(19)
(11) EP 2 789 797 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
08.08.2018 Bulletin 2018/32

(21) Application number: 13162666.5

(22) Date of filing: 08.04.2013
(51) International Patent Classification (IPC): 
F01D 5/06(2006.01)

(54)

Rotor

Rotor

Rotor


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
15.10.2014 Bulletin 2014/42

(73) Proprietor: Ansaldo Energia Switzerland AG
5401 Baden (CH)

(72) Inventor:
  • Safari Zadeh, Hossein
    5504 Othmarsingen (CH)

(74) Representative: Bernotti, Andrea et al
Studio Torta S.p.A. Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56) References cited: : 
DE-A1- 1 801 398
US-A- 2 461 402
US-B2- 8 100 666
GB-A- 394 001
US-A- 4 310 286
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to a rotor, for example for a gas-turbine engine. More particularly, the present invention relates to mechanical coupling between the rotor discs of the rotor.

    BACKGROUND



    [0002] State-of-the-art gas-turbines engines typically comprise three sections: A compressor, a combustor, and a turbine. Before entering the combustor, pressure of the working medium, typically air, is increased by the compression section. The compressed air then leaves the compression section and enters the combustor, where it is mixed with fuel and the combustion process takes place. After combustion, hot air leaves the combustor and is fed into the turbine.

    [0003] A gas-turbine engine comprises a rotor. The rotor can be assembled from discs in a stack-up operation where components such as the compressor discs and the turbine discs are connected coaxially together along the axis of rotation. Various ways of connecting the discs of a rotor have been put forward. US3976399 discloses rotor discs stacked on a central connecting rod. The rotor discs of US3976399 are held in place by half-shells which are clamped together by clamping rings. US3976399 also discloses heat-shrinking rotors discs onto a central connecting rod. US7384075 discloses threaded joints between the components of a rotor. The threaded joint is additionally secured by an anti-rotation locking mechanism. US5537814 and US8100666 disclose a clamping nut and a tie shaft to axially clamp a turbine disc together with other rotor components. US4310286 discloses bolted joints to fixate the discs of a rotor.

    [0004] The mechanical connections between the rotor discs of a gas-turbine engine have to meet a number of conflicting technical requirements: The rotor of a gas-turbine engine may deflect, so the axis of rotation and the center of mass of the rotor will no longer coincide. The connections between the rotors discs of a gas-turbine engine shall thus be torsionally stiff. The connections between the rotor discs of a gas-turbine engine shall be designed for a critical speed of the rotor well above the operational speed of 1500 or 15000 rpm.

    [0005] The pressures inside the gas-turbine engine may be severe. The rotor of a gas-turbine engine shall be designed to withstand the corresponding stresses.

    [0006] The new stack of rotor discs shall minimize the effort involved in its fabrication. In particular, the fabrication of the stack of rotor discs shall minimize the use of special tools.

    [0007] Despite the aforementioned requirement of torsional stiffness, the joints between rotor discs shall allow easy and effortless removal and replacement of discs when the rotor is in stationary position. In other words, any rotor discs shall be easily displaceable during maintenance or repair. GB 394 001 A discloses a rotor, wherein the discs are connected with each other by interlocking members but the discs are welded after interlocking, thereby preventing any relative movement of such parts.

    [0008] The present application is oriented towards providing the aforementioned needs and towards overcoming the aforementioned difficulties.

    SUMMARY OF THE INVENTION



    [0009] The present disclosure is about improved mechanical connections between the discs of a rotor. In order to arrive at a connection that is torsionally stiff and leakage-proof, an interrupted screw on each side of a reciprocally connected rotor disc is proposed in claims 1 and 4. An interrupted screw is a screw whose surface is divided longitudinally into several blank or cutaway sections. The two rotor discs are locked together by a fraction of a turn.

    [0010] After connecting the two rotor discs, the surfaces of the interrupted screw of the first rotor disc and of the reciprocally made nut of the second rotor disc align. The alignment of the two surfaces results in a connection that is torsionally stiff and allows for a critical speed of the rotor well above 1500 to 15000 rpm.

    [0011] The interrupted screw on each side of the reciprocally connected rotor discs can be made of the same metals. That way, corrosion issues due to the use of dissimilar metals are eliminated.

    [0012] The rotor discs can also be made of different metals, in particular of different steel alloys. A gas-turbine engine may require different alloys to be used for the rotor discs of the compressor and for the rotor discs of the combustor. The present disclosure allows rotor discs made of different metals or alloys to be connected.

    [0013] To assemble a rotor, the two or more rotor discs are engaged and one rotor disc is rotated by a fraction of a turn against the other rotor disc. The rotation is carried out about the axis of rotation common to the two rotor discs. That axis will later become the axis of rotation of the rotor. As soon as the two discs are connected, yet another rotor disc is connected the stack of previously joined rotor discs by engaging said disc and the stack of rotor discs. The process continues until the assembly of the rotor is complete.

    [0014] Likewise, during repair or maintenance of a rotor, a disc is removed from the stack of rotor discs by rotating it by a fraction of a turn. The direction of the rotation is now opposite to the direction when two discs were connected. The disc can then be removed from the remaining stack rotor discs. The process may continue until the stack of rotor discs has been completely disassembled.

    BRIEF DESCRIPTION OF DRAWINGS



    [0015] The foregoing objects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:

    Fig 1 is a cut-away view of a rotor disc according to the application.

    Fig 2 is a three-dimensional view of one side of said rotor disc.

    Fig 3 is a front view of the other side of said rotor disc.

    Fig 4 is a three-dimensional view of two rotor discs before being connected.

    Fig 5 is a three-dimensional view of a stack of rotor discs.

    Fig 6 gives a three-dimensional view of a rotor disc according to another embodiment of the invention.

    Fig 7 is a three-dimensional view of the rotor disc of Fig 6 from the other side.

    Fig 8 is a three-dimensional view of connected rotor discs as per Fig 6 and Fig 7.


    DETAILED DESCRIPTION OF THE INVENTION



    [0016] Fig. 1 gives a cut-away view of a rotor disc 1 according to the application The rotor disc 1 comprises a plurality of protrusions arranged along the outer circumference of the rim 3. On each of its sides 4, 5, the rotor disc 1 provides an interrupted screw. The two interrupted screws on each side 4, 5 of the rotor disc are reciprocally made, so the interrupted screw on one side 4 of a rotor disc 1 may cooperate with the interrupted screw on the opposite side 5 of another rotor disc. Fig 1 shows the interrupted screw on one side 5 of the rotor disc comprises a plurality of slots 6a, 6b, 6c, 6d. They 6a, 6b, 6c, 6d are preferably arranged evenly along the inner perimeter of the rotor disc 1, so the distance between each pair of adjacent slots is the same. The slots 6a, 6b, 6c, 6d provide clamping surfaces 7 arranged in between the slots 6a, 6b, 6c, 6d and the rim 3. The slots 6a, 6b, 6c, 6d also comprise support portions 8. The support portions 8 carry the mechanical forces applied to the slots 6a, 6b, 6c, 6d when two rotor discs are connected and/or in-service. In a preferred embodiment, the support portions 8 of each slot 6a, 6b, 6c, 6d are made of the same material as the rim 3.

    [0017] On the other side 4 of the rotor disc 1, segments 9a, 9b, 9c have been arranged. Each segment on one side 4 of the rotor disc 1 reciprocates with a slot on the other side 5 of the disc 1. In a preferred embodiment, the segments 9a, 9b, 9c are arranged evenly like the slots 6a, 6b, 6c, 6d on the other side 5 of the rotor disc 1.

    [0018] The segments 9a, 9b, 9c and the slots 6a, 6b, 6c, 6d are arranged so they act like plugs and sockets. In a preferred embodiment, the segments 9a, 9b, 9c can slide into the clamping surfaces 7 provided by each slot 6a, 6b, 6c, 6d. In this embodiment, the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d narrow towards one of their ends. The segments 9a, 9b, 9c narrow in the same way. The segments 9a, 9b, 9c can thus slide into the clamping surfaces 7 until the surfaces of the segments 9a, 9b, 9c and the surfaces of the clamping surfaces 7 engage. A rigid connection between two adjacent discs is formed as the segments 9a, 9b, 9c eventually get wedged inside the slots 6a, 6b, 6c, 6d.

    [0019] In another embodiment, the disc 1 with the slots 6a, 6b, 6c, 6d is heated before the segments 9a, 9b, 9c can slide into the slots 6a, 6b, 6c, 6d. By heating the disc 1 with the slots 6a, 6b, 6c, 6d, the material expands, so the inner diameter of each clamping surface 7 increases. The segments 9a, 9b, 9c may then slide into the slots 6a, 6b, 6c, 6d. The temperatures of the slots 6a, 6b, 6c, 6d lower after introducing the segments 9a, 9b, 9c and a rigid connection providing a rotor with torsional stiffness will be formed. The segments 9a, 9b, 9c will then also exert an inward force on the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d. The inward force counter-acts the centrifugal force when the rotor disc 1 rotates as part of a rotor. In other words, heat treatment will not only result in torsional stiffness but also in compensation of centrifugal forces when the rotor is in service.

    [0020] It should be mentioned the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d as shown on Fig 1 point outwards from the axis of rotation of the disc 1. In another embodiment, the clamping surfaces 7 of the slots 6a, 6b, 6c, 6d may point inwards. This embodiment will require segments 9a, 9b, 9c whose surfaces point outwards.

    [0021] Fig. 2 provides a three-dimensional view of a rotor disc 1 according to the application. This three-dimensional drawing shows the rotor disc 1 of Fig 1 viewed from one of its sides 4. Fig 2 shows a total of six segments 9a, 9b, 9c, 9d, 9e, 9f that are arranged in an equidistant manner. In this particular embodiment, the angle between two adjacent segments as measured from the axis of rotation of the rotor disc 1 would be 60°. Also, the segments 9a, 9b, 9c, 9d, 9e, 9f shown on the present Fig 2 have got the shape of bent cylinders. In other embodiments, the cross-sections of segments 9a, 9b, 9c, 9d, 9e, 9f may be triangular or square.

    [0022] Fig 3 shows a front view of the rotor disc 1 of Fig 1. Fig 3 shows the rotor disc 1 of Fig 1 as viewed from its other side 5. Fig 3 shows a total of six slots 6a, 6b, 6c, 6d, 6e, 6f evenly distributed along the inner perimeter of the rotor disc 1. The slots 6a, 6b, 6c, 6d, 6e, 6f are arranged so they match with the reciprocally made segments 9a, 9b, 9c, 9d, 9e, 9f on the other side 4 of an adjacent rotor disc.

    [0023] Fig 4 shows a pair of rotor discs 1a, 1b prior to them being connected. The two rotor discs 1a, 1b correspond to the discs shown on Fig 1 - 3. The first rotor disc 1a provides an arrangement of slots 6a, 6b, 6c that matches the arrangement of segments 9a, 9b, 9c of the second rotor disc 1b. In order to connect the two rotor discs 1a, 1b, the reciprocating surfaces of the discs 1a, 1b are engaged and one disc is rotated by a fraction of a turn against the other disc. In the particular embodiment shown on Fig 4, one disc would be rotated by 60° against the other disc because there is a total six segments 9a, 9b, 9c, 9d, 9e, 9f and of six slots 6a, 6b, 6c, 6d, 6e, 6f.

    [0024] The clamping surfaces 7 of the slots 6a, 6b, 6c, 6d, 6e, 6f and the surface of the segments 9a, 9b, 9c, 9d, 9e, 9f get wedged when the discs 1a, 1b are connected. In a preferred embodiment, wedged joint between the discs 1a, 1b then essentially becomes leakage-proof.

    [0025] To disconnect the two discs 1a, 1b, the process as described above is reversed. Heat treatment can be used as well. The disc 1a with the slots 6a, 6b, 6c, 6d, 6e, 6f will have to be heated at a faster rate than the other disc 1b. The two discs 1a, 1b are disconnected as soon as the heat treatment yields a gap between the surfaces of the slots 6a, 6b, 6c, 6d, 6e, 6f and the surfaces of the segments 9a, 9b, 9c, 9d, 9e, 9f. Induction heating may be used for the purpose of heating disc 1a faster than the other disc 1b. The rotor discs 1a, 1b allow for easy dismantling of a rotor, since disconnection of the rotor discs 1a, 1b only requires a reversal of the above process.

    [0026] While Fig 4 shows a pair of rotor discs before being joined, Fig 5 shows a stack of five rotor discs 1a, 1b, 1c, 1d, 1e that have been connected as described above. According to Fig 5 it is possible to connect a plurality of rotor discs with reciprocating interrupted screws on either side. The resulting stack of connected rotor discs will form a rotor that is torsionally stiff and whose critical speed is well beyond 1500 to 15000 rpm.

    [0027] Fig 5 also indicates the stack of rotor discs provides an aperture along the common central axis of the rotor discs. The aperture common to all rotor discs allows other elements such as shafts to be arranged inside the aperture. There is thus sufficient space inside stack of rotor discs to arrange separate shafts for the compressor and for the turbine sections of a gas-turbine engine.

    [0028] The rotor discs 1a, 1b, 1c, 1d, 1e shown on Fig 5 have all got the same diameters. In another embodiment, rotor discs as per this application are connected where the rotor discs differ in diameter.

    [0029] Fig 6 shows a rotor disc 1 according to another embodiment of the application. The rotor disc 1 of Fig 6 comprises a protruding rim 10. The rim 10 provides a plurality of wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h arranged on its sidewall. In a preferred embodiment, the wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h are arranged evenly along the perimeter of the sidewall of the outer rim 10. The present Fig 6 shows a total of eight wedges. The rim 10 and the wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h form an interrupted screw just as the slots 6a, 6b, 6c, 6d, 6e, 6f of Fig 3.

    [0030] Fig 7 shows a rotor disc 1 with an interrupted screw that reciprocates the interrupted screw shown on Fig 6. The rotor disc 1 provides a groove 12 with a plurality of wedges 13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h along its sidewall. Those wedges replace the segments 9a, 9b, 9c, 9d, 9e, 9f shown on Fig 2. In a preferred embodiment, the wedges 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h of the protruding rim 10 and the wedges 13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h of the groove 12 are made of the same materials. Different materials are also possible.

    [0031] In order to connect the rotor discs shown on Fig 6 and on Fig 7, the protruding rim 10 of Fig 6 is introduced into the groove 12 shown on Fig 7. One of the discs is then rotated by a fraction of a turn against the other disc, until the outer surface if the rim 10 and the sidewall of the groove 12 wedge. The two rotor discs are then rigidly connected. Fig 8 shows two such rotor discs after having been joined. To disconnect two rotor discs, this process is reversed.

    [0032] Fig 8 also shows a plurality of cooling ducts 14 that penetrate either an individual rotor disc 1 or the stack of rotor discs. The wedged connection between rotor discs avoids welded connections between discs. Since it is no longer necessary to weld the rotor discs together, any risk of accidentally blocking the cooling duct 14 during welding is eliminated and more design flexibility of cooling channels is achieved.

    [0033] The process of connecting rotor discs may be continued until a stack of rotor discs is formed. Fig 5 shows such a stack. Also, heat treatment as explained above may be employed in order to increase the stiffness of the connection between rotor discs and utmost utilization of the material due to residual shrunk stress which acts as anti-centrifugal.

    [0034] The disclosure describes a rotor made of rotor discs with interrupted screws in relation to a gas-turbine engine. In another embodiment, the same rotor and the same rotor discs form part of the rotor of a turbogenerator. Other applications such as hydro generators are also envisaged.

    REFERENCE NUMBERS



    [0035] 

    1 rotor disc

    1a, 1b, 1c, 1d, 1e, 1f individual rotor discs

    2 protrusion

    3 rim

    4 side of a rotor disc

    5 side of a rotor disc

    6 slot

    6a, 6b, 6c, 6d, 6e, 6f individual slots

    7 clamping surface

    8 support portion

    9 segment

    9a, 9b, 9c, 9d, 9e, 9f individual segments

    10 protruding rim

    11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h wedges

    12 groove

    13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h wedges

    14 cooling duct




    Claims

    1. Rotor comprising a first (1a) and a second (1b) rotor disc, wherein the first rotor disc (1a) provides a first interrupted screw on at least one side (4), wherein the second rotor disc (1b) provides a second interrupted screw on at least one side (5), wherein the second interrupted screw of the second rotor disc (1b) is connected to the first interrupted screw of the first rotor disc (1a), characterized in that the first rotor disc (1a) provides a first interrupted screw with a protruding rim (10) with a sidewall, a first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) being arranged along the sidewall of the protruding rim (10), the second rotor disc (1b) provides a second interrupted screw comprising a groove (12) with a sidewall, a second set of wedges (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) being arranged along the sidewall of the groove (12).
     
    2. Rotor according to claims 1 to 2, characterized in that
    the first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) is evenly arranged along the sidewall of the protruding rim (10) and the second set of wedges (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) is evenly arranged along the sidewall of the groove (12).
     
    3. Rotor according to claims 1 to 3, characterized in that
    the first set of wedges (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) comprises eight wedges and the second set of wedges (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) comprises eight wedges.
     
    4. Rotor comprising a first (1a) and a second (1b) rotor disc, wherein the first rotor disc (1a) provides a first interrupted screw on at least one side (4), wherein the second rotor disc (1b) provides a second interrupted screw on at least one side (5), wherein the second interrupted screw of the second rotor disc (1b) is connected to the first interrupted screw of the first rotor disc (1a), characterized in that the first rotor disc (1a) provides an interrupted screw comprising a plurality of slots (6a, 6b, 6c, 6d, 6e, 6f), and wherein the second rotor disc (1b) provides an interrupted screw comprising a plurality of segments (9a, 9b, 9c, 9d, 9e, 9f).
     
    5. Rotor according to claim 4, characterized in that
    each slot (6a, 6b, 6c, 6d, 6e, 6f) comprises a clamping surface (7).
     
    6. Rotor according to claims 4 to 5, characterized in that
    the slots (6a, 6b, 6c, 6d, 6e, 6f) of the first rotor disc (1a) are evenly arranged along the inner perimeter of the first rotor disc (1a) and the segments (9a, 9b, 9c, 9d, 9e, 9f) of the second rotor disc (1b) are evenly arranged along the inner perimeter of the second rotor disc (1b).
     
    7. Rotor according to claims 4 to 6, characterized in that
    the first rotor disc (1a) provides six slots (6a, 6b, 6c, 6d, 6e, 6f) and the second rotor disc (1b) provides six segments (9a, 9b, 9c, 9d, 9e, 9f).
     
    8. Rotor according to one of the preceding claims, characterized in that each rotor disc (1a, 1b) is substantially symmetric with respect to the axis of rotation of the rotor.
     
    9. Rotor according to one of the preceding claims, characterized in that
    the rotor discs (1a, 1b) are suitable to be connected directly to one another.
     
    10. Rotor according to one of the preceding claims, characterized in that
    at least one of the rotor discs (1a, 1b) provides two interrupted screws on both of its sides (4, 5).
     
    11. Gas-turbine engine with a rotor according to any of the claims 1 to 10.
     
    12. Turbogenerator with a rotor according to any of the claims 1 to 10.
     


    Ansprüche

    1. Rotor, der eine erste (1a) und eine zweite (1b) Rotorscheibe umfasst, wobei die erste Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung auf wenigstens einer Seite (4) bereitstellt, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene Schraubverbindung auf wenigstens einer Seite (5) bereitstellt, wobei die zweite unterbrochene Schraubverbindung der zweiten Rotorscheibe (1b) mit der ersten unterbrochenen Schraubverbindung der ersten Rotorscheibe (1a) verbunden ist, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung mit einem vorstehenden Rand (10) mit einer Seitenwand bereitstellt, wobei ein erster Satz von Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) entlang der Seitenwand des vorstehenden Rands (10) angeordnet ist, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene Schraubverbindung bereitstellt, die eine Nut (12) mit einer Seitenwand umfasst, wobei ein zweiter Satz von Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) entlang der Seitenwand der Nut (12) angeordnet ist.
     
    2. Rotor nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der erste Satz von Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) gleichmäßig entlang der Seitenwand des vorstehenden Rands (10) angeordnet ist und der zweite Satz von Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) gleichmäßig entlang der Seitenwand der Nut (12) angeordnet ist.
     
    3. Rotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Satz von Keilen (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) acht Keile umfasst und der zweite Satz von Keilen (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) acht Keile umfasst.
     
    4. Rotor, der eine erste (1a) und eine zweite (1b) Rotorscheibe umfasst, wobei die erste Rotorscheibe (1a) eine erste unterbrochene Schraubverbindung auf wenigstens einer Seite (4) bereitstellt, wobei die zweite Rotorscheibe (1b) eine zweite unterbrochene Schraubverbindung auf wenigstens einer Seite (5) bereitstellt, wobei die zweite unterbrochene Schraubverbindung der zweiten Rotorscheibe (1b) mit der ersten unterbrochenen Schraubverbindung der ersten Rotorscheibe (1a) verbunden ist, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) eine unterbrochene Schraubverbindung bereitstellt, die eine Vielzahl von Schlitzen (6a, 6b, 6c, 6d, 6e, 6f) umfasst, und wobei die zweite Rotorscheibe (1b) eine unterbrochene Schraubverbindung bereitstellt, die eine Vielzahl von Segmenten (9a, 9b, 9c, 9d, 9e, 9f) umfasst.
     
    5. Rotor nach Anspruch 4, dadurch gekennzeichnet, dass jeder Schlitz (6a, 6b, 6c, 6d, 6e, 6f) eine Klemmfläche (7) umfasst.
     
    6. Rotor nach einem der Ansprüche 4 bis 5, dadurch gekennzeichnet, dass die Schlitze (6a, 6b, 6c, 6d, 6e, 6f) der ersten Rotorscheibe (1a) gleichmäßig entlang des Innenumfangs der ersten Rotorscheibe (1a) angeordnet sind und die Segmente (9a, 9b, 9c, 9d, 9e, 9f) der zweiten Rotorscheibe (1b) gleichmäßig entlang des Innenumfangs der zweiten Rotorscheibe (1b) angeordnet sind.
     
    7. Rotor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die erste Rotorscheibe (1a) sechs Schlitze (6a, 6b, 6c, 6d, 6e, 6f) bereitstellt und die zweite Rotorscheibe (1b) sechs Segmente (9a, 9b, 9c, 9d, 9e, 9f) bereitstellt.
     
    8. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Rotorscheibe (1a, 1b) im Wesentlichen symmetrisch in Bezug auf die Rotationsachse des Rotors ist.
     
    9. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rotorscheiben (1a, 1b) geeignet sind, um unmittelbar miteinander verbunden zu werden.
     
    10. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der Rotorscheiben (1a, 1b) zwei unterbrochene Schraubverbindungen auf beiden ihrer Seiten (4, 5) bereitstellt.
     
    11. Gasturbinenmotor mit einem Rotor nach einem der Ansprüche 1 bis 10.
     
    12. Turbogenerator mit einem Rotor nach einem der Ansprüche 1 bis 10.
     


    Revendications

    1. Rotor comprenant un premier (1a) et un second (1b) disque de rotor, dans lequel le premier disque de rotor (1a) fournit une première vis interrompue sur au moins un côté (4), dans lequel le second disque de rotor (1b) fournit une seconde vis interrompue sur au moins un côté (5), dans lequel la seconde vis interrompue du second disque de rotor (1b) est raccordée à la première vis interrompue du premier disque de rotor (1a), caractérisé en ce que le premier disque de rotor (1a) fournit une première vis interrompue avec un bord en saillie (10) avec une paroi latérale, un premier ensemble de cales (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) qui est agencé le long de la paroi latérale du bord en saillie (10), le second disque de rotor (1b) fournit une seconde vis interrompue comprenant une rainure (12) avec une paroi latérale, un second ensemble de cales (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) qui est agencé le long de la paroi latérale de la rainure (12).
     
    2. Rotor selon les revendications 1 à 2, caractérisé en ce que :
    le premier ensemble de cales (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) est régulièrement agencé le long de la paroi latérale du bord en saillie (10) et le second ensemble de cales (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) est régulièrement agencé le long de la paroi latérale de la rainure (12).
     
    3. Rotor selon les revendications 1 à 3, caractérisé en ce que :
    le premier ensemble de cales (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h) comprend huit cales et le second ensemble de cales (13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h) comprend huit cales.
     
    4. Rotor comprenant un premier (1a) et un second (1b) disque de rotor, dans lequel le premier disque de rotor (1a) fournit une première vis interrompue sur au moins un côté (4), dans lequel le second disque de rotor (1b) fournit une seconde vis interrompue sur au moins un côté (5), dans lequel la seconde vis interrompue du second disque de rotor (1b) est raccordée à la première vis interrompue du premier disque de rotor (1a), caractérisé en ce que le premier disque de rotor (1a) fournit une vis interrompue comprenant une pluralité de fentes (6a, 6b, 6c, 6d, 6e, 6f) et
    dans lequel le second disque rotor (1b) fournit une vis interrompue comprenant une pluralité de segments (9a, 9b, 9c, 9d, 9e, 9f).
     
    5. Rotor selon la revendication 4, caractérisé en ce que :
    chaque fente (6a, 6b, 6c, 6d, 6e, 6f) comprend une surface de serrage (7).
     
    6. Rotor selon les revendications 4 à 5, caractérisé en ce que :
    les fentes (6a, 6b, 6c, 6d, 6e, 6f) du premier disque de rotor (1a) sont régulièrement agencées le long du périmètre interne du premier disque de rotor (1a) et les segments (9a, 9b, 9c, 9d, 9e, 9f) du second disque de rotor (1b) sont régulièrement agencés le long du périmètre interne du second disque de rotor (1b).
     
    7. Rotor selon les revendications 4 à 6, caractérisé en ce que :
    le premier disque de rotor (1a) fournit six fentes (6a, 6b, 6c, 6d, 6e, 6f) et le second disque de rotor (1b) fournit six segments (9a, 9b, 9c, 9d, 9e, 9f).
     
    8. Rotor selon l'une des revendications précédentes, caractérisé en ce que chaque disque de rotor (1a, 1b) est sensiblement symétrique par rapport à l'axe de rotation du rotor.
     
    9. Rotor selon l'une des revendications précédentes, caractérisé en ce que les disques de rotor (1a, 1b) sont appropriés pour être directement raccordés entre eux.
     
    10. Rotor selon l'une des revendications précédentes, caractérisé en ce que :
    au moins l'un des disques de rotor (1a, 1b) fournit deux vis interrompues sur deux de ses côtés (4, 5).
     
    11. Moteur de turbine à gaz avec un rotor selon l'une quelconque des revendications 1 à 10.
     
    12. Turbogénérateur avec un rotor selon l'une quelconque des revendications 1 à 10.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description