth structure 10.
[0045] Referring back to FIG. 10, when the number of sawteeth of the inner sawtooth portion
110 of the external sawtooth structure is greater than the number of sawteeth of the
outer sawtooth portion 210 of the internal sawtooth structure, the outer non-sawtooth
area 212 of the internal sawtooth structure 200 may preferably have a sufficiently
greater size than the outer sawtooth area 211. For example, it may be preferable that
at least two inner sawteeth 111-1 of the external sawtooth structure are present between
the outer sawteeth 211-1 of the internal sawtooth structure. On the other hand, when
the number of outer sawteeth constructing the outer sawtooth portion 210 of the internal
sawtooth structure is greater than the number of outer sawteeth constructing the inner
sawtooth portion 110 of the external sawtooth structure, it may be preferable that
the inner non-sawtooth area 112 of the external sawtooth structure may preferably
have a sufficiently greater size than the inner sawtooth area 111 of the external
sawtooth structure. For example, it may be preferable that at least two outer sawteeth
221-1 of the internal sawtooth structure are present between the inner sawteeth 111-1
of the external sawtooth structure.
[0046] Hereinafter, a shape of a sawtooth will be described with reference to FIGS. 11 and
12. As illustrated in FIG. 11, at least one of the inner sawtooth 111-1 of the external
sawtooth structure or the outer sawtooth 211-1 of the internal sawtooth structure
may be symmetric in left and right directions based on a peak. At least one of the
inner sawtooth 111-1 of the external sawtooth structure or the outer sawtooth 211-1
of the internal sawtooth structure may be asymmetric in the left and right directions
based on the peak. When a sawtooth mountain has the asymmetric shape, rotation resistance
may be applied more to a rotation toward a sawtooth with a sharp inclination than
to a rotation toward a sawtooth with a gentle inclination. For example, as illustrated
in FIG. 11, if the inner sawtooth 111-1 of the external sawtooth structure has an
asymmetric shape and the outer sawtooth 211-1 of the internal sawtooth structure has
a symmetric shape, relatively great rotation resistance may be generated when the
outer sawtooth 211-1 of the internal sawtooth structure goes over the inner sawtooth
111-1 of the external sawtooth structure, which has a sharp inclination (or tilt).
When the sawtooth structure 10 is mounted to blocks 300, the blocks 300 may be assembled
with each other by a magnet accommodated in the magnet accommodating portion 230 of
the internal sawtooth structure 200. In order to reduce rotation resistance for a
fine adjustment of an assembling angle in a clockwise direction and increase rotation
resistance for a fine adjustment of an assembling angle in a counterclockwise direction,
when one of the external sawtooth structure 100 or the internal sawtooth structure
200 is provided with asymmetric sawteeth, those asymmetric sawteeth should be arranged
in an appropriate manner. On the other hand, in order to further increase rotation
resistance in one direction and further reduce rotation resistance in an opposite
direction, as illustrated in FIG. 12, both the external sawtooth structure 100 and
the internal sawtooth structure 200 may employ the sawteeth in the asymmetric shape,
and a sawtooth direction of the asymmetric sawtooth of the inner sawtooth portion
110 of the external sawtooth structure and a sawtooth direction of the asymmetric
sawtooth of the outer sawtooth portion 210 of the internal sawtooth structure may
be arranged contrary to each other. Accordingly, upon rotation in one direction, when
the inner sawtooth 111-1 of the external sawtooth structure having a sharp inclination
goes over the outer sawtooth 211-1 of the internal sawtooth structure having a sharp
inclination, rotation resistance in the one direction may be maximized. That is, when
both the inner sawtooth 111-1 of the external sawtooth structure and the outer sawtooth
211-1 of the internal sawtooth structure are asymmetric in shape in the left and right
directions based on the peak, the inner sawtooth 111-1 of the internal sawtooth structure
and the outer sawtooth 211-1 of the internal sawtooth structure may be engaged in
a manner of minimizing rotation resistance in one direction and maximizing rotation
resistance in an opposite direction.
[0047] A surface sawtooth portion 220 may preferably be formed on at least a part of the
outer surface of the internal sawtooth structure 200. A position where the surface
sawtooth portion 220 of the internal sawtooth structure is formed may preferably be
located on a surface of the block 300, namely, a surface on which the surface sawtooth
portion 220 can come in contact with another block 300 which is a target to be assembled
thereto. Sawteeth of the surface sawtooth portion 220 of the internal sawtooth structure
may allow for a strong assembly between the blocks 300, thereby minimizing a fluctuation
of the assembled portion (engaged position, surface-to-surface, point-to-point, or
position-to-position) upon rotation of the blocks 300. If the internal sawtooth structure
is even and flat without having the surface sawtooth portion 220, when trying to rotate
one of both the blocks 300 in the assembled state, it may cause a change in a relative
position of the assembled portion between the surface sawtooth portion 220 of the
internal sawtooth structure of one block 300 and the surface sawtooth portion 220
of the internal sawtooth structure of another block 300. Accordingly, the fine angle
adjustment may become difficult when assembling the blocks. By virtue of the formation
of the surface sawtooth portion 220 of the internal sawtooth structure, only when
the surface sawtooth portions 220 of the internal sawtooth structures which are coupled
by the magnetic force are strongly engaged with each other, a rotation as much as
user's desire can be realized and accordingly a control of the fine assembly angle
adjustment may be facilitated.
[0048] A surface sawtooth portion 120 may be formed on at least a portion of the outer surface
of the external sawtooth structure 100. The surface sawtooth portion 120 of the external
sawtooth structure constructing the sawtooth structure 10 of the magnetic block 300
may be engaged with the surface sawtooth portion 120 of the external sawtooth structure
of the sawtooth structure 10 of the another block 300 by sawteeth of each of them,
thereby increasing a coupling force therebetween. The surface sawtooth portion 120
of the external sawtooth structure may be used for a surface-to-surface coupling between
the blocks 300 to which the sawtooth structures 10 are mounted. This structure may
contribute to sustaining the assembled state between the blocks 300. A position where
the surface sawtooth portion 220 of the internal sawtooth structure is formed may
preferably be located on a surface of the block 300, namely, a surface on which the
surface sawtooth portion 220 can come in contact with the another block 300 which
is a target to be coupled thereto. Sawteeth of the surface sawtooth portion 220 of
the internal sawtooth structure may allow for a strong assembly between the blocks
300, thereby minimizing the fluctuation of the assembled portion (an assembled or
engaged position, surface-to-surface, point-to-point, or position-to-position) upon
rotation of the blocks 300. If the internal sawtooth structure is even and flat without
having the surface sawtooth portion 220, when trying to rotate one of both the blocks
300 in the assembled state, it may cause a change in a relative position of the assembled
portion between the surface sawtooth portion 220 of the internal sawtooth structure
of the magnetic block 300 and the surface sawtooth portion 220 of the internal sawtooth
structure of the another block 300. This may make it difficult to adjust a fine angle
of the assembled blocks. Therefore, the surface sawtooth portion 120 of the external
sawtooth structure should be provided to be engaged with the surface sawtooth portion
120 of another external sawtooth structure. This may facilitate a user to realize
the rotation as much as desiring, resulting in an easy control of the fine assembly
angle adjustment.
[0049] Meanwhile, the inner sawtooth 111-1 of the external sawtooth structure and the surface
sawtooth 121-1 of the external sawtooth structure may be the same or independent of
each other in view of number and arrangement. That is, the number of the inner sawteeth
111-1 of the external sawtooth structure may be the same as the number of surface
sawteeth 121-1 of the external sawtooth structure. An arrangement of the inner sawteeth
111-1 of the external sawtooth structure and the surface sawteeth 121-1 of the external
sawtooth structure may be selected from a first arrangement method in which the inner
sawtooth 111-1 of the external sawtooth structure and the surface sawtooth 121-1 of
the external sawtooth structure are arranged on the same position, and a second arrangement
method in which the surface sawtooth 121-1 of the external sawtooth structure is located
between the inner sawteeth 111-1 of the external sawtooth structure. On the other
hand, the inner sawtooth 111-1 of the external sawtooth structure 100 and the surface
sawtooth 121-1 of the external sawtooth structure may be different from each other
in number. An arrangement of the inner sawteeth 111-1 of the external sawtooth structure
100 and the surface sawteeth 121-1 of the external sawtooth structure may be achieved
by the method in which the surface sawtooth 121-1 of the external sawtooth structure
is arranged between the inner sawteeth 111-1 of the external sawtooth structure.
[0050] In addition, the outer sawtooth 211-1 of the internal sawtooth structure and the
surface sawtooth 221-1 of the internal sawtooth structure may be the same or independent
of each other in view of number and arrangement. That is, the number of the outer
sawteeth 211-1 of the internal sawtooth structure may be the same as the number of
surface sawteeth 221-1 of the internal sawtooth structure. However, an area of the
surface sawtooth portion 220 of the internal sawtooth structure may be smaller than
an area of the outer sawtooth portion 210 of the internal sawtooth structure. In this
case, the number of outer sawteeth 211-1 of the internal sawtooth structure may preferably
be greater than the number of surface sawteeth 221-1.
[0051] Referring back to FIG. 1, the internal sawtooth structure 200 may preferably include
an inner space which may include a magnet accommodating portion 230 in which at least
one magnet is accommodated. The inner space should be large enough to allow for a
free rotation of the magnet. By ensuring the free rotation of the magnet, the assembly
of the blocks 300 may be enabled, irrespective of NS positions of the another block
300 when the another block 300 approaches.
[0052] The internal sawtooth structure 200, as illustrated in FIG. 1, may preferably have
a shape of a cone having an upper portion cut off. The surface sawtooth portion 220
of the internal sawtooth structure may be formed on all or part of a cut-off surface
of the cone, and the outer sawtooth portion 210 of the internal sawtooth structure
may be formed on all or part of an inclined surface of the cone. Of course, the internal
sawtooth structure 200 may have a cylindrical shape. The surface sawtooth portion
220 of the internal sawtooth structure may be formed on all or part of an upper surface
of the cylindrical shape, and the outer sawtooth portion 210 of the internal sawtooth
structure may be formed on all or part of a side surface of the cylindrical shape.
When the internal sawtooth structure 200 is cylindrical in shape, an inner circumferential
surface of the external sawtooth structure 100 for accommodating the internal sawtooth
structure 200 therein should be cylindrical to correspond to the shape of the outer
sawtooth portion 210 of the internal sawtooth structure.
[0053] Still referring to FIG. 1, a separation-preventing means may be provided on a part
of an inner surface of the external sawtooth structure 100. The separation-preventing
means may facilitate the mounting or engagement of the internal sawtooth structure
200 or prevent the separation of the mounted or engaged internal sawtooth structure
200. The separation-preventing means of the internal sawtooth structure 200 may preferably
be formed on a lower portion of the inner surface of the external sawtooth structure
100 along a circumference of the inner surface. The separation-preventing means may
preferably be formed in a form of a stopping jaw 130 for effectively preventing the
separation of the internal sawtooth structure 200. That is, the internal sawtooth
structure 200 may be completely accommodated within the external sawtooth structure
100. The stopping jaw 130 may be formed on the lower portion of the inner surface
of the external sawtooth structure 100. When the internal sawtooth structure 200 is
accommodated in the external sawtooth structure 100, the internal sawtooth structure
200 may not be easily separated to outside due to resistance of the stopping jaw 130.
[0054] The strong coupling (or assembling) between the external sawtooth structure 100 and
the block 300 may be an important part in quality and lifespan of a product. The present
disclosure may provide a technology in which the assembled state between the external
sawtooth structure 100 and the block 300 are firmly maintained for an extended time
by employment of a fixing force-reinforcing unit. Specifically, when the block 300
is made of a wooden material or a material having a certain level of elasticity, such
as plastic, the external sawtooth structure 100 may be separated from the block 300.
That is, in order to extend an actual lifespan of the block 300 product, a fixing
force of the external sawtooth structure 100 should be reinforced. Methods of constructing
the fixing force-reinforcing unit may include a method of reinforcing a fixing force
using the structure of the external sawtooth structure 100, a method of reinforcing
a fixing force using the structure of the block 300 to which the external sawtooth
structure 100 is mounted, a method of reinforcing a fixing force using both of the
structures, a method of using an adhesive or other materials for reinforcing adhesion,
and the like.
[0055] Referring to FIG. 13, the present disclosure may provide a structure that a stepped
portion 140 is formed on the external sawtooth structure 100 as the method of reinforcing
the fixing force using the structure of the external sawtooth structure 100. A fixing
force-reinforcing unit for reinforcing a fixing force onto the block 300 as a target,
to which the external sawtooth structure 100 is fixed, may further be formed on a
lower circumferential portion of the external sawtooth structure 100. The fixing force-reinforcing
unit may include a stepped portion 140 with at least one step, formed on the circumferential
portion. Preferably, the stepped portion 140 may include at least a portion which
has a radius greater than a radius of the external sawtooth structure 100.
[0056] The stepped portion 140 may preferably include a portion having at least two types
of radiuses, in terms of further reinforcing the coupling force. The stepped portion
140 may include a first stepped portion 141 and at least one second stepped portion
142. The maximum radius of the first stepped portion 141 may be greater than the maximum
radius of the second stepped portion 142. The first stepped portion 141 may be closer
to the surface sawtooth portion 120 of the external sawtooth structure than the second
stepped portion 142. A ratio that the radius is narrowed (or reduced) when the first
stepped portion 141 is getting farther away from the surface sawtooth portion 120
of the external sawtooth structure may preferably be greater than a ratio that the
radius is narrowed when the second stepped portion 142 is getting farther away from
the surface sawtooth portion 120 of the external sawtooth structure.
[0057] Of course, the block 300 to which the external sawtooth structure 100 is mounted
may preferably be provided with a step structure for effectively housing the single
or double-stepped portion. The step structure of the block 300 may preferably be formed
in an opposite shape to that of the stepped portion 140 formed on the external sawtooth
structure 100. The step structure of the block 300 may effectively prevent the separation
of the external sawtooth structure 100.
[0058] Referring to FIG. 14, the sawtooth structure 10 disclosed herein may be used for
a toy block 300 which is made of plastic or other non-magnetic materials. The toy
block 300 may be polyhedral, and the sawtooth structure 10 may be mounted to at least
one of plural surfaces of the polyhedron. The polyhedron may essentially include at
least one flat surface and selectively include at least one curved surface.
[0059] In the meantime, FIG. 15 is a sectional view illustrating an assembled state of toy
blocks with a magnet-inserting structure in accordance with another exemplary embodiment
disclosed herein. FIG. 16 illustrates an assembled structure of a sawtooth structure
according to one exemplary embodiment of FIG. 15. FIG. 17 is an exploded perspective
view of the sawtooth structure of FIG. 16. FIG. 18 is a longitudinal sectional view
of FIG. 16. FIG. 19 is a sectional view taken along the line 'I-I' of FIG. 18. FIG.
20 is a longitudinal sectional view of a sawtooth structure in accordance with another
exemplary embodiment disclosed herein.
[0060] As illustrated in those drawings, a sawtooth structure in accordance with an exemplary
embodiment may be provided together with a magnet 400 disposed in each magnet accommodating
groove 21, which is formed on a plurality of positions of a toy block 20, thereby
providing a coupling force such that the toy blocks can be assembled with each other.
The sawtooth structure may include an external sawtooth structure 500 and an internal
sawtooth structure 600. The external sawtooth structure 500 may include an opening
formed on one side surface thereof, and a through hole 510 formed through another
surface, facing the one side surface, to externally expose the magnet 400. The external
sawtooth structure 500 may be inserted into the magnet accommodating groove 21 to
come in contact with an inner surface of the magnet accommodating groove 21. The internal
sawtooth structure 600 may be disposed within the external sawtooth structure 500
to be movable along a height direction of the external sawtooth structure 500. When
the toy blocks are assembled with each other, a part of an upper end of the internal
sawtooth structure 600 may externally protrude through the through hole 510. A separation-preventing
portion 610 for maintaining the accommodated state of the magnet within the magnet
accommodating groove 21 may be provided on one side of the internal sawtooth structure
600.
[0061] The toy block 20 which can be assembled with other toy blocks by the magnet 400 may
have any shape if it has a polyhedral structure with a polygonal section, but this
exemplary embodiment disclosed herein may provide the toy block in a cubic shape.
[0062] One magnet accommodating groove 21 may be formed on each of four outer surfaces of
the toy block 20, and the magnet 400 may be accommodated therein.
[0063] The arrangement of the magnet accommodating grooves 21 in the four directions may
enable a toy to be assembled both in a vertical direction and in a horizontal direction,
and enhance the degree of freedom for assembly directions of the toy.
[0064] Depth and diameter of the magnet accommodating groove 21 may preferably be decided
large enough for the magnet 40 accommodated therein to be rotatable in various directions.
A stopping recess 21a may be formed on an inner wall of one side of the magnet accommodating
groove 21 such that the external sawtooth structure 500 can be maintained in the inserted
state in the magnet accommodating groove 21.
[0065] The magnet 400 may be formed in a cylindrical shape and accommodated in the magnet
accommodating groove 21. In order to enhance a coupling force between the magnets,
an edge of the magnet 400 may be chamfered so as to come in contact directly with
a magnet included in a neighboring toy block.
[0066] As the edge is rounded or chamfered, a part of the magnet 400 may be externally exposed
through the through hole 510 so as to come in contact directly with the neighboring
magnet, and be prevented from being separated from the magnet accommodating groove
21 by the separation-preventing portion 610.
[0067] The external sawtooth structure 500 may be inserted into the magnet accommodating
groove 21 in a manner that a side surface thereof comes in contact with the magnet
accommodating groove 21, so as to prevent the internal sawtooth structure 600 disposed
in the external sawtooth structure 500 from being externally separated.
[0068] One side surface of the external sawtooth structure 500 may be provided with an opening
through which the internal sawtooth structure 600 is inserted into the external sawtooth
structure 500. The through hole 510 through which the magnet 400 is externally exposed
may be formed through another side surface which is facing the one side surface.
[0069] The through hole 510 may preferably have a relatively smaller diameter than the magnet
400 such that the magnet 400 accommodated in the magnet accommodating groove 21 cannot
be separated out of the magnet accommodating groove 21.
[0070] A bent portion 520 which is formed by bending a plate surface of the external sawtooth
structure 500 may be formed on the external sawtooth structure 500 at a circumferential
portion of the through hole 510. The bent portion 520 may come in contact with a stopping
portion 630 of the internal sawtooth structure 600 so as to prevent the internal sawtooth
structure 600 from being externally separated from the external sawtooth structure
500.
[0071] An inner sawtooth 521 of the external sawtooth structure may be formed on a lower
surface of the bent portion 530 which contacts the stopping portion 630.
[0072] A stopping protrusion 530 may protrude from an outer surface of the external sawtooth
structure 500 in a diameter direction of the external sawtooth structure 500. The
stopping protrusion 530 may be coupled to the stopping recess 21a of the magnet accommodating
groove 21 so as to prevent the external sawtooth structure 500 from being separated
from the magnet accommodating groove 21.
[0073] A bent surface 531 having a double-tilt angle may be formed on an outer surface of
the stopping protrusion 530 such that the external sawtooth structure 500 can be smoothly
inserted into the magnet accommodating groove 21 at the insertion operation.
[0074] The internal sawtooth structure 600 may be disposed in the external sawtooth structure
500 and selectively moved up and down along a height direction of the external sawtooth
structure 500 according to whether or not the toy block 20 is assembled.
[0075] The separation-preventing portion 610 may separately provided on one side of the
internal sawtooth structure 600 to prevent the magnet 400 disposed in the internal
sawtooth structure 600 from being externally separated from the magnet accommodating
groove 21. The separation-preventing portion 610 may include a separation-preventing
jaw 611 whose lower surface is bent into a shape corresponding to the edge of the
magnet 400 and which is formed on an inner wall of an upper portion of the internal
sawtooth structure 600 to protrude by a predetermined length along a radial direction
of the internal sawtooth structure 600.
[0076] As the lower surface of the separation-preventing jaw 611 is bent into the shape
corresponding to the edge of the magnet 400, when the toy blocks are assembled with
each other, the part of each magnet may be externally exposed to come in contact with
a neighboring magnet, thereby enhancing the coupling force (assembling force) between
the toy blocks.
[0077] An upper surface of the internal sawtooth structure 600 may be shown, having a protrusion
620 externally protruding through the through hole 510 when the toy blocks are assembled
with each other, and the stopping portion 630 engaged with the bent portion 520 of
the external sawtooth structure 500.
[0078] A lower surface of the bent portion 520 contacting the stopping portion 630 may be
shown, having inner sawteeth 521 of the external sawtooth structure in the shape of
sawtooth. An upper surface of the stopping portion 630 may be shown, having outer
sawteeth 631 of the internal sawtooth structure 600 to be engaged with the inner sawteeth
521 of the external sawtooth structure 500.
[0079] The inner sawteeth 521 of the external sawtooth structure and the outer sawteeth
631 of the internal sawtooth structure may be engaged with each other when the toy
blocks are assembled with each other. The formation of the inner sawtooth of the external
sawtooth structure and the outer sawtooth 631 of the internal sawtooth structure may
allow children to assemble the toy blocks with accurately rotating them by a desired
angle.
[0080] An upper surface of the protrusion 620 may be shown, having protrusion sawteeth 621,
which are engaged with protrusion sawteeth 621 formed on a neighboring protrusion
620 when the toy blocks 20 are assembled with each other.
[0081] Similar to the inner sawteeth 521 of the external sawtooth structure and the outer
sawteeth 631 of the internal sawtooth structure, the protrusion sawteeth 621 may also
be engaged with the neighboring protrusion sawteeth 631 upon assembling the toy blocks
with each other. This may allow children to assembly the toy blocks with accurately
rotating the toy blocks by a desired angle.
[0082] The outer sawtooth 631 of the internal sawtooth structure and the protrusion sawtooth
621 may preferably be arranged in a radial direction in an alternating manner to prevent
them from overlapping each other.
[0083] This may result in finely adjusting a desired angle when the toy blocks are assembled
with each other. Simultaneously, a sound like 'click' may be generated more frequently
when rotating the toy blocks in the assembled state, such that the children can be
more excited when assembling the toy blocks.
[0084] An overturn-preventing portion 640 may be provided on one side of the internal sawtooth
structure 600. By the formation of the overturn-preventing portion 640, the internal
sawtooth structure 600 may be prevented from being fallen over and overturned within
the external sawtooth structure 500.
[0085] The overturn-preventing portion 640 may be implemented as an extending member 641,
which extends from a lower end of the internal sawtooth structure 600 by a predetermined
length along a height direction such that the outer surface of the internal sawtooth
structure 600 contacting the inner surface of the external sawtooth structure 500
can be higher than a predetermined height.
[0086] The extending member 641 may allow the height of the outer surface of the internal
sawtooth structure 600 to be higher than a height of the inner surface of the external
sawtooth structure 500 by a predetermined height. Accordingly, the internal sawtooth
structure 600 located within the external sawtooth structure 500 can be prevented
from being overturned due to being inclined to one side upon being moved up and down
within the external sawtooth structure 500.
[0087] A guide slit 641a may be formed on an inner surface of the extending member 641 in
a curved manner so as to guide a movement of the magnet 400 when one surface of the
magnet 400 accommodated in the magnet accommodating groove is externally exposed through
the through hole 510.
[0088] The guide slit 641a may be curved upward from a lower surface of the extending member
641 toward the through hole 510 of the external sawtooth structure 500. Accordingly,
when the toy blocks are assembled with each other, one side surface of the magnet
400 may be slid along the guide slit 641a to be externally exposed through the through
hole 510.
[0089] Hereinafter, description will be given of a process of assembling toy blocks having
the sawtooth structure according to the one exemplary embodiment having such configuration.
[0090] For assembling the toy blocks 20 with each other, when the toy blocks 20 are close
to each other in distance, a side surface of the magnet 400 may be slid along the
guide slit 641a formed in the extending member 641. Then, an edge of the magnet 400
may come in contact with the separation-preventing jaw 611 provided on the upper side
of the internal sawtooth structure 600.
[0091] As the toy blocks are closer to each other, the magnet 400 may push up the internal
sawtooth structure 300 by virtue of an attractive force between the magnets 400. The
protrusion 620 of the internal sawtooth structure 600 may then be externally protruded
through the through hole 510 of the external sawtooth structure 500 and the internal
sawteeth 521 of the external sawtooth structure may be engaged with the outer sawteeth
631 of the internal sawtooth structure.
[0092] When the toy blocks 20 are fully closely adhered to each other, one side surface
of the magnet 400 may be externally exposed through the through hole 510 of the external
sawtooth structure 500 and accordingly, the magnet 400 may be coupled to the neighboring
magnet 400 such that the toy blocks can be assembled with each other. Here, the protrusion
sawteeth 621 may be engaged with the protrusion sawteeth of the neighboring toy block.
[0093] In this state, when the toy block 20 is rotated, the toy block 20 may be rotated,
with generating a sound 'click' due to the engagement between the inner sawtooth 521
of the external sawtooth structure and the outer sawtooth 631 of the internal sawtooth
structure and between the protrusion sawtooth 621 and the neighboring protrusion sawtooth.
A child can thus assemble the toy blocks 20 by a desired angle while hearing the sound.
[0094] FIG. 20 is a longitudinal sectional view of a sawtooth structure in accordance with
another exemplary embodiment disclosed herein. The same/like components as those of
the sawtooth structure according to the foregoing embodiment will be given with the
same reference numerals, and detailed description thereof will be omitted.
[0095] As illustrated in FIG. 20, in a sawtooth structure according to another exemplary
embodiment disclosed herein, the inner sawtooth 521 of the external sawtooth structure
and the outer sawtooth 631 of the internal sawtooth structure may be upwardly inclined
toward the through hole 510.
[0096] The inclined structure may facilitate the engagement between the inner sawtooth 521
of the external sawtooth structure and the outer sawtooth 631 of the internal sawtooth
structure. Also, when the toy blocks are rotated after assembled, a move width of
the internal sawtooth structure 600 in up and down directions may be reduced, resulting
in a smooth rotation.
[0097] Referring to an example of FIG. 21, the sawtooth structure 20 according to the present
disclosure is generally mounted to at least one of flat surfaces of the polyhedron,
but the sawtooth structure 10 may also be mounted to a curved surface on a special
occasion.
[0098] As exemplarily illustrated in FIG. 22, upon utilizing the present disclosure, the
sawtooth structure 10 according to the present disclosure may be provided between
two blocks 300, allowing an assembly angle to be finely adjusted for accurate assembling
or desired assembling of the blocks 300. Therefore, as illustrated in FIG. 23, the
plurality of various blocks 300 each having the sawtooth structure 10 according to
the present disclosure may be provided. Upon assembling the blocks 300, a toy set
whose assembly angle can be finely adjusted may also be produced.
1. A toy block (20) comprising a sawtooth structure (10) and at least one magnet for
connecting to a similar block, said toy block further comprising:
an external sawtooth structure (100) for connecting to an external sawtooth structure
of a similar block; and
an internal sawtooth structure (200) for connecting to an internal sawtooth structure
of a similar block, wherein an inner sawtooth portion (110) having at least two inner
sawteeth (111-1) is formed on at least a part of an inner surface of the external
sawtooth structure (100), and
wherein an outer sawtooth portion (210) having at least two outer sawteeth (211-1)
is formed on at least a part of an outer surface of the internal sawtooth structure
(200) to correspond to the inner sawtooth portion (110) of the external sawtooth structure
(100), and
wherein the internal sawtooth structure (200) is spaced from the external sawtooth
structure (100) so as to be rotatable in the external sawtooth structure (100), and
wherein the internal sawtooth structure (200) includes a magnet accommodating portion
(230) to accommodate said at least one magnet (400) for attracting to a magnet of
a similar block.
2. The toy block of claim 1, wherein the inner sawtooth portion (110) of the external
sawtooth structure (100) is formed on the inner surface of the external sawtooth structure
(100),
wherein the outer sawtooth portion (210) of the internal sawtooth structure is formed
on the outer surface of the internal sawtooth structure (200),
wherein the inner sawtooth portion (110) of the external sawtooth structure (100)
is divided into an inner sawtooth area (111) and an inner non-sawtooth area (112),
and
wherein the outer sawtooth portion (210) of the internal sawtooth structure (200)
is divided into an outer sawtooth area (211) and an outer non-sawtooth area (212).
3. The toy block of claim 2, wherein a flat area of the inner surface occupied by the
inner non-sawtooth area (112) of the external sawtooth structure (100) is greater
than a flat area of the inner surface occupied by the inner sawtooth area (111) of
the external sawtooth structure (100) by more than a predetermined ratio, and
wherein a flat area of the outer surface occupied by the outer non-sawtooth area (212)
of the internal sawtooth structure (200) is greater than a flat area of the outer
surface occupied by the outer sawtooth area (211) of the internal sawtooth structure
(200) by more than the predetermined ratio.
4. The toy block of claim 3, wherein the predetermined ratio is greater than 1 and smaller
than 10.
5. The toy block of claim 1wherein the outer sawtooth area of the outer sawtooth portion
(210) of the internal sawtooth structure (200) goes over the inner sawtooth area (111)
of the inner sawtooth portion (110) of the external sawtooth structure (100).
6. The toy block of claim 3, wherein the number of inner sawteeth (111-1) constructing
the inner sawtooth portion (110) of the external sawtooth structure (100) and the
number of inner sawteeth (111-1) constructing the outer sawtooth portion (210) of
the internal sawtooth structure (200) are in a ratio of 1:1.
7. The toy block of claim 3, wherein the number of inner sawteeth (111-1) constructing
the inner sawtooth portion (110) of the external sawtooth structure (100) and the
number of outer sawteeth (211-1) constructing the outer sawtooth portion (210) of
the internal sawtooth structure (200) are in a ratio of 1:n or 1:1/n (n=natural number
more than 2 and less than 4),
wherein the outer non-sawtooth area (212) of the internal sawtooth structure (200)
is sufficiently greater than the outer sawtooth area (211) of the internal sawtooth
structure (200), such that at least two inner sawteeth (111-1) of the external sawtooth
structure (100) can enter between the outer sawteeth (211-1)of the internal sawtooth
structure (200), when the number of inner sawteeth (111-1) of the external sawtooth
structure (100) is greater than the number of outer sawteeth (211-1) of the internal
sawtooth structure (200), and
wherein the inner non-sawtooth area (112) of the external sawtooth structure (100)
is sufficiently greater than the inner sawtooth area (111) of the external sawtooth
structure (100), such that at least two outer sawteeth (211-1) of the inner sawtooth
structure can enter between the inner sawteeth (111-1) of the external sawtooth structure
(100), when the number of the outer sawteeth (211-1) of the internal sawtooth structure
(200) is greater than the number of inner sawteeth (111-1) of the external sawtooth
structure (100).
8. The toy block of claim 1, wherein at least one of the inner sawtooth (111-1) of the
external sawtooth structure (100) or the outer sawtooth of the internal sawtooth structure
(200) has a symmetric shape in left and right directions.
9. The toy block of claim 1, wherein at least one of the inner sawtooth (111-1) of the
external sawtooth structure (100) or the outer sawtooth (211-1) of the internal sawtooth
structure (200) has an asymmetric shape in the left and right directions.
10. The toy block of claim 9, wherein when both the inner sawtooth (111-1) of the external
sawtooth structure (100) and the outer sawtooth (211-1) of the internal sawtooth structure
(200) have the asymmetric shape in the left and right directions, the inner sawteeth
(111-1) of the external and internal and the outer sawteeth (211-1) of the internal
sawtooth structure (200) are arranged in such a manner of minimizing rotation resistance
in one direction and maximizing rotation resistance in an opposite direction.
11. The toy block of claim 1, wherein the external sawtooth structure (100) further comprises
a surface sawtooth portion (120) having at least two surface sawteeth (121-1) or the
internal sawtooth structure (200) further comprises a surface sawtooth portion (220)
having at least two surface sawteeth (221-1).
12. The toy block of claim 11, wherein the number of inner sawteeth (111-1) of the external
sawtooth structure (100) and the number of surface sawteeth (121-1) of the external
sawtooth structure (100) are the same as each other, and
wherein the inner sawteeth (111-1) and the surface sawteeth (121-1) of the external
sawtooth structure (100) are arranged by a first arrangement method of arranging the
inner sawtooth and the surface sawtooth of the external sawtooth structure (100) on
the same position, and a second arrangement method of arranging the surface sawtooth
of the external sawtooth structure (100) between the inner sawteeth (111-1) of the
external sawtooth structure (100).
13. The toy block of claim 11, wherein the number of inner sawteeth (111-1) of the external
sawtooth structure (100) and the number of surface sawteeth (121-1)of the external
sawtooth structure (100) are different from each other, and
wherein the inner sawteeth (111-1) and the surface sawteeth (121-1)are arranged in
a manner of arranging the surface sawtooth between the inner sawteeth (111-1).
14. The toy block of claim 11, wherein the number of outer sawteeth (211-1) of the internal
sawtooth structure (200) is the same as or greater than the number of surface sawteeth
(121-1) of the internal sawtooth structure (200).
15. The toy block of claim 1, wherein the internal sawtooth structure (200) has a shape
of a cone with an upper portion cut off, and is provided with a space having a magnet
accommodating portion (230) of more than a predetermined size for accommodating at
least one magnet therein.
16. The toy block of claim 1, wherein the internal sawtooth structure (200) is completely
accommodated in the external sawtooth structure (100), and
wherein a stopping jaw is formed on a lower portion of the inner surface of the external
sawtooth structure (100), so as to prevent separation of the internal sawtooth structure
(200) to outside when the internal sawtooth structure (200) is accommodated in the
external sawtooth structure (100).
17. The toy block of claim 1, wherein the external sawtooth structure (100) has a cylindrical
outer shape which is wide in width and long in length, and
wherein an inner shape of the external sawtooth structure (100) comprises an accommodating
space of the internal sawtooth structure (200) for accommodating the internal sawtooth
structure (200) therein.
18. The toy block of claim 1, wherein the sawtooth structure (10) further comprises a
fixing force-reinforcing unit formed on a lower circumferential portion of the external
sawtooth structure (100) to fix the external sawtooth structure (100) to a block.
19. The toy block of claim 18, wherein the fixing force-reinforcing unit comprises a stepped
portion (140) having at least one step, formed along the circumferential portion,
wherein at least a part of the stepped portion (140) is provided with a portion having
a radius greater than a radius of the external sawtooth structure (100), and
wherein the stepped portion comprises a portion having at least two types of radiuses.
20. The toy block of claim 19, wherein the stepped portion (140) comprises a first stepped
portion and at least one second stepped portion,
wherein the maximum radius of the first stepped portion (141) is greater than that
of the second stepped portion (142),
wherein the first stepped portion (141) is arranged closer to the surface sawtooth
portion (120) of the external sawtooth structure (100) than the second stepped portion,
and
wherein a ratio that the radius of the first stepped portion (141) is reduced when
the first stepped portion (141) is getting away from the surface sawtooth portion
(120) of the external sawtooth structure (100) is greater than a ratio that the radius
of the second stepped portion (142) is reduced when the second stepped portion (142)
is getting away from the surface sawtooth portion (220) of the external sawtooth structure
(100).
21. The toy block (20) of any preceding claim, wherein the sawtooth structure is accommodated,
together with a magnet (400), in each of magnet accommodating grooves (21) formed
on a plurality of positions of the toy block (20),
wherein the external sawtooth structure (500) comprises an opening formed on one side
surface thereof, and a through hole (510) formed through another side surface, facing
the one side surface, for externally exposing the magnet (400) therethrough,
wherein the external sawtooth structure (500) is inserted in the magnet accommodating
groove (21) in a contact state with an inner surface of the magnet accommodating groove
(21), and
wherein the internal sawtooth structure (600) is arranged within the external sawtooth
structure (500) to be movable along a height direction of the external sawtooth structure
(500), and has a part of an upper end thereof externally protruding through the through
hole (510) when the toy blocks are assembled with each other, the internal sawtooth
structure (600) comprising a separation-preventing portion (610) formed on one side
thereof to prevent the magnet from being separated from the magnet accommodating portion
(21).
22. The toy block (20) of claim 21, wherein a bent portion (520) is formed on a circumferential
portion of the through hole (510) formed on the external sawtooth structure (500)
in a bent manner, and
wherein a protruding portion (530) externally protruding through the through hole
when the toy blocks are assembled with each other, and a stopping portion (630) stopped
at the bent portion (520) are formed on an upper surface of the internal sawtooth
structure (600).
23. The toy block (20) of claim 22, wherein inner sawteeth (521) of the external sawtooth
structure (500) in a shape of sawtooth are formed on a lower surface of the bent portion
(520) contactable with the stopping portion (630),
wherein outer sawteeth (631) of the internal sawtooth structure (600) engaged with
the inner sawteeth (521) of the external sawtooth structure (500) are formed on an
upper surface of the stopping portion (630), and
wherein protrusion sawteeth (621), engaged with protrusion sawteeth (621) formed on
a neighboring protruding portion (620) when the toy blocks are assembled with each
other, are formed on an upper surface of the protruding portion (530).
24. The toy block (20) of claim 23, wherein the outer sawteeth (631) and the protrusion
sawteeth (621) of the internal sawtooth structure (600) are arranged along a radial
direction in an alternating manner to prevent mutual overlapping.
25. The toy block (20) of claim 21, wherein an overturn-preventing portion (640) is formed
on one side of the internal sawtooth structure (600), so as to prevent the internal
sawtooth structure (600) from being overturned within the external sawtooth structure
(500).
26. The toy block (20) of claim 25, wherein the overturn-preventing portion (640) is implemented
as an extending member, which extends from a lower portion of the internal sawtooth
structure (600) by a predetermined length along a height direction of the internal
sawtooth structure (600), such that the outer surface of the internal sawtooth structure
(600) contacting the inner surface of the external sawtooth structure (500) is higher
than a predetermined height.
27. The toy block (20) of claim 26, wherein a guide slit (641a) is formed in a curved
manner on the inner surface of the extending member (641), the guide slit (641a) guiding
a movement of the magnet (400) when one surface of the magnet (400) accommodated in
the magnet accommodating groove (21) is externally exposed through the through hole.
28. The toy block (20) of claim 21, wherein an edge of the magnet (400) is inclined or
rounded,
wherein the separation-preventing portion (610) has a lower surface curved into a
shape corresponding to the edge of the magnet (400), and
wherein the separation-preventing portion (610) is implemented as a separation-preventing
jaw protruding from an inner wall of an upper portion of the internal sawtooth structure
(600) along a radial direction of the internal sawtooth structure (600).
29. The toy block (20) of claim 28, wherein a stopping recess (21a) is recessed into an
inner surface of the magnet accommodating groove (21) of the block, and
wherein a stopping protrusion (530) inserted into the stopping recess is provided
on one side of the outer surface of the external sawtooth structure (500) such that
the external sawtooth structure (500) is maintained in the inserted state in the magnet
accommodating groove (21).
30. The toy block (20) of claim 29, wherein a double-curved surface is formed on an outer
surface of the stopping protrusion (530), the double-curved surface facilitating an
insertion of the external sawtooth structure (500) into the magnet accommodating groove
(21).
1. Bauklotz (20), der eine Sägezahnstruktur (10) und mindestens einen Magneten zum Verbinden
mit einem ähnlichen Klotz umfasst, wobei der Bauklotz ferner Folgendes umfasst:
eine äußere Sägezahnstruktur (100) zum Verbinden mit einer äußeren Sägezahnstruktur
eines ähnlichen Klotzes; und
eine innere Sägezahnstruktur (200) zum Verbinden mit einer inneren Sägezahnstruktur
eines ähnlichen Klotzes,
wobei ein innerer Sägezahnabschnitt (110) mit mindestens zwei inneren Sägezähnen (111-1)
auf mindestens einem Teil einer inneren Fläche der äußeren Sägezahnstruktur (100)
ausgebildet ist, und
wobei ein äußerer Sägezahnabschnitt (210) mit mindestens zwei äußeren Sägezähnen (211-1)
auf mindestens einem Teil einer äußeren Fläche der inneren Sägezahnstruktur (200)
ausgebildet ist, um dem inneren Sägezahnabschnitt (110) der äußeren Sägezahnstruktur
(100) zu entsprechen, und
wobei die innere Sägezahnstruktur (200) von der äußeren Sägezahnstruktur (100) beabstandet
ist, um in der äußeren Sägezahnstruktur (100) drehbar zu sein, und
wobei die innere Sägezahnstruktur (200) einen Magnetaufnahmeabschnitt (230) beinhaltet,
um den mindestens einen Magneten (400) zum Anziehen eines Magneten eines ähnlichen
Klotzes aufzunehmen.
2. Bauklotz nach Anspruch 1, wobei der innere Sägezahnabschnitt (110) der äußeren Sägezahnstruktur
(100) auf der inneren Fläche der äußeren Sägezahnstruktur (100) ausgebildet ist,
wobei der äußere Sägezahnabschnitt (210) der inneren Sägezahnstruktur auf der äußeren
Fläche der inneren Sägezahnstruktur (200) ausgebildet ist,
wobei der innere Sägezahnabschnitt (110) der äußeren Sägezahnstruktur (100) in einen
inneren Sägezahnbereich (111) und einen inneren Nichtsägezahnbereich (112) unterteilt
ist, und
wobei der äußere Sägezahnabschnitt (210) der inneren Sägezahnstruktur (200) in einen
äußeren Sägezahnbereich (211) und einen äußeren Nichtsägezahnbereich (212) unterteilt
ist.
3. Bauklotz nach Anspruch 2, wobei ein flacher Bereich der inneren Fläche, der durch
den inneren Nichtsägezahnbereich (112) der äußeren Sägezahnstruktur (100) eingenommen
ist, um mehr als ein vorbestimmtes Verhältnis größer als ein flacher Bereich der inneren
Fläche ist, der durch den inneren Sägezahnbereich (111) der äußeren Sägezahnstruktur
(100) eingenommen ist, und
wobei ein flacher Bereich der äußeren Fläche, der durch den äußeren Nichtsägezahnbereich
(212) der inneren Sägezahnstruktur (200) eingenommen ist, um mehr als das vorbestimmte
Verhältnis größer als ein flacher Bereich der äußeren Fläche ist, der durch den äußeren
Sägezahnbereich (211) der inneren Sägezahnstruktur (200) eingenommen ist.
4. Bauklotz nach Anspruch 3, wobei das vorbestimmte Verhältnis größer als 1 und kleiner
als 10 ist.
5. Bauklotz nach Anspruch 1, wobei der äußere Sägezahnbereich des äußeren Sägezahnabschnitts
(210) der inneren Sägezahnstruktur (200) über den inneren Sägezahnbereich (111) des
inneren Sägezahnabschnitts (110) der äußeren Sägezahnstruktur (100) geht.
6. Bauklotz nach Anspruch 3, wobei die Anzahl von inneren Sägezähnen (111-1), die den
inneren Sägezahnabschnitt (110) der äußeren Sägezahnstruktur (100) bilden, und die
Anzahl von inneren Sägezähnen (111-1), die den äußeren Sägezahnabschnitt (210) der
inneren Sägezahnstruktur (200) bilden, in einem Verhältnis von 1:1 stehen.
7. Bauklotz nach Anspruch 3, wobei die Anzahl von inneren Sägezähnen (111-1), die den
inneren Sägezahnabschnitt (110) der äußeren Sägezahnstruktur (100) bilden, und die
Anzahl von äußeren Sägezähnen (211-1), die den äußeren Sägezahnabschnitt (210) der
inneren Sägezahnstruktur (200) bilden, in einem Verhältnis von 1:n oder 1:1/n stehen
(n = eine natürliche Zahl, die größer als 2 und kleiner als 4 ist),
wobei der äußere Nichtsägezahnbereich (212) der inneren Sägezahnstruktur (200) ausreichend
größer als der äußere Sägezahnbereich (211) der inneren Sägezahnstruktur (200) ist,
sodass mindestens zwei innere Sägezähne (111-1) der äußeren Sägezahnstruktur (100)
zwischen den äußeren Sägezähnen (211-1) der inneren Sägezahnstruktur (200) eintreten
können, wenn die Anzahl von inneren Sägezähnen (111-1) der äußeren Sägezahnstruktur
(100) größer als die Anzahl von äußeren Sägezähnen (211-1) der inneren Sägezahnstruktur
(200) ist, und
wobei der innere Nichtsägezahnbereich (112) der äußeren Sägezahnstruktur (100) ausreichend
größer als der innere Sägezahnbereich (111) der äußeren Sägezahnstruktur (100) ist,
sodass mindestens zwei äußere Sägezähne (211-1) der inneren Sägezahnstruktur zwischen
den inneren Sägezähnen (111-1) der äußeren Sägezahnstruktur (100) eintreten können,
wenn die Anzahl der äußeren Sägezähne (211-1) der inneren Sägezahnstruktur (200) größer
als die Anzahl von inneren Sägezähnen (111-1) der äußeren Sägezahnstruktur (100) ist.
8. Bauklotz nach Anspruch 1, wobei mindestens einer des inneren Sägezahns (111-1) der
äußeren Sägezahnstruktur (100) oder des äußeren Sägezahns der inneren Sägezahnstruktur
(200) eine symmetrische Form in die linke und rechte Richtung aufweist.
9. Bauklotz nach Anspruch 1, wobei mindestens einer des inneren Sägezahns (111-1) der
äußeren Sägezahnstruktur (100) oder des äußeren Sägezahns (211-1) der inneren Sägezahnstruktur
(200) eine asymmetrische Form in die linke und rechte Richtung aufweist.
10. Bauklotz nach Anspruch 9, wobei, wenn der innere Sägezahn (111-1) der äußeren Sägezahnstruktur
(100) und der äußere Sägezahn (211-1) der inneren Sägezahnstruktur (200) die asymmetrische
Form in die linke und rechte Richtung aufweisen, die inneren Sägezähne (111-1) der
äußeren und der inneren und die äußeren Sägezähne (211-1) der inneren Sägezahnstruktur
(200) so angeordnet sind, um einen Drehwiderstand in eine Richtung zu minimieren und
einen Drehwiderstand in eine entgegengesetzte Richtung zu maximieren.
11. Bauklotz nach Anspruch 1, wobei die äußere Sägezahnstruktur (100) ferner einen Flächensägezahnabschnitt
(120) mit mindestens zwei Flächensägezähnen (121-1) umfasst oder die innere Sägezahnstruktur
(200) ferner einen Flächensägezahnabschnitt (220) mit mindestens zwei Flächensägezähnen
(221-1) umfasst.
12. Bauklotz nach Anspruch 11, wobei die Anzahl von inneren Sägezähnen (111-1) der äußeren
Sägezahnstruktur (100) und die Anzahl von Flächensägezähnen (121-1) der äußeren Sägezahnstruktur
(100) einander gleich sind, und
wobei die inneren Sägezähne (111-1) und die Flächensägezähne (121-1) der äußeren Sägezahnstruktur
(100) durch ein erstes Anordnungsverfahren zum Anordnen des inneren Sägezahns und
des Flächensägezahns der äußeren Sägezahnstruktur (100) an der gleichen Position,
und ein zweites Anordnungsverfahren zum Anordnen der Flächensägezahns der äußeren
Sägezahnstruktur (100) zwischen den inneren Sägezähnen (111-1) der äußeren Sägezahnstruktur
(100) angeordnet sind.
13. Bauklotz nach Anspruch 11, wobei sich die Anzahl von inneren Sägezähnen (111-1) der
äußeren Sägezahnstruktur (100) und die Anzahl von Flächensägezähnen (121-1) der äußeren
Sägezahnstruktur (100) voneinander unterscheiden, und
wobei die inneren Sägezähne (111-1) und die Flächensägezähne (121-1) in einer Weise
eines Anordnens des Flächensägezahns zwischen den inneren Sägezähnen (111-1) angeordnet
sind.
14. Bauklotz nach Anspruch 11, wobei die Anzahl von äußeren Sägezähnen (211-1) der inneren
Sägezahnstruktur (200) gleich oder größer als die Anzahl von Flächensägezähnen (121-1)
der inneren Sägezahnstruktur (200) ist.
15. Bauklotz nach Anspruch 1, wobei die innere Sägezahnstruktur (200) eine Form eines
Kegels aufweist, wobei ein oberer Abschnitt abgeschnitten ist, und mit einem Raum
bereitgestellt ist, der einen Magnetaufnahmeabschnitt (230) von mehr als einer vorbestimmten
Größe zum Aufnehmen von mindestens einem Magneten darin aufweist.
16. Bauklotz nach Anspruch 1, wobei die innere Sägezahnstruktur (200) komplett in der
äußeren Sägezahnstruktur (100) aufgenommen ist, und
wobei eine Anschlagbacke auf einem unteren Abschnitt der inneren Fläche der äußeren
Sägezahnstruktur (100) ausgebildet ist, um eine Trennung der inneren Sägezahnstruktur
(200) nach außen zu verhindern, wenn die innere Sägezahnstruktur (200) in der äußeren
Sägezahnstruktur (100) aufgenommen ist.
17. Bauklotz nach Anspruch 1, wobei die äußere Sägezahnstruktur (100) eine zylindrische
Außenform aufweist, die in der Breitenrichtung breit und in der Längsrichtung lang
ist, und
wobei eine innere Form der äußeren Sägezahnstruktur (100) einen Aufnahmeraum der inneren
Sägezahnstruktur (200) zum Aufnehmen der inneren Sägezahnstruktur (200) darin umfasst.
18. Bauklotz nach Anspruch 1, wobei die Sägezahnstruktur (10) ferner eine fixierende Kraftverstärkungseinheit
umfasst, die auf einem unteren Umfangsabschnitt der äußeren Sägezahnstruktur (100)
ausgebildet ist, um die äußere Sägezahnstruktur (100) an einem Klotz zu fixieren.
19. Bauklotz nach Anspruch 18, wobei die fixierende Kraftverstärkungseinheit einen abgestuften
Abschnitt (140) mit mindestens einer Stufe umfasst, die entlang dem Umfangsabschnitt
ausgebildet ist,
wobei mindestens ein Teil des abgestuften Abschnitts (140) mit einem Abschnitt bereitgestellt
ist, der einen Radius aufweist, der größer als ein Radius der äußeren Sägezahnstruktur
(100) ist, und
wobei der abgestufte Abschnitt einen Abschnitt umfasst, der mindestens zwei Typen
von Radien umfasst.
20. Bauklotz nach Anspruch 19, wobei der gestufte Abschnitt (140) einen ersten abgestuften
Abschnitt und mindestens einen zweiten abgestuften Abschnitt umfasst,
wobei der maximale Radius des ersten abgestuften Abschnitts (141) größer als der des
zweiten abgestuften Abschnitts (142) ist,
wobei der erste abgestufte Abschnitt (141) näher an dem Flächensägezahnabschnitt (120)
der äußeren Sägezahnstruktur (100) angeordnet ist als der zweite abgestufte Abschnitt,
und
wobei ein Verhältnis, um das der Radius des ersten abgestuften Abschnitts (141) reduziert
wird, wenn sich der erste abgestufte Abschnitt (141) von dem Flächensägezahnabschnitt
(120) der äußeren Sägezahnstruktur (100) entfernt, größer als ein Verhältnis ist,
um das der Radius des zweiten abgestuften Abschnitts (142) reduziert wird, wenn sich
der zweite abgestufte Abschnitt (142) von dem Flächensägezahnabschnitt (220) der äußeren
Sägezahnstruktur (100) entfernt.
21. Bauklotz (20) nach einem vorhergehenden Anspruch, wobei die Sägezahnstruktur zusammen
mit einem Magneten (400) in jeder von Magnetaufnahmerillen (21) aufgenommen ist, die
an einer Vielzahl von Positionen des Bauklotzes (20) ausgebildet sind,
wobei die äußere Sägezahnstruktur (500) eine Öffnung umfasst, die auf einer Seitenfläche
davon ausgebildet ist, und eine Durchgangsbohrung (510), die durch eine andere Seitenfläche
ausgebildet ist, die der einen Seitenfläche zum Freilegen des Magnets (400) nach außen
dadurch zugewandt ist,
wobei die äußere Sägezahnstruktur (500) in die Magnetaufnahmerille (21) in einem Kontaktzustand
mit einer inneren Fläche der Magnetaufnahmerille (21) eingesetzt wird,
und
wobei die innere Sägezahnstruktur (600) in der äußeren Sägezahnstruktur (500) angeordnet
ist, um entlang einer Höhenrichtung der äußeren Sägezahnstruktur (500) bewegbar zu
sein, und einen Teil eines oberen Endes davon aufweist, der durch die Durchgangsbohrung
(510) nach außen vorsteht, wenn die Bauklötze miteinander zusammengebaut sind, wobei
die innere Sägezahnstruktur (600) einen Trennungsverhinderungsabschnitt (610) umfasst,
der auf einer Seite davon ausgebildet ist, um zu verhindern, dass der Magnet von dem
Magnetaufnahmeabschnitt (21) getrennt wird.
22. Bauklotz (20) nach Anspruch 21, wobei ein gebogener Abschnitt (520) auf einem Umfangsabschnitt
der Durchgangsbohrung (510) ausgebildet ist, der auf der äußeren Sägezahnstruktur
(500) auf eine gebogene Weise ausgebildet ist, und
wobei ein vorstehender Abschnitt (530), der durch die Durchgangsbohrung nach außen
vorsteht, wenn die Bauklötze miteinander zusammengesetzt sind, und ein Anschlagsabschnitt
(630), der an dem gebogenen Abschnitt (520) angeschlagen ist, auf einer oberen Fläche
der inneren Sägezahnstruktur (600) ausgebildet sind.
23. Bauklotz (20) nach Anspruch 22, wobei innere Sägezähne (521) der äußeren Sägezahnstruktur
(500) in einer Form von Sägezähnen auf einer unteren Fläche des gebogenen Abschnitts
(520) ausgebildet sind, der mit dem Anschlagsabschnitt (630) kontaktierbar ist,
wobei äußere Sägezähne (631) der inneren Sägezahnstruktur (600), die mit den inneren
Sägezähnen (521) der äußeren Sägezahnstruktur (500) in Eingriff sind, auf einer oberen
Fläche des Anschlagsabschnitts (630) ausgebildet sind, und
wobei Vorsprungsägezähne (621), die mit Vorsprungsägezähnen (621) in Eingriff sind,
die auf einem benachbarten vorstehenden Abschnitt (620) ausgebildet sind, wenn die
Bauklötze miteinander zusammengebaut sind, auf einer oberen Fläche des vorstehenden
Abschnitts (530) ausgebildet sind.
24. Bauklotz (20) nach Anspruch 23, wobei die äußeren Sägezähne (631) und die Vorsprungsägezähne
(621) der inneren Sägezahnstruktur (600) entlang einer radialen Richtung in einer
sich abwechselnden Art angeordnet sind, um beidseitiges Überlappen zu verhindern.
25. Bauklotz (20) nach Anspruch 21, wobei ein Überdrehverhinderungsabschnitt (640) auf
einer Seite der inneren Sägezahnstruktur (600) ausgebildet ist, um zu verhindern,
dass die innere Sägezahnstruktur (600) in der äußeren Sägezahnstruktur (500) überdreht
wird.
26. Bauklotz (20) nach Anspruch 25, wobei der Überdrehverhinderungsabschnitt (640) als
ein sich erstreckendes Glied umgesetzt ist, das sich von einem unteren Abschnitt der
inneren Sägezahnstruktur (600) um eine vorbestimmt Länge entlang einer Höhenrichtung
der inneren Sägezahnstruktur (600) erstreckt, sodass die äußere Fläche der inneren
Sägezahnstruktur (600), die die innere Fläche der äußeren Sägezahnstruktur (500) kontaktiert,
höher als eine vorbestimmte Höhe ist.
27. Bauklotz (20) nach Anspruch 26, wobei ein Führungsschlitz (641a) auf eine gekrümmten
Weise auf der inneren Fläche des sich erstreckenden Glieds (641) ausgebildet ist,
wobei der Führungsschlitz (641a) eine Bewegung des Magneten (400) führt, wenn eine
Fläche des Magneten (400), der in der Magnetaufnahmerille (21) aufgenommen ist, nach
außen durch die Durchgangsbohrung freigelegt ist.
28. Bauklotz (20) nach Anspruch 21, wobei ein Rand des Magneten (400) geneigt oder abgerundet
ist,
wobei der Trennungsverhinderungsabschnitt (610) eine niedrigere Fläche aufweist, die
in einer Form gekrümmt ist, die dem Rand des Magneten (400) entspricht, und
wobei der Trennungsverhinderungsabschnitt (610) als eine trennungsverhindernde Backe
umgesetzt ist, die von einer inneren Wand eines oberen Abschnitts der inneren Sägezahnstruktur
(600) entlang einer radialen Richtung der inneren Sägezahnstruktur (600) vorsteht.
29. Bauklotz (20) nach Anspruch 28, wobei eine Anschlagvertiefung (21a) in eine innere
Fläche der Magnetaufnahmerille (21) des Klotzes eingelassen ist, und
wobei ein Anschlagvorsprung (530), der in die Anschlagvertiefung eingesetzt ist, auf
einer Seite der äußeren Fläche der äußeren Sägezahnstruktur (500) bereitgestellt ist,
sodass die äußere Sägezahnstruktur (500) in dem eingesetzten Zustand in der Magnetaufnahmerille
(21) gehalten wird.
30. Bauklotz (20) nach Anspruch 29, wobei eine doppelt gekrümmte Fläche auf einer äußeren
Fläche des Anschlagvorsprungs (530) ausgebildet ist, wobei die doppelt gekrümmte Fläche
ein Einführen der äußeren Sägezahnstruktur (500) in die Magnetaufnahmerille (21) erleichtert.
1. Bloc-jouet (20) comprenant une structure en dents de scie (10) et au moins un aimant
permettant un raccordement à un bloc similaire, ledit bloc-jouet comprenant en outre
:
une structure en dents de scie extérieure (100) permettant un raccordement à une structure
en dents de scie extérieure d'un bloc similaire ; et
une structure en dents de scie intérieure (200) permettant un raccordement à une structure
en dents de scie intérieure d'un bloc similaire, une partie en dents de scie interne
(110) possédant au moins deux dents de scie internes (111-1) étant formée sur au moins
une partie d'une surface interne de la structure en dents de scie extérieure (100)
et une partie en dents de scie externe (210) possédant au moins deux dents de scie
externes (211-1) étant formée sur au moins une partie d'une surface externe de la
structure en dents de scie intérieure (200) pour correspondre à la partie en dents
de scie interne (110) de la structure en dents de scie extérieure (100) et ladite
structure en dents de scie intérieure (200) étant espacée de la structure en dents
de scie extérieure (100) de façon à pouvoir tourner dans la structure en dents de
scie extérieure (100) et ladite structure en dents de scie intérieure (200) comprenant
une partie de logement d'aimant (230) pour loger ledit au moins un aimant (400) destiné
à attirer un aimant d'un bloc similaire.
2. Bloc-jouet selon la revendication 1, ladite partie en dents de scie interne (110)
de la structure en dents de scie extérieure (100) étant formée sur la surface interne
de la structure en dents de scie extérieure (100), ladite partie en dents de scie
externe (210) de la structure en dents de scie intérieure étant formée sur la surface
externe de la structure en dents de scie intérieure (200), ladite partie en dents
de scie interne (110) de la structure en dents de scie extérieure (100) étant divisée
en une zone en dents de scie interne (111) et une zone sans dents de scie interne
(112) et ladite partie en dents de scie externe (210) de la structure en dents de
scie intérieure (200) étant divisée en une zone en dents de scie externe (211) et
une zone sans dents de scie externe (212).
3. Bloc-jouet selon la revendication 2, une zone plane de la surface interne occupée
par la zone sans dents de scie interne (112) de la structure en dents de scie extérieure
(100) étant supérieure à une zone plane de la surface interne occupée par la zone
en dents de scie interne (111) de la structure en dents de scie extérieure (100) de
plus qu'un rapport prédéfini, et
une zone plane de la surface externe occupée par la zone sans dents de scie externe
(212) de la structure en dents de scie intérieure (200) étant supérieure à une zone
plane de la surface externe occupée par la zone en dents de scie externe (211) de
la structure en dents de scie intérieure (200) de plus que le rapport prédéfini.
4. Bloc-jouet selon la revendication 3, ledit rapport prédéfini étant supérieur à 1 et
inférieur à 10.
5. Bloc-jouet selon la revendication 1, ladite zone en dents de scie externe de la partie
en dents de scie externe (210) de la structure en dents de scie intérieure (200) allant
sur la zone en dents de scie interne (111) de la partie en dents de scie interne (110)
de la structure en dents de scie extérieure (100).
6. Bloc-jouet selon la revendication 3, ledit nombre de dents de scie internes (111-1)
constituant la partie en dents de scie interne (110) de la structure en dents de scie
extérieure (100) et ledit nombre de dents de scie internes (111-1) constituant la
partie en dents de scie externe (210) de la structure en dents de scie intérieure
(200) étant dans un rapport de 1:1.
7. Bloc-jouet selon la revendication 3, ledit nombre de dents de scie internes (111-1)
constituant la partie en dents de scie interne (110) de la structure en dents de scie
extérieure (100) et ledit nombre de dents de scie externes (211-1) constituant la
partie en dents de scie externe (210) de la structure en dents de scie intérieure
(200) étant dans un rapport de 1:n ou 1:1/n (n étant un nombre naturel supérieur à
2 et inférieur à 4),
ladite zone sans dents de scie externe (212) de la structure en dents de scie intérieure
(200) étant suffisamment supérieure à la zone en dents de scie extérieure (211) de
la structure en dents de scie intérieure (200), de sorte qu'au moins deux dents de
scie internes (111-1) de la structure en dents de scie extérieure (100) puissent entrer
entre les dents de scie externes (211-1) de la structure en dents de scie intérieure
(200), lorsque le nombre de dents de scie internes (111-1) de la structure en dents
de scie extérieure (100) est supérieur au nombre de dents de scie externes (211-1)
de la structure en dent de scie intérieure (200), et
ladite zone sans dents de scie interne (112) de la structure en dents de scie extérieure
(100) étant suffisamment supérieure à la zone en dents de scie interne (111) de la
structure en dents de scie extérieure (100) de sorte qu'au moins deux dents de scie
externes (211-1) de la structure en dents de scie intérieure puissent entrer entre
les dents de scie internes (111-1) de la structure en dents de scie extérieure (100),
lorsque le nombre de dents de scie externes (211-1) de la structure en dents de scie
intérieure (200) est supérieur au nombre de dents de scie internes (111-1) de la structure
en dents de scie extérieure (100).
8. Bloc-jouet selon la revendication 1, au moins l'une des dents de scie internes (111-1)
de la structure en dents de scie extérieure (100) ou les dents de scie externes de
la structure en dents de scie intérieure (200) possédant une forme symétrique selon
les directions gauche et droite.
9. Bloc-jouet selon la revendication 1, au moins l'une des dents de scie internes (111-1)
de la structure en dents de scie extérieure (100) ou des dents de scie externes (211-1)
de la structure en dents de scie intérieure (200) possédant une forme asymétrique
selon les directions gauche et droite.
10. Bloc-jouet selon la revendication 9, lorsque les dents de scie internes (111-1) de
la structure en dents de scie extérieure (100) et les dents de scie externes (211-1)
de la structure en dents de scie intérieure (200) possèdent la forme asymétrique selon
les directions gauche et droite, lesdites dents de scie internes (111-1) de l'extérieur
et de l'intérieur et lesdites dents de scie externes (211-1) de la structure en dents
de scie intérieure (200) étant agencées d'une telle manière que la résistance de rotation
dans un sens est minimisée et que la résistance de rotation dans un sens opposé est
maximisée.
11. Bloc-jouet selon la revendication 1, ladite structure en dents de scie extérieure
(100) comprenant en outre une partie en dents de scie de surface (120) possédant au
moins deux dents de scie de surface (121-1) ou ladite structure en dents de scie intérieure
(200) comprenant en outre une partie en dents de scie de surface (220) possédant au
moins deux dents de scie de surface (221-1).
12. Bloc-jouet selon la revendication 11, ledit nombre de dents de scie internes (111-1)
de la structure en dents de scie extérieure (100) et ledit nombre de dents de scie
de surface (121-1) de la structure en dents de scie extérieure (100) étant les mêmes
les unes par rapport aux autres, et lesdites dents de scie internes (111-1) et lesdites
dents de scie de surface (121-1) de la structure en dents de scie extérieure (100)
étant agencées selon un premier procédé d'agencement pour agencer les dents de scie
internes et les dents de scie de surface de la structure en dents de scie extérieure
(100) sur la même position et un second procédé d'agencement pour agencer les dents
de scie de surface de la structure en dents de scie extérieure (100) entre les dents
de scie internes (111-1) de la structure en dents de scie extérieure (100).
13. Bloc-jouet selon la revendication 11, ledit nombre de dents de scie internes (111-1)
de la structure en dents de scie extérieure (100) et ledit nombre de dents de scie
de surface (121-1) de la structure en dents de scie extérieure (100) étant différents
l'un de l'autre, et
lesdites dents de scie internes (111-1) et lesdites dents de scie de surface (121-1)
étant agencées de telle manière que la dent de scie de surface soit agencée entre
les dents de scie internes (111-1).
14. Bloc-jouet selon la revendication 11, ledit nombre de dents de scie externes (211-1)
de la structure en dents de scie intérieure (200) étant supérieur ou égal au nombre
de dents de scie de surface (121-1) de la structure en dents de scie intérieure (200).
15. Bloc-jouet selon la revendication 1, ladite structure en dents de scie intérieure
(200) possédant la forme d'un cône avec une partie supérieure coupée et étant dotée
d'un espace comportant une partie de logement d'aimant (230) d'une taille supérieure
à une taille prédéfinie permettant de loger au moins un aimant dans celle-ci.
16. Bloc-jouet selon la revendication 1, ladite structure en dents de scie intérieure
(200) étant complètement logée dans la structure en dents de scie extérieure (100),
et
une mâchoire de butée étant formée sur une partie inférieure de la surface interne
de la structure en dents de scie extérieure (100) de façon à empêcher la séparation
de la structure en dents de scie intérieure (200) vers l'extérieur lorsque la structure
en dents de scie intérieure (200) est logée dans la structure en dents de scie extérieure
(100).
17. Bloc-jouet selon la revendication 1, ladite structure en dents de scie extérieure
(100) possédant une forme externe cylindrique qui est large en largeur et longue en
longueur, et
une forme interne de la structure en dents de scie extérieure (100) comprenant un
espace de logement de la structure en dents de scie intérieure (200) destiné à loger
la structure en dents de scie intérieure (200) dans celui-ci.
18. Bloc-jouet selon la revendication 1, ladite structure en dents de scie (10) comprenant
en outre une unité de renforcement de force de fixation formée sur une partie circonférentielle
inférieure de la structure en dents de scie extérieure (100) afin de fixer la structure
en dents de scie extérieure (100) à un bloc.
19. Bloc-jouet selon la revendication 18, ladite unité de renforcement de force de fixation
comprenant une partie étagée (140) possédant au moins un étage, formée le long de
la partie circonférentielle,
au moins une partie de la partie étagée (140) étant dotée d'une partie possédant un
rayon supérieur à un rayon de la structure en dents de scie extérieure (100), et
ladite partie étagée comprenant une partie possédant au moins deux types de rayon.
20. Bloc-jouet selon la revendication 19, ladite partie étagée (140) comprenant une première
partie étagée et au moins une seconde partie étagée,
ledit rayon maximal de la première partie étagée (141) étant supérieur à celui de
la seconde partie étagée (142),
ladite première partie étagée (141) étant agencée de manière à être plus proche de
la partie en dents de scie de surface (120) de la structure en dents de scie extérieure
(100) que la seconde partie étagée, et
un rapport tel que le rayon de la première partie étagée (141) est réduit lorsque
la première partie étagée (141) s'éloigne de la partie en dents de scie de surface
(120) de la structure en dents de scie extérieure (100) étant supérieur à un rapport
tel que le rayon de la seconde partie étagée (142) est réduit lorsque la seconde partie
étagée (142) s'éloigne de la partie en dents de scie de surface (220) de la structure
en dents de scie extérieure (100).
21. Bloc-jouet (20) selon l'une quelconque des revendications précédentes, ladite structure
en dents de scie étant logée, ensemble avec un aimant (400), dans chacune des rainures
de logement d'aimant (21) formée sur une pluralité de positions du bloc-jouet (20),
ladite structure en dents de scie extérieure (500) comprenant une ouverture formée
sur une surface latérale de celle-ci et un trou traversant (510) formé à travers une
autre surface latérale, faisant face à la surface latérale, pour exposer extérieurement
l'aimant (400) à travers celui-ci,
ladite structure en dents de scie extérieure (500) étant insérée dans la rainure de
logement d'aimant (21) dans un état de contact avec une surface interne de la rainure
de logement d'aimant (21), et
ladite structure en dents de scie intérieure (600) étant agencée à l'intérieur de
la structure en dents de scie extérieure (500) pour être mobile le long d'une direction
de hauteur de la structure en dents de scie extérieure (500) et possède une partie
d'une extrémité supérieure de celle-ci faisant saillie extérieurement à travers le
trou traversant (510) lorsque les blocs-jouets sont assemblés les uns avec les autres,
ladite structure en dents de scie intérieure (600) comprenant une partie de prévention
de séparation (610) formée sur un côté de celle-ci pour empêcher l'aimant d'être séparé
de la partie de logement d'aimant (21).
22. Bloc-jouet (20) selon la revendication 21, une partie incurvée (520) étant formée
sur une partie circonférentielle du trou traversant (510) formée sur la structure
en dents de scie extérieure (500) de manière incurvée, et
une partie saillante (530) faisant saillie extérieurement à travers le trou traversant
lorsque les blocs-jouets sont assemblés les uns avec les autres et une partie de butée
(630) en butée contre la partie incurvée (520) étant formées sur une surface supérieure
de la structure en dents de scie intérieure (600).
23. Bloc-jouet (20) selon la revendication 22, lesdites dents de scie intérieure (521)
de la structure en dents de scie extérieure (500) en forme de dents de scie sont formées
sur une surface inférieure de la partie incurvée (520) pouvant être en contact avec
la partie de butée (630),
lesdites dents de scie externes (631) de la structure en dents de scie intérieure
(600) en prise avec les dents de scie internes (521) de la structure en dents de scie
extérieure (500) étant formées sur une surface supérieure de la partie de butée (630),
et
lesdites dents de scie saillantes (621) en prise avec les dents de scie saillantes
(621) formées sur une partie saillante voisine (620) lorsque les blocs-jouets sont
assemblés les uns avec les autres, étant formées sur une surface supérieure de la
partie saillante (530).
24. Bloc-jouet (20) selon la revendication 23, lesdites dents de scie externes (631) et
lesdites dents de scie saillantes (621) de la structure en dents de scie intérieure
(600) étant agencées le long d'une direction radiale de manière alternée pour empêcher
un chevauchement mutuel.
25. Bloc-jouet (20) selon la revendication 21, une partie de prévention de renversement
(640) étant formée sur un côté de la structure en dents de scie intérieure (600) de
façon à empêcher la structure en dents de scie intérieure (600) d'être renversée à
l'intérieur de la structure en dents de scie extérieure (500).
26. Bloc-jouet (20) selon la revendication 25, ladite partie de prévention de renversement
(640) étant mise en oeuvre sous la forme d'un élément d'extension qui s'étend depuis
une partie inférieure de la structure en dents de scie intérieure (600) par une longueur
prédéfinie le long d'une direction de hauteur de la structure en dents de scie intérieure
(600) de sorte que la surface externe de la structure en dents de scie intérieure
(600) en contact avec la surface interne de la structure en dents de scie extérieure
(500) soit plus haute qu'une hauteur prédéfinie.
27. Bloc-jouet (20) selon la revendication 26, une fente de guidage (641a) étant formée
de manière incurvée sur la surface interne de l'élément d'extension (641), ladite
fente de guidage (641a) guidant un mouvement de l'aimant (400) lorsqu'une surface
de l'aimant (400) logé dans la rainure de logement d'aimant (21) est exposée extérieurement
à travers le trou traversant.
28. Bloc-jouet (20) selon la revendication 21, un bord de l'aimant (400) étant incliné
ou arrondi,
ladite partie de prévention de séparation (610) possédant une surface inférieure incurvée
dans une forme correspondant au bord de l'aimant (400), et
ladite partie de prévention de séparation (610) étant mis en oeuvre sous la forme
d'une mâchoire de prévention de séparation faisant saillie depuis une paroi interne
d'une partie supérieure de la structure en dents de scie intérieure (600) le long
d'une direction radiale de la structure en dents de scie intérieure (600).
29. Bloc-jouet (20) selon la revendication 28, un évidement de butée (21a) étant évidé
dans une surface interne de la rainure de logement d'aimant (21) du bloc, et
une saillie de butée (530) inséré dans l'évidement de butée étant disposée sur un
côté de la surface externe de la structure en dents de scie extérieure (500) de sorte
qu'une structure en dents de scie extérieure (500) soit maintenue dans l'état inséré
dans la rainure de logement d'aimant (21).
30. Bloc-jouet (20) selon la revendication 29, une surface à double incurvation étant
formée sur la surface externe de la saillie de butée (530), ladite surface à double
incurvation facilitant une insertion de la structure en dents de scie extérieure (500)
dans la rainure de logement d'aimant (21).