FIELD OF THE INVENTION
[0001] The present invention relates to a rotor, for example for a gas-turbine engine. More
particularly, the present invention relates to mechanical coupling between the rotor
discs of the rotor.
BACKGROUND
[0002] State-of-the-art gas-turbines engines typically comprise three sections: A compressor,
a combustor, and a turbine. Before entering the combustor, pressure of the working
medium, typically air, is increased by the compression section. The compressed air
then leaves the compression section and enters the combustor, where it is mixed with
fuel and the combustion process takes place. After combustion, hot air leaves the
combustor and is fed into the turbine.
[0003] A gas-turbine engine comprises a rotor. The rotor can be assembled from discs in
a stack-up operation where components such as the compressor discs and the turbine
discs are connected coaxially together along the axis of rotation. Various ways of
connecting the discs of a rotor have been put forward.
US3976399 discloses rotor discs stacked on a central connecting rod. The rotor discs of
US3976399 are held in place by half-shells which are clamped together by clamping rings.
US3976399 also discloses heat-shrinking rotors discs onto a central connecting rod.
US7384075 discloses threaded joints between the components of a rotor. The threaded joint is
additionally secured by an anti-rotation locking mechanism.
US5537814 and
US8100666 disclose a clamping nut and a tie shaft to axially clamp a turbine disc together
with other rotor components.
US4310286 discloses bolted joints to fixate the discs of a rotor.
[0004] The mechanical connections between the rotor discs of a gas-turbine engine have to
meet a number of conflicting technical requirements: The rotor of a gas-turbine engine
may deflect, so the axis of rotation and the center of mass of the rotor will no longer
coincide. The connections between the rotors discs of a gas-turbine engine shall thus
be torsionally stiff. The connections between the rotor discs of a gas-turbine engine
shall be designed for a critical speed of the rotor well above the operational speed
of 1500 or 15000 rpm.
[0005] The pressures inside the gas-turbine engine may be severe. The rotor of a gas-turbine
engine shall be designed to withstand the corresponding stresses.
[0006] The new stack of rotor discs shall minimize the effort involved in its fabrication.
In particular, the fabrication of the stack of rotor discs shall minimize the use
of special tools.
[0007] Despite the aforementioned requirement of torsional stiffness, the joints between
rotor discs shall allow easy and effortless removal and replacement of discs when
the rotor is in stationary position. In other words, any rotor discs shall be easily
displaceable during maintenance or repair.
GB 394 001 A discloses a rotor, wherein the discs are connected with each other by interlocking
members but the discs are welded after interlocking, thereby preventing any relative
movement of such parts.
[0008] The present application is oriented towards providing the aforementioned needs and
towards overcoming the aforementioned difficulties.
SUMMARY OF THE INVENTION
[0009] The present disclosure is about improved mechanical connections between the discs
of a rotor. In order to arrive at a connection that is torsionally stiff and leakage-proof,
an interrupted screw on each side of a reciprocally connected rotor disc is proposed
in claims 1 and 4. An interrupted screw is a screw whose surface is divided longitudinally
into several blank or cutaway sections. The two rotor discs are locked together by
a fraction of a turn.
[0010] After connecting the two rotor discs, the surfaces of the interrupted screw of the
first rotor disc and of the reciprocally made nut of the second rotor disc align.
The alignment of the two surfaces results in a connection that is torsionally stiff
and allows for a critical speed of the rotor well above 1500 to 15000 rpm.
[0011] The interrupted screw on each side of the reciprocally connected rotor discs can
be made of the same metals. That way, corrosion issues due to the use of dissimilar
metals are eliminated.
[0012] The rotor discs can also be made of different metals, in particular of different
steel alloys. A gas-turbine engine may require different alloys to be used for the
rotor discs of the compressor and for the rotor discs of the combustor. The present
disclosure allows rotor discs made of different metals or alloys to be connected.
[0013] To assemble a rotor, the two or more rotor discs are engaged and one rotor disc is
rotated by a fraction of a turn against the other rotor disc. The rotation is carried
out about the axis of rotation common to the two rotor discs. That axis will later
become the axis of rotation of the rotor. As soon as the two discs are connected,
yet another rotor disc is connected the stack of previously joined rotor discs by
engaging said disc and the stack of rotor discs. The process continues until the assembly
of the rotor is complete.
[0014] Likewise, during repair or maintenance of a rotor, a disc is removed from the stack
of rotor discs by rotating it by a fraction of a turn. The direction of the rotation
is now opposite to the direction when two discs were connected. The disc can then
be removed from the remaining stack rotor discs. The process may continue until the
stack of rotor discs has been completely disassembled.
BRIEF DESCRIPTION OF DRAWINGS
[0015] The foregoing objects and many of the attendant advantages of this invention will
become more readily appreciated as the same becomes better understood by reference
to the following detailed description when taken in conjunction with the accompanying
drawings, wherein:
Fig 1 is a cut-away view of a rotor disc according to the application.
Fig 2 is a three-dimensional view of one side of said rotor disc.
Fig 3 is a front view of the other side of said rotor disc.
Fig 4 is a three-dimensional view of two rotor discs before being connected.
Fig 5 is a three-dimensional view of a stack of rotor discs.
Fig 6 gives a three-dimensional view of a rotor disc according to another embodiment
of the invention.
Fig 7 is a three-dimensional view of the rotor disc of Fig 6 from the other side.
Fig 8 is a three-dimensional view of connected rotor discs as per Fig 6 and Fig 7.
DETAILED DESCRIPTION OF THE INVENTION
[0016] Fig. 1 gives a cut-away view of a rotor disc 1 according to the application The rotor
disc 1 comprises a plurality of protrusions arranged along the outer circumference
of the rim 3. On each of its sides 4, 5, the rotor disc 1 provides an interrupted
screw. The two interrupted screws on each side 4, 5 of the rotor disc are reciprocally
made, so the interrupted screw on one side 4 of a rotor disc 1 may cooperate with
the interrupted screw on the opposite side 5 of another rotor disc. Fig 1 shows the
interrupted screw on one side 5 of the rotor disc comprises a plurality of slots 6a,
6b, 6c, 6d. They 6a, 6b, 6c, 6d are preferably arranged evenly along the inner perimeter
of the rotor disc 1, so the distance between each pair of adjacent slots is the same.
The slots 6a, 6b, 6c, 6d provide clamping surfaces 7 arranged in between the slots
6a, 6b, 6c, 6d and the rim 3. The slots 6a, 6b, 6c, 6d also comprise support portions
8. The support portions 8 carry the mechanical forces applied to the slots 6a, 6b,
6c, 6d when two rotor discs are connected and/or in-service. In a preferred embodiment,
the support portions 8 of each slot 6a, 6b, 6c, 6d are made of the same material as
the rim 3.
[0017] On the other side 4 of the rotor disc 1, segments 9a, 9b, 9c have been arranged.
Each segment on one side 4 of the rotor disc 1 reciprocates with a slot on the other
side 5 of the disc 1. In a preferred embodiment, the segments 9a, 9b, 9c are arranged
evenly like the slots 6a, 6b, 6c, 6d on the other side 5 of the rotor disc 1.
[0018] The segments 9a, 9b, 9c and the slots 6a, 6b, 6c, 6d are arranged so they act like
plugs and sockets. In a preferred embodiment, the segments 9a, 9b, 9c can slide into
the clamping surfaces 7 provided by each slot 6a, 6b, 6c, 6d. In this embodiment,
the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d narrow towards one of their ends.
The segments 9a, 9b, 9c narrow in the same way. The segments 9a, 9b, 9c can thus slide
into the clamping surfaces 7 until the surfaces of the segments 9a, 9b, 9c and the
surfaces of the clamping surfaces 7 engage. A rigid connection between two adjacent
discs is formed as the segments 9a, 9b, 9c eventually get wedged inside the slots
6a, 6b, 6c, 6d.
[0019] In another embodiment, the disc 1 with the slots 6a, 6b, 6c, 6d is heated before
the segments 9a, 9b, 9c can slide into the slots 6a, 6b, 6c, 6d. By heating the disc
1 with the slots 6a, 6b, 6c, 6d, the material expands, so the inner diameter of each
clamping surface 7 increases. The segments 9a, 9b, 9c may then slide into the slots
6a, 6b, 6c, 6d. The temperatures of the slots 6a, 6b, 6c, 6d lower after introducing
the segments 9a, 9b, 9c and a rigid connection providing a rotor with torsional stiffness
will be formed. The segments 9a, 9b, 9c will then also exert an inward force on the
clamping surfaces 7 of the slots 6a, 6b, 6c, 6d. The inward force counter-acts the
centrifugal force when the rotor disc 1 rotates as part of a rotor. In other words,
heat treatment will not only result in torsional stiffness but also in compensation
of centrifugal forces when the rotor is in service.
[0020] It should be mentioned the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d as shown
on Fig 1 point outwards from the axis of rotation of the disc 1. In another embodiment,
the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d may point inwards. This embodiment
will require segments 9a, 9b, 9c whose surfaces point outwards.
[0021] Fig. 2 provides a three-dimensional view of a rotor disc 1 according to the application.
This three-dimensional drawing shows the rotor disc 1 of Fig 1 viewed from one of
its sides 4. Fig 2 shows a total of six segments 9a, 9b, 9c, 9d, 9e, 9f that are arranged
in an equidistant manner. In this particular embodiment, the angle between two adjacent
segments as measured from the axis of rotation of the rotor disc 1 would be 60°. Also,
the segments 9a, 9b, 9c, 9d, 9e, 9f shown on the present Fig 2 have got the shape
of bent cylinders. In other embodiments, the cross-sections of segments 9a, 9b, 9c,
9d, 9e, 9f may be triangular or square.
[0022] Fig 3 shows a front view of the rotor disc 1 of Fig 1. Fig 3 shows the rotor disc
1 of Fig 1 as viewed from its other side 5. Fig 3 shows a total of six slots 6a, 6b,
6c, 6d, 6e, 6f evenly distributed along the inner perimeter of the rotor disc 1. The
slots 6a, 6b, 6c, 6d, 6e, 6f are arranged so they match with the reciprocally made
segments 9a, 9b, 9c, 9d, 9e, 9f on the other side 4 of an adjacent rotor disc.
[0023] Fig 4 shows a pair of rotor discs 1a, 1b prior to them being connected. The two rotor
discs 1a, 1b correspond to the discs shown on Fig 1 - 3. The first rotor disc 1a provides
an arrangement of slots 6a, 6b, 6c that matches the arrangement of segments 9a, 9b,
9c of the second rotor disc 1b. In order to connect the two rotor discs 1a, 1b, the
reciprocating surfaces of the discs 1a, 1b are engaged and one disc is rotated by
a fraction of a turn against the other disc. In the particular embodiment shown on
Fig 4, one disc would be rotated by 60° against the other disc because there is a
total six segments 9a, 9b, 9c, 9d, 9e, 9f and of six slots 6a, 6b, 6c, 6d, 6e, 6f.
[0024] The clamping surfaces 7 of the slots 6a, 6b, 6c, 6d, 6e, 6f and the surface of the
segments 9a, 9b, 9c, 9d, 9e, 9f get wedged when the discs 1a, 1b are connected. In
a preferred embodiment, wedged joint between the discs 1a, 1b then essentially becomes
leakage-proof.
[0025] To disconnect the two discs 1a, 1b, the process as described above is reversed. Heat
treatment can be used as well. The disc 1a with the slots 6a, 6b, 6c, 6d, 6e, 6f will
have to be heated at a faster rate than the other disc 1b. The two discs 1a, 1b are
disconnected as soon as the heat treatment yields a gap between the surfaces of the
slots 6a, 6b, 6c, 6d, 6e, 6f and the surfaces of the segments 9a, 9b, 9c, 9d, 9e,
9f. Induction heating may be used for the purpose of heating disc 1a faster than the
other disc 1b. The rotor discs 1a, 1b allow for easy dismantling of a rotor, since
disconnection of the rotor discs 1a, 1b only requires a reversal of the above process.
[0026] While Fig 4 shows a pair of rotor discs before being joined, Fig 5 shows a stack
of five rotor discs 1a, 1b, 1c, 1d, 1e that have been connected as described above.
According to Fig 5 it is possible to connect a plurality of rotor discs with reciprocating
interrupted screws on either side. The resulting stack of connected rotor discs will
form a rotor that is torsionally stiff and whose critical speed is well beyond 1500
to 15000 rpm.
[0027] Fig 5 also indicates the stack of rotor discs provides an aperture along the common
central axis of the rotor discs. The aperture common to all rotor discs allows other
elements such as shafts to be arranged inside the aperture. There is thus sufficient
space inside stack of rotor discs to arrange separate shafts for the compressor and
for the turbine sections of a gas-turbine engine.
[0028] The rotor discs 1a, 1b, 1c, 1d, 1e shown on Fig 5 have all got the same diameters.
In another embodiment, rotor discs as per this application are connected where the
rotor discs differ in diameter.
[0029] Fig 6 shows a rotor disc 1 according to another embodiment of the application. The
rotor disc 1 of Fig 6 comprises a protruding rim 10. The rim 10 provides a plurality
of wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h arranged on its sidewall. In a preferred
embodiment, the wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h are arranged evenly
along the perimeter of the sidewall of the outer rim 10. The present Fig 6 shows a
total of eight wedges. The rim 10 and the wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g,
11h form an interrupted screw just as the slots 6a, 6b, 6c, 6d, 6e, 6f of Fig 3.
[0030] Fig 7 shows a rotor disc 1 with an interrupted screw that reciprocates the interrupted
screw shown on Fig 6. The rotor disc 1 provides a groove 12 with a plurality of wedges
13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h along its sidewall. Those wedges replace the
segments 9a, 9b, 9c, 9d, 9e, 9f shown on Fig 2. In a preferred embodiment, the wedges
11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h of the protruding rim 10 and the wedges 13a,
13b, 13c, 13d, 13e, 13f, 13g, 13h of the groove 12 are made of the same materials.
Different materials are also possible.
[0031] In order to connect the rotor discs shown on Fig 6 and on Fig 7, the protruding rim
10 of Fig 6 is introduced into the groove 12 shown on Fig 7. One of the discs is then
rotated by a fraction of a turn against the other disc, until the outer surface if
the rim 10 and the sidewall of the groove 12 wedge. The two rotor discs are then rigidly
connected. Fig 8 shows two such rotor discs after having been joined. To disconnect
two rotor discs, this process is reversed.
[0032] Fig 8 also shows a plurality of cooling ducts 14 that penetrate either an individual
rotor disc 1 or the stack of rotor discs. The wedged connection between rotor discs
avoids welded connections between discs. Since it is no longer necessary to weld the
rotor discs together, any risk of accidentally blocking the cooling duct 14 during
welding is eliminated and more design flexibility of cooling channels is achieved.
[0033] The process of connecting rotor discs may be continued until a stack of rotor discs
is formed. Fig 5 shows such a stack. Also, heat treatment as explained above may be
employed in order to increase the stiffness of the connection between rotor discs
and utmost utilization of the material due to residual shrunk stress which acts as
anti-centrifugal.
[0034] The disclosure describes a rotor made of rotor discs with interrupted screws in relation
to a gas-turbine engine. In another embodiment, the same rotor and the same rotor
discs form part of the rotor of a turbogenerator. Other applications such as hydro
generators are also envisaged.
REFERENCE NUMBERS
[0035]
1 rotor disc
1a, 1b, 1c, 1d, 1e, 1f individual rotor discs
2 protrusion
3 rim
4 side of a rotor disc
5 side of a rotor disc
6 slot
6a, 6b, 6c, 6d, 6e, 6f individual slots
7 clamping surface
8 support portion
9 segment
9a, 9b, 9c, 9d, 9e, 9f individual segments
10 protruding rim
11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h wedges
12 groove
13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h wedges
14 cooling duct
1. Rotor comprising a first (1a) and a second (1b) rotor disc, wherein the first rotor
disc (1a) provides a first interrupted screw on at least one side (4), wherein the
second rotor disc (1b) provides a second interrupted screw on at least one side (5),
wherein the second interrupted screw of the second rotor disc (1b) is connected to
the first interrupted screw of the first rotor disc (1a), characterized in that the first rotor disc (1a) provides a first interrupted screw with a protruding rim
(10) with a sidewall, a first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h)
being arranged along the sidewall of the protruding rim (10), the second rotor disc
(1b) provides a second interrupted screw comprising a groove (12) with a sidewall,
a second set of wedges (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) being arranged along
the sidewall of the groove (12).
2. Rotor according to claims 1 to 2, characterized in that
the first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) is evenly arranged
along the sidewall of the protruding rim (10) and the second set of wedges (13a, 13b,
13c, 13d, 13e, 13f, 13g, 13h) is evenly arranged along the sidewall of the groove
(12).
3. Rotor according to claims 1 to 3, characterized in that
the first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) comprises eight wedges
and the second set of wedges (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) comprises eight
wedges.
4. Rotor comprising a first (1a) and a second (1b) rotor disc, wherein the first rotor
disc (1a) provides a first interrupted screw on at least one side (4), wherein the
second rotor disc (1b) provides a second interrupted screw on at least one side (5),
wherein the second interrupted screw of the second rotor disc (1b) is connected to
the first interrupted screw of the first rotor disc (1a), characterized in that the first rotor disc (1a) provides an interrupted screw comprising a plurality of
slots (6a, 6b, 6c, 6d, 6e, 6f), and wherein the second rotor disc (1b) provides an
interrupted screw comprising a plurality of segments (9a, 9b, 9c, 9d, 9e, 9f).
5. Rotor according to claim 4, characterized in that
each slot (6a, 6b, 6c, 6d, 6e, 6f) comprises a clamping surface (7).
6. Rotor according to claims 4 to 5, characterized in that
the slots (6a, 6b, 6c, 6d, 6e, 6f) of the first rotor disc (1a) are evenly arranged
along the inner perimeter of the first rotor disc (1a) and the segments (9a, 9b, 9c,
9d, 9e, 9f) of the second rotor disc (1b) are evenly arranged along the inner perimeter
of the second rotor disc (1b).
7. Rotor according to claims 4 to 6, characterized in that
the first rotor disc (1a) provides six slots (6a, 6b, 6c, 6d, 6e, 6f) and the second
rotor disc (1b) provides six segments (9a, 9b, 9c, 9d, 9e, 9f).
8. Rotor according to one of the preceding claims, characterized in that each rotor disc (1a, 1b) is substantially symmetric with respect to the axis of rotation
of the rotor.
9. Rotor according to one of the preceding claims, characterized in that
the rotor discs (1a, 1b) are suitable to be connected directly to one another.
10. Rotor according to one of the preceding claims, characterized in that
at least one of the rotor discs (1a, 1b) provides two interrupted screws on both of
its sides (4, 5).
11. Gas-turbine engine with a rotor according to any of the claims 1 to 10.
12. Turbogenerator with a rotor according to any of the claims 1 to 10.
1. Rotor, der eine erste (1a) und eine zweite (1b) Rotorscheibe umfasst, wobei die erste
Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung auf wenigstens einer
Seite (4) bereitstellt, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene
Schraubverbindung auf wenigstens einer Seite (5) bereitstellt, wobei die zweite unterbrochene
Schraubverbindung der zweiten Rotorscheibe (1b) mit der ersten unterbrochenen Schraubverbindung
der ersten Rotorscheibe (1a) verbunden ist, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung mit einem
vorstehenden Rand (10) mit einer Seitenwand bereitstellt, wobei ein erster Satz von
Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) entlang der Seitenwand des vorstehenden
Rands (10) angeordnet ist, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene
Schraubverbindung bereitstellt, die eine Nut (12) mit einer Seitenwand umfasst, wobei
ein zweiter Satz von Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) entlang der Seitenwand
der Nut (12) angeordnet ist.
2. Rotor nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der erste Satz von Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) gleichmäßig entlang
der Seitenwand des vorstehenden Rands (10) angeordnet ist und der zweite Satz von
Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) gleichmäßig entlang der Seitenwand
der Nut (12) angeordnet ist.
3. Rotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Satz von Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) acht Keile umfasst
und der zweite Satz von Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) acht Keile
umfasst.
4. Rotor, der eine erste (1a) und eine zweite (1b) Rotorscheibe umfasst, wobei die erste
Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung auf wenigstens einer
Seite (4) bereitstellt, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene
Schraubverbindung auf wenigstens einer Seite (5) bereitstellt, wobei die zweite unterbrochene
Schraubverbindung der zweiten Rotorscheibe (1b) mit der ersten unterbrochenen Schraubverbindung
der ersten Rotorscheibe (1a) verbunden ist, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) eine unterbrochene Schraubverbindung bereitstellt, die
eine Vielzahl von Schlitzen (6a, 6b, 6c, 6d, 6e, 6f) umfasst, und wobei die zweite
Rotorscheibe (1b) eine unterbrochene Schraubverbindung bereitstellt, die eine Vielzahl
von Segmenten (9a, 9b, 9c, 9d, 9e, 9f) umfasst.
5. Rotor nach Anspruch 4, dadurch gekennzeichnet, dass jeder Schlitz (6a, 6b, 6c, 6d, 6e, 6f) eine Klemmfläche (7) umfasst.
6. Rotor nach einem der Ansprüche 4 bis 5, dadurch gekennzeichnet, dass die Schlitze (6a, 6b, 6c, 6d, 6e, 6f) der ersten Rotorscheibe (1a) gleichmäßig entlang
des Innenumfangs der ersten Rotorscheibe (1a) angeordnet sind und die Segmente (9a,
9b, 9c, 9d, 9e, 9f) der zweiten Rotorscheibe (1b) gleichmäßig entlang des Innenumfangs
der zweiten Rotorscheibe (1b) angeordnet sind.
7. Rotor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) sechs Schlitze (6a, 6b, 6c, 6d, 6e, 6f) bereitstellt
und die zweite Rotorscheibe (1b) sechs Segmente (9a, 9b, 9c, 9d, 9e, 9f) bereitstellt.
8. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Rotorscheibe (1a, 1b) im Wesentlichen symmetrisch in Bezug auf die Rotationsachse
des Rotors ist.
9. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rotorscheiben (1a, 1b) geeignet sind, um unmittelbar miteinander verbunden zu
werden.
10. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der Rotorscheiben (1a, 1b) zwei unterbrochene Schraubverbindungen
auf beiden ihrer Seiten (4, 5) bereitstellt.
11. Gasturbinenmotor mit einem Rotor nach einem der Ansprüche 1 bis 10.
12. Turbogenerator mit einem Rotor nach einem der Ansprüche 1 bis 10.
1. Rotor comprenant un premier (1a) et un second (1b) disque de rotor, dans lequel le
premier disque de rotor (1a) fournit une première vis interrompue sur au moins un
côté (4), dans lequel le second disque de rotor (1b) fournit une seconde vis interrompue
sur au moins un côté (5), dans lequel la seconde vis interrompue du second disque
de rotor (1b) est raccordée à la première vis interrompue du premier disque de rotor
(1a), caractérisé en ce que le premier disque de rotor (1a) fournit une première vis interrompue avec un bord
en saillie (10) avec une paroi latérale, un premier ensemble de cales (11a, 11b, 11c,
11d, 11e, 11f, 11g, 11h) qui est agencé le long de la paroi latérale du bord en saillie
(10), le second disque de rotor (1b) fournit une seconde vis interrompue comprenant
une rainure (12) avec une paroi latérale, un second ensemble de cales (13a, 13b, 13c,
13d, 13e, 13f, 13g, 13h) qui est agencé le long de la paroi latérale de la rainure
(12).
2. Rotor selon les revendications 1 à 2, caractérisé en ce que :
le premier ensemble de cales (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) est régulièrement
agencé le long de la paroi latérale du bord en saillie (10) et le second ensemble
de cales (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) est régulièrement agencé le long
de la paroi latérale de la rainure (12).
3. Rotor selon les revendications 1 à 3, caractérisé en ce que :
le premier ensemble de cales (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) comprend huit
cales et le second ensemble de cales (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) comprend
huit cales.
4. Rotor comprenant un premier (1a) et un second (1b) disque de rotor, dans lequel le
premier disque de rotor (1a) fournit une première vis interrompue sur au moins un
côté (4), dans lequel le second disque de rotor (1b) fournit une seconde vis interrompue
sur au moins un côté (5), dans lequel la seconde vis interrompue du second disque
de rotor (1b) est raccordée à la première vis interrompue du premier disque de rotor
(1a), caractérisé en ce que le premier disque de rotor (1a) fournit une vis interrompue comprenant une pluralité
de fentes (6a, 6b, 6c, 6d, 6e, 6f) et
dans lequel le second disque rotor (1b) fournit une vis interrompue comprenant une
pluralité de segments (9a, 9b, 9c, 9d, 9e, 9f).
5. Rotor selon la revendication 4, caractérisé en ce que :
chaque fente (6a, 6b, 6c, 6d, 6e, 6f) comprend une surface de serrage (7).
6. Rotor selon les revendications 4 à 5, caractérisé en ce que :
les fentes (6a, 6b, 6c, 6d, 6e, 6f) du premier disque de rotor (1a) sont régulièrement
agencées le long du périmètre interne du premier disque de rotor (1a) et les segments
(9a, 9b, 9c, 9d, 9e, 9f) du second disque de rotor (1b) sont régulièrement agencés
le long du périmètre interne du second disque de rotor (1b).
7. Rotor selon les revendications 4 à 6, caractérisé en ce que :
le premier disque de rotor (1a) fournit six fentes (6a, 6b, 6c, 6d, 6e, 6f) et le
second disque de rotor (1b) fournit six segments (9a, 9b, 9c, 9d, 9e, 9f).
8. Rotor selon l'une des revendications précédentes, caractérisé en ce que chaque disque de rotor (1a, 1b) est sensiblement symétrique par rapport à l'axe de
rotation du rotor.
9. Rotor selon l'une des revendications précédentes, caractérisé en ce que les disques de rotor (1a, 1b) sont appropriés pour être directement raccordés entre
eux.
10. Rotor selon l'une des revendications précédentes, caractérisé en ce que :
au moins l'un des disques de rotor (1a, 1b) fournit deux vis interrompues sur deux
de ses côtés (4, 5).
11. Moteur de turbine à gaz avec un rotor selon l'une quelconque des revendications 1
à 10.
12. Turbogénérateur avec un rotor selon l'une quelconque des revendications 1 à 10.