[0001] The present description refers to the technical sector of steerable antennas.
[0002] Steerable antennas have been known of for a long time comprising an orientable receiver
and/or transmitter device of electromagnetic radiation, the pointing direction of
which can be controlled by means of an electromechanical movement and support system
which makes it possible to orient the orientable reception and/or transmission device
in space, for example to widen the scanning angle of the antenna. The orientable receiver
and/or transmitter device of electromagnetic radiation is also referred to in general
as payload.
[0003] In some cases, such as for example in the case of the steerable antennas of a missile
seeker, the electromechanical movement and support system used is comparable to an
altazimuth system and can be electronically controlled to enable the orientable reception
and/or transmission device to rotate around two axes orthogonal to each other and
to define a conical angle of aperture of the antenna beam.
[0004] Theoretically and in first approximation, the electromechanical movement and support
system, or steering system, must guarantee highly accurate pointing, must be able
to impart relatively high accelerations to the orientable receiver and/or transmitter
device of electromagnetic radiation and must ensure a conical angle of aperture of
the antenna beam that is as wide as possible.
[0005] The electronic control system of the electromechanical movement and support system
is generally developed on the basis of a theoretical mechanical behaviour of the electromechanical
movement and support system and various sensors on board the steerable antenna, for
example position, and/or speed and/or gyroscopic sensors associated with the electromechanical
movement and support system are used to create a closed-loop control. The result of
the sensor reading is what is happening locally; it is therefore important that downstream
of this reading there are no deformations or behaviours undetectable by the sensors
which could lead to an incorrect command of the electromechanical movement and support
system. These deviations from the standard are generally commonly referred to by the
term aberrations. In theory the sensors should be placed as close as possible to the
orientable receiver and/or transmitter device of electromagnetic radiation so that
the control system always knows precisely its real location. A position distant therefrom,
with a series of mechanical intermediate controls will introduce mechanical aberrations
due to the imprecision of the pairings, elastic deformations of the system due to
external stresses and imprecision in the machining of mechanical parts.
[0006] The ideal solution would be that of being able to couple the sensors directly under
the orientable receiver and/or transmitter device of electromagnetic radiation coupled
to the latter with rigid connections, without intermediate mechanical controls. This
solution however tends to limit the cone angle; and this all the more so the bigger
the sensors (and motors) are. In this configuration, wishing to favour the performance
in terms of angular acceleration (larger motors) will penalise the performance in
terms of amplitude of the cone angle; vice versa wishing to favour the latter will
penalise the performance in terms of angular accelerations inasmuch as making it more
appropriate to use smaller motors.
[0007] A possible compromise between the performance in terms of angular acceleration and
amplitude of the cone angle could be achieved by spacing the motors away from the
payload, still rigidly connected to the orientable receiver and/or transmitter device
of electromagnetic radiation; this would determine however an increase in the radius
of the footprint sphere of the steerable antenna, which is problematic since the space
available in the radome is limited. In addition the above solution, in the case of
microwave antennas, requires a signal connection with shielded cable to the receiver
and/or transmitter device of electromagnetic radiation, which affects the radio frequency
performance and reduces the maximum power conveyable.
[0008] A different approach, relatively more widespread than that described above, is to
position the motors and sensors away from the orientable receiver and/or transmitter
device of electromagnetic radiation and to rely on intermediate mechanical controls,
often rigid cardanic shafts and connecting rods, to move it. This makes it possible
to use relatively bigger motors with a high torque and then rely on the quality of
the mechanical construction and assembly to limit possible aberrations. In this configuration,
there is a division between the rotation axes of the orientable receiver and/or transmitter
device and the axes of the motors. This approach permits broader conical angles and
high performance in terms of angular acceleration. However, the steerable antennas
of the prior art made according to this approach have high costs, are structurally
complex and require delicate adjustments during assembly.
[0009] The prior art also comprises steerable antennas in which the electromechanical system
for moving and supporting the payload comprises a base, a first motor (or external
motor) attached to the base, a driven pulley, a belt transmission connecting the first
motor to the driven pulley so that it can be rotated around a first rotation axis
(or external axis), a second motor (or internal motor) attached to the driven pulley
and supported by it and adapted to rotate the payload around a second rotation axis
(or internal axis). The two axes are uncoupled from each other: the movement of one
does not affect the other; something hard to achieve with a system of connecting rods
which are generally attached to the same drag element (antenna) despite being moved
by two different actuators. This type of antennas of the prior art have various drawbacks,
such as poor transversal rigidity, essentially but not exclusively due to the presence
of the driven pulley which has a supporting function for the payload and for the second
motor. Such steerable antennas with an electromechanical system for moving and supporting
the payload are disclosed in
EP1134839 and
US2002/0030631
[0010] A general purpose of the present description is to make available a steerable antenna
which does not have the drawbacks mentioned above with reference to the prior art.
[0011] This and other purposes are achieved by means of a steerable antenna as defined in
the first claim in its most general form, and in the dependent claims in some of its
particular embodiments.
[0012] The invention will be clearer to understand from the following detailed description
of its embodiments, made by way of a non-limiting example with reference to the appended
drawings, wherein:
- Figure 1 shows a perspective and partial cross-section of a portion of a missile,
comprising a radome and a steerable antenna;
- Figure 2 shows a perspective view of the steerable antenna in figure 2;
- Figure 3 shows a first view in lateral cross-section of the steerable antenna in figure
1;
- Figure 4 shows a perspective view of an embodiment of a support bracket of the steerable
antenna in Figure 1;
- Figure 5 shows a second view in lateral cross-section of the steerable antenna in
figure 1, in which the cross-section plane is perpendicular to the cross-section plane
of the view in figure 3; and
- figure 6 shows a perspective view of an enlarged detail of the steerable antenna in
figure 1.
[0013] In the appended drawings, elements which are the same or similar will be indicated
using the same reference numerals.
[0014] Figure 1 shows a portion of an embodiment of a missile 1 comprising a radome 2 and
a steerable antenna 3 mounted inside the radome 2. In the particular example shown
and without thereby introducing any limitation, the steerable antenna 1 is the antenna
of a radar and more in particular the antenna of a missile seeker. It should be noted,
however, that the teachings of the present description are applicable without restriction
to the particular type of steerable antenna in that the steerable antenna which the
present description relates to could be any antenna utilisable for example in the
telecommunications, terrestrial or satellite and scientific measurement instrument
industries.
[0015] The steerable antenna 1 comprises an orientable payload 4, 5. For example, the orientable
payload 4, 5 comprises at least one receiver and/or transmitter device of electromagnetic
radiation 4. For example, the receiver and/or transmitter device of electromagnetic
radiation 4 comprises a planar array antenna, for example a microwave and disc antenna
comprising a plurality of antenna elements, such as patch antenna elements or slit
antenna elements. Preferably, and without thereby introducing any limitation, the
receiver and/or transmitter device of electromagnetic radiation 4 is both a receiver
and transmitter device.
[0016] According to one embodiment, the payload 4, 5 further comprises a processing circuit
section 5 of the signals transmitted and/or received by the receiver and/or transmitter
device of electromagnetic radiation 4.
[0017] The steerable antenna 1 further comprises an electromechanical movement and support
system 6-10 operatively connected to the payload 4, 5 and adapted to orient the payload
4, 5 in a controlled manner.
[0018] The electromechanical movement and support system 6-10 comprises a base 6, a first
motor 7 attached to the base 6 (or external motor 6), a driven pulley 8 operatively
connected to the first motor 7 for being rotated around a first rotation axis (or
external rotation axis), a second motor 9 (or internal motor) operatively connected
to the driven pulley 8 and operatively connected to the payload 4, 5 for rotating
the payload 4,5 around a second rotation axis (or internal rotation axis). The first
and the second axes of rotation are perpendicular to each other.
[0019] The electromechanical movement and support system 6-10 further comprises a support
bracket 10, for example as shown in figure 3, stably fixed to the base 6 to which
the second motor 9 is pivotably hinged.
[0020] The driven pulley 8 is operatively connected to the second motor 9 for rotating the
second motor 9 in relation to the base 6 and in relation to the support bracket 10.
[0021] According to an embodiment consistent with the example shown in the figures, the
first motor 7 is positioned below the driven pulley 8 and the support bracket 10 on
the opposite side to the payload 4, 5. Among other advantages this makes it possible,
despite the presence of a powerful first motor and therefore significant dimensions,
to avoid obstructing the movement of the payload 4, 5 and for example to make optimal
use of the space in which the payload can be moved inside a radome.
[0022] Preferably, the first 7 and the second motor 9 are servomotors.
[0023] According to one embodiment, the base 6 is a cylindrical or substantially cylindrical
container provided with an upper aperture 12 and a lower aperture 13. Preferably,
the base 6 comprises a housing 14 inside which the first motor 7 is housed and attached.
Preferably, the steerable antenna 1 comprises an electronic control circuit 15 of
the first motor 7 also housed at least partially in the housing 14.
[0024] According to one embodiment, the base 6 comprises one or more attachment elements
16 adapted to permit the attachment of the base 6 inside the radome 2. For example,
said attachment elements 16 comprise a plurality of recesses defined on the outer
side walls of the base 6.
[0025] According to one embodiment, the upper aperture 12 of the base 6 allows the passage
of at least one transmission element of the motion from the first motor 7 to the driven
pulley 8.
[0026] With reference to figure 4, according to one embodiment, the support bracket 10 comprises
a first end portion 20, 21 firmly attached to the base 6 and a second opposite end
portion 22, 23 to which the second motor 9 is pivotably hinged. For example, the first
end portion 20, 21 is attached to the base by means of screws which cross through
apertures provided in the first end portion 20, 21 to fit into corresponding apertures
or internally threaded holes provided in the upper wall of the base 6.
[0027] Preferably, the support bracket 10 is fork-shaped, and the said second end portion
22, 23 comprises two end portions between which said second motor 9 is pivotably hinged.
[0028] More preferably, the aforesaid first end portion 20, 21 of the support bracket 10
comprises at least one attachment foot to the base 6 provided with a through aperture
26 crossed by the driven pulley 8 and non-interfering with the rotation of the driven
pulley 8. In the example in figure 3, the aforesaid attachment foot 20, 21 comprises
two attachment feet 20, 21 which are spaced apart and between which the aforesaid
through aperture 26 crossed by the driven pulley 8 is defined.
[0029] According to a further embodiment, the support bracket 10 comprises two fork arms
24, 25 attached to the attachment foot 20, 21 of the support bracket 10 and the aforesaid
second end portions 22, 23 are free end portions of said fork arms 24, 25. Preferably
each of the aforesaid second end portions 22, 23 of the support bracket 10 comprises
a respective through aperture 28, 29 having a circular, transversal cross-section.
These through-apertures 28, 29 define a hinge axis and permit the pivotable hinging
of the second motor 9 to the support bracket 10.
[0030] According to one embodiment 8, the support bracket 10 comprises a waveguide 30 integrated
inside the bracket 10.
[0031] Preferably, the waveguide 30 is a channel defined in the thickness of the support
bracket 10 and said bracket 10 is made of a metal material, for example steel.
[0032] With reference to figure 4, according to an advantageous embodiment, the support
bracket 10 comprises two half-portions 26, 27 made in two separate pieces and juxtaposed
and coupled to each other, for example by screws. This way, the realisation of the
waveguide 30 integrated in the support bracket 10 is particularly easy since the waveguide
30 can be made by providing a first recess on a wall of one of the two half-portions
26, 27 intended to face an opposite wall of the other of the two half-portions. Clearly
a second recess may also be provided on said opposite wall which is facing and aligned
with the first recess when the two half-portions 26, 27 are coupled together.
[0033] In the case in which the support bracket 10 is fork-shaped with two fork arms 24,
25, the aforesaid channel preferably has a portion that extends inside one of said
fork arms 24, 25. Preferably the aforesaid channel extends between two openings of
the channel from the first end portion 20, 21 of the support bracket 10 to the second
end portion 22, 23 of the support bracket 10 so as to define a waveguide 30 which
extends from the base 6 of the steerable antenna 1 to the payload 4, 5. A waveguide
connector may be provided on the base 6 arranged at the respective aperture of the
channel.
[0034] With reference to figure 3, according to one embodiment, the steerable antenna 1
comprises a first rotary joint in the waveguide 31 having a portion of joint attached
to the support bracket 10, at the second end portion 22, 23 which is operatively coupled
to the integrated waveguide 30 and is in operational communication therewith and a
second portion of joint operatively coupled to the payload 4, 5. Preferably, the second
motor 9 is fixed to the second portion of the rotary joint in the waveguide, in the
example shown, on the outside thereof. With joint reference to figures 3 and 5, in
the particular example represented the first rotary joint in the waveguide 31 is attached
to the arm 25 of the support bracket 10 and in particular engaged in the through aperture
29 and thus allows the second motor 9 to be pivotally hinged to the arm 25 of the
support bracket 10. On the other side of the support bracket 10, a hinge pin 32 is
preferably provided which includes a portion with a smooth surface engaged in the
second motor 9 and a threaded portion screwed inside the through aperture 28 of the
arm 24 of the support bracket 10.
[0035] According to one embodiment, the second motor 9 comprises a container body 39, a
stator 33 housed inside the container body 39, a rotor 34 and a drive shaft 35 attached
or coupled to the rotor 33. The container body 39 is fixed to the driven pulley 8
and is pivotably hinged to the support bracket 10 to rotate around the first rotation
axis. The drive shaft 35 of the second motor 9 is directly or indirectly coupled to
the payload 4, 5 by means of a first coupling flange 36. In the example shown in the
figures a torque reducer is not provided, so that the coupling flange 36 is directly
coupled to the drive shaft 35, for example keyed onto the drive shaft 35, and is directly
coupled to the payload 4, 5. In an alternative embodiment the aforesaid coupling may
be achieved by interposing a torque reducer.
[0036] According to one embodiment, a speed and/or position transducer 45 integral with
the drive shaft 35 in its rotation around the second rotation axis is coupled to the
drive shaft 35 of the second motor 9.
[0037] According to one embodiment, the payload 4, 5 is coupled to the external container
39 of the second motor 9 by means of a second coupling flange 37 and a second rotary
joint 41, shown in figure 5. Preferably, the second rotary joint 41 and the coupling
flange 37 are waveguide devices and make it possible to realise a waveguide connection
by means of a link waveguide 38, operatively interconnected between the first waveguide
joint 31 and the second waveguide joint 41 and integral in rotation with the second
motor 9.
[0038] With reference to figure 5, according to one embodiment, the driven pulley 8 has
an arch-shaped central portion 50 and two side arms 41, 42 attached to the container
body 39 of the second motor 9. The rotation of the driven pulley 8 thus determines
a rotation of the container body 39 of the second motor 9 around the first rotation
axis.
[0039] According to one embodiment, the first motor 7 comprises a container body 70, a stator
71 housed inside the container body 70, a rotor 72 and a drive shaft 73 attached or
coupled to the rotor 72. The container body 70 is attached to the base 6. According
to one embodiment, a speed and/or position transducer 74 is coupled to the drive shaft
73 of the first motor 7.
[0040] The drive shaft 73 of the first motor 7 is preferably coupled directly, i.e. without
a torque reducer, to the driven pulley 8.
[0041] According to the invention, the electromechanical support and movement system 6-10
comprises a belt transmission system, 18, 19, 48, 49 adapted to operatively couple
the first motor 7 to the driven pulley 8 comprising two belts 18, 19 crossing each
other having a first end portion attached to the drive pulley 48, 49, wherein said
transmission system 18, 19, 48, 49 comprises a drive pulley 48, 49 coupled to the
first motor 7, and in particular to its drive shaft 73. The aforementioned belts 18,
19 each have a second end portion attached to the driven pulley 8. Preferably the
second end portions of the belts 18, 19 are attached to opposite end portions 53,
54 of the rounded central portion 53, 58 of the driven pulley 8.
[0042] According to the invention, the aforementioned belts 18, 19 are made of a metal alloy,
for example of an austenitic structure, nickel-chromium based, super alloy. Preferably,
such belts have a reduced thickness, for example of the order of tenths of a millimetre,
for example equal to a tenth of a millimetre.
[0043] According to the invention, the drive pulley 48, 49 comprises two parallel pulleys
48, 49, attached to each other by means of a coupling system which makes it possible
to adjust the mutual orientation of said pulleys 48, 49 to ensure correct pre-tensioning
of the belts 18, 19.
[0044] From the above description it is evident how a steerable antenna 1 of the type described
above makes it possible to achieve the aforementioned purposes with reference to the
state of the prior art.
[0045] The steerable antenna described above has in fact a very compact structure and a
high transversal rigidity. The entire system, in fact, develops around a rigid central
body consisting of the support bracket 10 and the base 6. The embodiment in which
a waveguide integrated in the support bracket 10 is provided also appears to be particularly
advantageous as it is possible to avoid providing a radio frequency cable which is
moved during the manoeuvres of the steerable antenna.
[0046] Without prejudice to the principle of the invention, the embodiments and construction
details may be varied widely with respect to what has been described and illustrated
purely by way of a non-limiting example, without thereby departing from the scope
of the invention as defined in the appended claims.
1. Steerable antenna (1) comprising:
- an orientable payload (4,5);
- an electromechanical movement and support system (6-10) operatively connected to
the payload (4, 5) and adapted to orient the payload in a controlled manner, said
electromechanical system comprising a base (6), a first motor (7) attached to the
base (6), a driven pulley (8) operatively connected to the first motor (7) for being
rotated around a first rotation axis, a second motor (9) operatively connected to
the driven pulley (8) and operatively connected to the payload (4, 5) for rotating
the payload around a second rotation axis;
wherein the electromechanical movement and support system (6-10) further comprises
a support bracket (10) integral with the base (6) to which the second motor (9) is
pivotably hinged and the driven pulley (8) is operatively connected to the second
motor (9) for rotating the second motor (9) in relation to the base (6) and in relation
to the support bracket (10);
wherein the electromechanical movement and support system (6-10) comprises a belt
transmission system (18, 19, 48, 49) adapted to operatively couple the first motor
(7) to the driven pulley (8), said transmission system comprising a drive pulley (48,
49) coupled to the first motor (7);
characterised in that said belt transmission system (18, 19, 48, 49) comprises two crossed belts (18, 19)
having a first end portion attached to said drive pulley (48, 49), wherein said belts
(18, 19) are made of a metal alloy and each have a second end portion attached to
said driven pulley (8), wherein the drive pulley (48, 49) comprises two parallel pulleys
(48, 49), attached to each other by means of a coupling system which permits adjustment
of the reciprocal orientation of said parallel pulleys (48, 49).
2. Steerable antenna (1) according to claim 1, wherein said support bracket (10) comprises
a first end portion (20, 21) attached to the base (6) and a second end portion (22,
23) to which the second motor (9) is pivotably hinged.
3. Steerable antenna (1) according to claim 2, wherein said support bracket (10) is fork-shaped,
and wherein said second end portion (22, 23) comprises two end portions between which
said second motor (9) is pivotably hinged.
4. Steerable antenna (1) according to claim 3, wherein said first end portion (20, 21)
of the support bracket (10) comprises an attachment foot to the base (6) provided
with a through aperture (26) crossed by the driven pulley (8).
5. Steerable antenna (1) according to claim 4, wherein said attachment foot (20, 21)
comprises two spaced-out attachment feet between which said through aperture (26)
is defined.
6. Steerable antenna (1) according to claims 4 or 5, comprising two fork arms (24, 25)
attached to the attachment foot (20, 21) and wherein said two end portions (22, 23)
are free end portions of said fork arms (24, 25).
7. Steerable antenna (1) according to any of the previous claims, wherein the payload
(4, 5) comprises a transmission and/or reception device of electromagnetic radiation
(4).
8. Steerable antenna according to claim 1, wherein the first motor (7) is positioned
below the driven pulley (8) and the support bracket (10) on the opposite side to the
payload (4, 5).
9. Steerable antenna (1) according to claim 1, wherein the support bracket (10) comprises
an integrated waveguide (30).
10. Steerable antenna (1) according to claim 9, wherein said integrated waveguide (30)
is a channel defined in the thickness of the support bracket (10) and wherein said
channel has a portion which extends inside one of said fork arms (24, 25).
11. Steerable antenna (1) according to any of the previous claims, wherein the second
motor (9) comprises a container body (39), a stator (33) housed inside said container
body (39), a rotor (34) and a drive shaft (35) attached or coupled to the rotor (34),
and wherein the container body (39) is attached to the driven pulley (8)and is pivotably
hinged to the support bracket (10) to be able to rotate around said first rotation
axis.
12. Steerable antenna (1) according to claim 11, wherein the driven pulley (8) has an
arch-shaped central portion (50) and two lateral arms (51, 52) attached to the container
body (39) of the second motor (9).
13. Seeker comprising a steerable antenna (1) according to any of the previous claims.
1. Antenne mit schwenkbarer Charakteristik (1), die folgende Merkmale aufweist:
eine orientierbare Nutzlast (4, 5);
ein elektromechanisches Bewegungs- und Tragesystem (6-10), das wirksam mit der Nutzlast
(4, 5) verbunden und dazu angepasst ist, die Nutzlast auf kontrollierte Weise auszurichten,
wobei das elektromechanische System eine Basis (6), einen an der Basis (6) befestigten
ersten Motor (7), eine Abtriebsscheibe (8), die wirksam mit dem ersten Motor (7) verbunden
ist, um um eine erste Drehachse herum gedreht zu werden, einen zweiten Motor, der
wirksam mit der Abtriebsscheibe (8) verbunden ist und wirksam mit der Nutzlast (4,
5) verbunden ist, um die Nutzlast um eine zweite Drehachse herum zu drehen, aufweist;
wobei das elektromechanische Bewegungs- und Tragesystem (6-10) ferner eine Tragehalterung
(10) aufweist, die einstückig mit der Basis (6) gebildet ist, an der der zweite Motor
(9) schwenkbar angelenkt ist, und die Abtriebsscheibe (8) wirksam mit dem zweiten
Motor (9) verbunden ist, um den zweiten Motor (9) relativ zu der Basis (6) und relativ
zu der Tragehalterung (10) zu drehen;
wobei das elektromechanische Bewegungs- und Tragesystem (6-10) ein Riemenübertragungssystem
(18, 19, 48, 49) aufweist, das dazu angepasst ist, den ersten Motor (7) wirksam mit
der Abtriebsscheibe (8) zu koppeln, wobei das Übertragungssystem eine mit dem ersten
Motor (7) gekoppelte Antriebsscheibe (48, 49) aufweist;
dadurch gekennzeichnet, dass das Riemenübertragungssystem (18, 19, 48, 49) zwei gekreuzte Riemen (18, 19) aufweist,
bei denen ein erster Endabschnitt an der Antriebsscheibe (48, 49) befestigt ist, wobei
die Riemen (18, 19) aus einer Metalllegierung hergestellt sind und jeweils einen an
der Abtriebsscheibe (8) befestigten zweiten Endabschnitt aufweisen, wobei die Antriebsscheibe
(48, 49) zwei parallele Scheiben (48, 49) aufweist, die anhand eines Kopplungssystems,
das eine Anpassung der wechselseitigen Ausrichtung der parallelen Scheiben (48, 49)
ermöglicht, aneinander befestigt sind.
2. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 1, bei der die Tragehalterung
(10) einen an der Basis (6) befestigten ersten Endabschnitt (20, 21) und einen zweiten
Endabschnitt (22, 23), an dem der zweite Motor (9) schwenkbar angelenkt ist, aufweist.
3. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 2, bei der die Tragehalterung
(10) gabelförmig ist und bei der der zweite Endabschnitt (22, 23) zwei Endabschnitte
aufweist, zwischen denen der zweite Motor (9) schwenkbar angelenkt ist.
4. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 3, bei der der erste Endabschnitt
(20, 21) der Tragehalterung (10) einen Befestigungsfuß an der Basis (6) aufweist,
der mit einer Durchgangsöffnung (26) versehen ist, die von der Abtriebsscheibe (8)
durchquert wird.
5. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 4, bei der der Befestigungsfuß
(20, 21) zwei mit Abstand angeordnete Befestigungsfüße aufweist, zwischen denen die
Durchgangsöffnung (26) definiert ist.
6. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 4 oder 5, die zwei an dem
Befestigungsfuß (20, 21) befestigte Gabelarme (24, 25) aufweist und bei der die zwei
Endabschnitte (22, 23) freie Endabschnitte der Gabelarme (24, 25) sind.
7. Antenne mit schwenkbarer Charakteristik (1) gemäß einem der vorhergehenden Ansprüche,
bei der die Nutzlast (4, 5) eine Sende- und/oder Empfangsvorrichtung elektromechanischer
Strahlung (4) aufweist.
8. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 1, bei der der erste Motor
(7) unter der Abtriebsscheibe (8) positioniert ist und die Tragehalterung (10) auf
der der Nutzlast (4, 5) gegenüberliegenden Seite.
9. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 1, bei der die Tragehalterung
(10) einen integrierten Wellenleiter (30) aufweist.
10. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 9, bei der der integrierte
Wellenleiter (30) ein in der Dicke der Tragehalterung (10) definierter Kanal ist und
bei der der Kanal einen Abschnitt aufweist, der sich im Inneren eines der Gabelarme
(24, 25) erstreckt.
11. Antenne mit schwenkbarer Charakteristik (1) gemäß einem der vorgehenden Ansprüche,
bei der der zweite Motor (9) einen Behälterkörper (39), einen in dem Behälterkörper
(39) untergebrachten Stator (33), einen Rotor (34) und eine an dem Rotor (34) befestigte
oder mit demselben gekoppelte Antriebswelle (35) aufweist, und wobei der Behälterkörper
(39) an der Abtriebsscheibe (8) befestigt ist und an der Tragehalterung (10) schwenkbar
angelenkt ist, um in der Lage zu sein, sich um die erste Drehachse zu drehen.
12. Antenne mit schwenkbarer Charakteristik (1) gemäß Anspruch 11, bei der die Abtriebsscheibe
(8) einen bogenförmigen mittleren Abschnitt (50) und zwei seitliche Arme (51, 52)
aufweist, die an dem Behälterkörper (39) des zweiten Motors (9) befestigt sind.
13. Suchvorrichtung, die eine Antenne mit schwenkbarer Charakteristik (1) gemäß einem
der vorhergehenden Ansprüche aufweist.
1. Antenne orientable (1) comprenant :
- une charge utile orientable (4, 5) ;
- un système de support et de mouvement électromécanique (6-10) raccordé en fonctionnement
à la charge utile (4, 5) et adapté pour orienter la charge utile de manière commandée,
ledit système électromécanique comprenant une base (6), un premier moteur (7) attaché
à la base (6), une poulie entraînée (8) raccordée en fonctionnement au premier moteur
(7) pour être tournée autour d'un premier axe de rotation, un second moteur (9) étant
raccordé en fonctionnement à la poulie entraînée (8) et raccordé en fonctionnement
à la charge utile (4, 5) pour la rotation de la charge utile autour d'un second axe
de rotation ;
dans laquelle le système de support et de mouvement électromécanique (6-10) comprend
en outre une console de support (10) d'un seul tenant avec la base (6) à laquelle
le second moteur (9) est articulé de manière pivotante et la poulie entraînée (8)
est raccordée en fonctionnement au second moteur (9) pour la rotation du second moteur
(9) en relation avec la base (6) et en relation avec la console de support (10) ;
dans laquelle le système de support et de mouvement électromécanique (6-10) comprend
un système de transmission à courroie (18, 19, 48, 49) adapté pour coupler en fonctionnement
le premier moteur (7) à la poulie entraînée (8), ledit système de transmission comprenant
une poulie d'entraînement (48, 49) couplée au premier moteur (7) ;
caractérisée en ce que ledit système de transmission à courroie (18, 19, 48, 49) comprend deux courroies
croisées (18, 19) présentant une première portion d'extrémité attachée à ladite poulie
d'entraînement (48, 49), dans laquelle lesdites courroies (18, 19) sont réalisées
en un alliage de métal et présentent chacune une seconde portion d'extrémité attachée
à ladite poulie entraînée (8), dans laquelle la poulie d'entraînement (48, 49) comprend
deux poulies parallèles (48, 49) attachées l'une à l'autre au moyen d'un système de
couplage qui permet l'ajustement de l'orientation réciproque desdites poulies parallèles
(48, 49).
2. Antenne orientable (1) selon la revendication 1, dans laquelle ladite console de support
(10) comprend une première portion d'extrémité (20, 21) attachée à la base (6) et
une seconde portion d'extrémité (22, 23) à laquelle le second moteur (9) est articulé
de manière pivotante.
3. Antenne orientable (1) selon la revendication 2, dans laquelle ladite console de support
(10) est en forme de fourche, et dans laquelle ladite seconde portion d'extrémité
(22, 23) comprend deux portions d'extrémité entre lesquelles ledit second moteur (9)
est articulé de manière pivotante.
4. Antenne orientable (1) selon la revendication 3, dans laquelle ladite première portion
d'extrémité (20, 21) de la console de support (10) comprend un pied d'attache à la
base (6) doté d'une ouverture débouchante (26) traversée par la poulie entraînée (8).
5. Antenne orientable (1) selon la revendication 4, dans laquelle ledit pied d'attache
(20, 21) comprend deux pieds d'attache espacés entre lesquels ladite ouverture débouchante
(26) est définie.
6. Antenne orientable (1) selon la revendication 4 ou 5, comprenant deux bras de fourche
(24, 25) attachés au pied d'attache (20, 21) et dans laquelle lesdites deux portions
d'extrémité (22, 23) sont des portions d'extrémité libre desdits bras de fourche (24,
25).
7. Antenne orientable (1) selon l'une quelconque des revendications précédentes, dans
laquelle la charge utile (4, 5) comprend un dispositif de transmission et/ou de réception
de rayonnement électromagnétique (4).
8. Antenne orientable (1) selon la revendication 1, dans laquelle le premier moteur (7)
est positionné sous la poulie entraînée (8) et la console de support (10) sur le côté
opposé à la charge utile (4, 5).
9. Antenne orientable (1) selon la revendication 1, dans laquelle la console de support
(10) comprend un guide d'onde intégré (30).
10. Antenne orientable (1) selon la revendication 9, dans laquelle ledit guide d'onde
intégré (30) est un canal défini dans l'épaisseur de la console de support (10) et
dans laquelle ledit canal présente une portion qui s'étend dans un desdits bras de
fourche (24, 25).
11. Antenne orientable (1) selon l'une quelconque des revendications précédentes, dans
laquelle le second moteur (9) comprend un corps de contenant (39), un stator (33)
logé dans ledit corps de contenant (39), un rotor (34) et un arbre d'entraînement
(35) attaché ou couplé au rotor (34), et dans laquelle le corps de contenant (39)
est attaché à la poulie entraînée (8) et est articulé de manière pivotante à la console
de support (10) pour être apte à tourner autour dudit premier axe de rotation.
12. Antenne orientable (1) selon la revendication 11, dans laquelle la poulie entraînée
(8) présente une portion centrale arquée (50) et deux bras latéraux (51, 52) attachés
au corps de contenant (39) du second moteur (9).
13. Dispositif de recherche comprenant une antenne orientable (1) selon l'une quelconque
des revendications précédentes.