[0001] Refrigeration circuits which are configured for circulating a refrigerant and which
are comprising in flow direction of the refrigerant a heat rejecting heat exchanger,
a receiver, an expansion device, an evaporator, and a compressor are widely known
and used for refrigeration purposes. In those types of refrigeration circuits liquid
refrigerant is stored within the receiver. However, when such a refrigeration circuit
is switched off, the temperature of the refrigerant in the refrigeration lines and
within the receiver increases due to heat impact from the environment. This results
in the evaporation of refrigerant and an increase off pressure within the refrigeration
circuit. In order to avoid damage of the system's components caused by said increasing
pressure, common refrigeration circuits include at least one pressure relief valve,
which opens when a predetermined pressure within the refrigeration circuit is exceeded
in order to allow refrigerant to escape from the refrigeration circuit.
[0002] Removing refrigerant from the refrigeration circuit via pressure relief valves, however,
results in loss of refrigerant, and at some point the removed refrigerant needs to
be replaced which increases the costs for operating and maintaining the refrigeration
circuit. Additionally the removed refrigerant pollutes the environment.
[0003] In order to avoid this problem it is known to use an auxiliary cooler, which uses
e.g. HFC as refrigerant, in order to cool the refrigerant stored within the receiver
when the refrigeration system is not operating.
[0004] It would be beneficial to provide means for avoiding the increase of pressure in
a non-working refrigeration circuit without the need for an auxiliary cooler.
[0005] It furthermore would be beneficial to increase the performance of the refrigeration
circuit when running at hot ambient temperatures.
[0006] DD 108 366 A1 discloses a refrigerating system according to the preamble of claim 1 and a method
for operating a refrigerating system according to the preamble of claim 10. Exemplary
embodiments of the invention include a refrigeration circuit configured for circulating
a refrigerant and comprising in flow direction of the refrigerant a heat rejecting
heat exchanger, a receiver, an expansion device, an evaporator, and a compressor.
The refrigeration circuit further includes a coldness storage device which is configured
to receive and store coldness in a first mode of operation during the operation of
the refrigeration system, and to cool refrigerant which is stored within the receiver
using the stored coldness in a second mode of operation, in particular when the refrigeration
system is not operating.
[0007] Exemplary embodiments further include a refrigeration circuit, wherein the coldness
storage device is configured to receive and store coldness during the operation of
the refrigeration circuit, and to pre-cool refrigerant leaving the heat rejecting
heat exchanger before entering the receiver.
[0008] Embodiments of the invention are described in greater detail below with reference
to the attached figures, wherein:
Fig. 1 shows a schematic view of a first embodiment of a refrigeration circuit according
to the invention;
Fig. 2 shows a schematic view of a second embodiment of a refrigeration circuit according
to the invention;
Fig. 3 shows a schematic view of a third embodiment of a refrigeration circuit according
to the invention;
Fig. 4 shows a schematic view of a fourth embodiment of a refrigeration circuit according
to the invention.
[0009] Fig. 1 shows a schematic view of a refrigeration circuit 2 according to a first embodiment
of the invention.
[0010] The refrigeration circuit 2 shown in Fig. 1 is a two-stage expansion refrigeration
circuit 2 comprising in flow direction of the refrigerant a heat rejecting heat exchanger
4, a high pressure expansion device 8, which are configured for expanding the circulating
refrigerant from high pressure to intermediate pressure, a receiver for receiving,
collecting and storing the intermediate pressure refrigerant, two low pressure expansion
devices 24a, 24b, which are configured for expanding the circulating refrigerant from
intermediate pressure to low pressure and two evaporators 26a, 26b which are configured
for evaporating the low-pressure refrigerant.
[0011] The heat rejecting heat exchanger 4 includes two fans 6 which are configured for
blowing air by the refrigerant flowing through the heat rejecting heat exchanger 4
in order to improve the heat exchange between the refrigerant flowing though the heat
rejecting heat exchanger 4 and the environment.
[0012] Each of the evaporators 26a, 26b includes a fan 28a, 28b, which is configured for
blowing air by the refrigerant flowing through the evaporators 26a, 26b in order to
improve the evaporation of the refrigerant. The refrigeration circuit 2 further includes
a set 30 of compressors 30a, 30b, 30c, which are arranged in parallel to each other
in order to receive gaseous refrigerant leaving the evaporators 26a, 26b and for compressing
the gaseous refrigerant and delivering the refrigerant to the heat rejecting heat
exchanger 4, completing the refrigeration cycle.
[0013] In the exemplary embodiment shown in Fig. 1 two serial arrangements of a low pressure
expansion device 24a, 24b and an evaporator 26a, 26b are connected in parallel to
each other. However, it is evident for the skilled person that any number of such
combinations may be connected in parallel.
[0014] A pressure release line 12 including a pressure relief valve 14 is fluidly connected
to the receiver 10. The pressure relief valve 14 is configured to open when the pressure
within the receiver 10 exceeds a predetermined value in order to release a portion
of the refrigerant from the receiver 10 and to reduce the pressure within the receiver
in order to avoid damage of the components of the refrigeration circuit 2 caused by
high refrigerant pressure within the refrigeration circuit 2.
[0015] A flash gas tap line 16 comprising a flash gas expansion device 18 fluidly connects
the receiver 10 with the inlets of the compressors 30a, 30b, 30c in order to allow
to tap flash gas generated within the receiver 10 from the receiver 10 and to convey
the flash gas to the compressors 30a, 30b, 30c bypassing the low pressure expansion
devices 24a, 24b and the evaporators 26a, 26b. Tapping flash gas from the receiver
10 allows to improve the efficiency of the refrigeration circuit 2.
[0016] In the embodiment shown in Figure 1 the flash gas tap line 16 extends through a coldness
storage device 15 which is arranged downstream of the flash gas expansion device 18.
Thus, after flash gas has been tapped from the receiver and expanded by the flash
gas expansion device 18, the expanded flash gas flows through the coldness storage
device 15 thereby cooling a coldness storage medium 13 arranged within the coldness
storage device 15.
[0017] The refrigeration circuit 2 further includes a receiver cooling line 20 extending
from the receiver through the coldness storage device 15 and back to the receiver
10. An on/off-valve 22 is arranged within the receiver cooling line 20 downstream
of the coldness storage device 15. When the refrigeration circuit 2 is not operating,
i.e. when the compressors 30a, 30b, 30c are stopped, the expansion devices 8, 24a,
24b, 18 are usually closed.
[0018] In order to avoid an increase of temperature and pressure of the refrigerant stored
within the receiver 10 due to the impact of ambient heat, the on/off-valve 22 is opened
allowing gaseous refrigerant from the receiver 10 to flow via the receiver cooling
line 20 through the coldness storage device 15 by the coldness storage medium 13 and
the opened on/off-valve back 22 to the receiver 10.
[0019] Before flowing back into the receiver 10 the refrigerant flowing through the receiver
cooling line 20 is cooled by the coldness storage medium 13 arranged within the coldness
storage device 15. The gaseous refrigerant may be cooled even so much that it is condensed
and liquid refrigerant is flowing back from the receiver cooling line 20 into the
receiver 10.
[0020] The cooled refrigerant flowing back into the receiver 10 reduces the temperature
of the refrigerant stored within the receiver 10 and avoids an undesirable increase
of pressure within the receiver 10 and the refrigeration circuit 2. Thus, there is
no need for the pressure relief valve 14 to open in order to decrease the pressure
within the receiver 10 by releasing refrigerant from the refrigeration circuit 2.
[0021] The coldness storage medium 13 included within the coldness storage device 15 may
be a phase change material storing and releasing heat and/or coldness, respectively,
by undergoing a phase transition process. A phase transition process provides a very
efficient means for storing and releasing heat and/or coldness, respectively. The
coldness storage medium 13 may include freezing and melting water. The melting point
of the water may be adjusted by adding suitable additives.
[0022] The refrigeration circuit 2 according to the first embodiment shown in Fig. 1 allows
to efficiently avoid an increase of pressure of the refrigerant stored in the receiver
10 due to increasing the temperature by using flash gas, which is tapped from the
receiver 10 during normal operation of the refrigeration circuit 2 and storing the
coldness generated by expanding the flash gas in a suitable coldness storage device
15. The coldness storage device 15 includes a coldness storage medium 13 which undergoes
a phase transition for storing and releasing coldness.
[0023] In a refrigeration circuit 2 according to the first embodiment no auxiliary cooler
is necessary in order to cool the refrigerant stored within the receiver 10. The pressure
relief valve 14 needs to open only in cases of emergency but not under normal operating
conditions when the refrigeration circuit 2 is switched off and the release of valuable
and potentially dangerous refrigerant to the environment is avoided.
[0024] Since flash gas tapped from the receiver 10 is used for producing the coldness needed
for cooling the receiver 10, no additional energy is needed in order to generate the
coldness stored within the coldness storage device 15. Thus, an refrigeration circuit
according to the first embodiment may be operated with high efficiency.
[0025] Fig. 2 shows aschematic view of arefrigeration circuit 32 according to a second embodiment.
[0026] The components of the refrigeration circuit 32 which correspond to the components
of the refrigeration circuit 2 according to the first embodiment shown in Fig. 1 are
labelled with the same reference signs and will not be discussed in detail again.
[0027] In the refrigeration circuit 32 according to the second embodiment the coldness storage
medium 13 arranged in the coldness storage device 15 is not cooled by flash gas tapped
from the receiver 10. Instead, there is provided a further refrigerant line 36 extending
from the bottom of the receiver 10 through the coldness storage device 15 to the inlets
of the compressors 30a, 30b, 30c. Upstream of the coldness storage device 15, i. e.
between the receiver 10 and the coldness storage device 15, a coldness storage expansion
device 34 is arranged within the refrigerant line 36, which is configured for expanding
the refrigerant flowing from the receiver 10 to the coldness storage device 15.
[0028] In a refrigeration circuit 32 according to the second embodiment shown in Figure
2 during normal operation a portion of the refrigerant stored within the receiver
10 is flowing through the refrigerant line 36, expanded by the coldness storage expansion
device 34 and cooling the coldness storage medium 13 arranged in the coldness storage
device 15.
[0029] When the refrigeration circuit 32 is not operating and the compressors 30a, 30b,
30c are stopped, in order to cool the refrigerant stored within the receiver 10, flash
gas is tapped from the top of the receiver 10 by a flash gas tapping line 20 and flown
by the coldness storage medium 13 within the coldness storage device 15 and back into
the receiver as described above with respect to the refrigeration circuit 2 according
to the first embodiment.
[0030] The refrigeration circuit 32 according to the second embodiment allows efficient
cooling of the coldness storage medium 13 within the coldness storage device 15 independently
of any flash gas generated within the receiver 10.
[0031] In a further embodiment, which is not shown in the figures, a flash gas line 16 comprising
a flash gas expansion device 18 as shown in Figure 1 may be additionally added to
the refrigeration circuit 32 according to the second embodiment shown in Figure 2
in order to allow cooling of the coldness storage medium 13 stored within the coldness
storage device 15 selectively by flash gas tapped from the top of the receiver 10
and/or by liquid refrigerant taken from the bottom of the receiver according to the
second embodiment shown in Figure 2.
[0032] This allows a very efficient and energy-saving cooling of the coldness storage medium
13.
[0033] A refrigeration circuit 42 according to a third embodiment of the is shown in Fig.
3. The components which are equivalent to the components of the refrigeration circuits
2, 32 according to the first and second embodiment shown in Figs. 1 and 2 are labelled
with the same reference signs and will not be described in detail again.
[0034] The refrigeration circuit 42 according to the third embodiment includes a coldness
storage device 15 comprising a coldness storage medium 13 which may be cooled by refrigerant
flowing through the coldness storage device 15 via the refrigerant line 36 and an
coldness storage expansion device 34 which is arranged in said refrigerant line 36
upstream of said coldness storage device 15.
[0035] A first switchable valve 48 is arranged in the refrigeration circuit 42 in the refrigerant
line 9 between the heat rejecting heat exchanger 4 and the high pressure expansion
device 8. A pre-cooling line 45 branches off the refrigerant line 9 downstream of
the heat rejecting heat exchanger 4 and upstream of the first switchable valve 48
extending through the coldness storage device 15 by the coldness storage medium 13
and rejoining the refrigeration line 9 at a position between the first switchable
valve 48 and the high pressure expansion device 8, thereby bypassing the first switchable
valve 48. The pre-cooling line 45 comprises second and third switchable valves 44,
50 arranged upstream and downstream of the coldness storage device 15, respectively.
In the embodiment shown in Fig. 3 the second and third switchable valves 44, 50 are
arranged near the first switchable valve 48 and the refrigeration line 9.
[0036] During low or medium load operation of the refrigeration circuit 42 the first switchable
valve 48 is open and the second and third switchable valves 44, 50 are closed. Refrigerant
leaving the heat rejecting heat exchanger 6 is flowing via the refrigerant line 9
and the open first switchable valve 48 to the high pressure expansion device 8 as
described before with reference to the first and second embodiments.
[0037] A portion of the fluid refrigerant from the bottom of the receiver 10 is flowing
via the expansion device 34 and the refrigerant line 36 through the coldness storage
device 15 in order to cool the coldness storage medium 13 arranged in the coldness
storage device 15 (Mode 1).
[0038] At high loads, i.e. due to high ambient temperatures, the first switchable valve
48 and the coldness storage expansion device 34 are closed and the second and third
switchable valves 44, 50 are opened. Refrigerant leaving the heat rejecting heat exchanger
6 flows via the opened second switchable valve 44 and the subcooling line 45 through
the coldness storage device 15 by the coldness storage medium 13 arranged in the coldness
storage device 15 and via the third switchable valve 50 to the high pressure expansion
device 8.
[0039] Since the coldness storage medium 13 arranged within the coldness storage device
15 has been cooled before, as described above, it now receives heat from the refrigerant
flowing by through the subcooling line 45, thereby cooling the refrigerant before
it reaches the high pressure expansion device 8.
[0040] This subcooling of the refrigerant before it is expanded by the high pressure expansion
device 8 increases the efficiency of the refrigeration circuit 42 in particular if
it is running at high load, i.e. due to high ambient temperatures.
[0041] In particular, superfluous cooling capacity during low load operation of the refrigeration
circuit (i. e. during night time and/or low ambient temperatures) may be used for
cooling the coldness storage medium 13 arranged in the coldness storage device 15.
As a result, the excessive coldness produced during low load periods is saved to be
used later in high load periods. This increases the efficiency of the refrigeration
circuit 42 considerably and reduces the costs for running the refrigeration circuit
42 in particular during high load periods.
[0042] Fig. 4 shows a schematic view of a refrigeration circuit 52 according to a fourth
embodiment. The refrigeration circuit 52 according to the fourth embodiment is similar
to the refrigeration circuit according to the third embodiment shown in Fig. 3 and
corresponding components of the refrigeration circuit 42 are labelled with the same
reference signs and will not be described in detail again.
[0043] In the refrigeration circuit 52 according to the fourth embodiment, however, the
coldness storage medium 13 arranged in the coldness storage device 15 is not cooled
by expanding liquid refrigerant extracted from the bottom of the receiver 10, but
by flash gas which is tapped from the top of the receiver as described with respect
to the first embodiment shown in Fig. 1.
[0044] The refrigeration circuit 52 according to the fourth embodiment includes a flash
gas tap line 16 extending from the top of the receiver 10 through the coldness storage
device 15 to the inlets of the compressors 30a, 30b, 30c. A flash gas expansion device
18 is arranged in the flash gas tap line 16 between the receiver 10 and the coldness
storage device 15.
[0045] During low or medium load operation of the refrigeration circuit 52, when the first
switchable valve 48 is open and the second and third switchable valves 44, 50 are
closed, as described above with respect to the third embodiment, flash gas is tapped
from the receiver 10 via a flash gas tap line 16 and expanded by the flash gas expansion
device 18. The expanded flash gas is flown through the coldness storage device 15
in order to cool the coldness storage medium 13 arranged in the coldness storage device
15.
[0046] During high load operation the refrigeration circuit 52 according to the fourth embodiment
the refrigeration circuit 52 is operated like the refrigeration circuit 42 according
to the third embodiment shown in Fig. 3 described before, i. e. the first switchable
valve 48 is closed and the second and third switchable valves 44, 50 are opened in
order to flow the refrigerant leaving the heat rejecting heat exchanger 4 through
the coldness storage device 15, where it is subcooled by transferring heat to the
coldness storage medium 13 arranged in the coldness storage device 15, before the
refrigerant is expanded by the high pressure expansion device 8.
[0047] It is evident to the skilled person that the third and fourth embodiments 42, 52
may be combined with each other in an embodiment, where in addition to the refrigerant
line 36 comprising the refrigerant expansion device 34 a flash gas tap line 16 comprising
a flash gas expansion device 18 extends through the coldness storage device 15 in
order to cool the refrigerant medium 13 arranged in the refrigerant storage device
15 selectively by flash gas flowing through the flash gas tapping line 16 and/or the
expanded refrigerant flowing the refrigerant line 36.
[0048] Such a combination of the embodiments shown in Figs. 3 and 4 allows a very efficient
operation of the refrigeration circuit under all possible ambient conditions.
[0049] Although not shown in the figures it is also evident to the skilled person that the
embodiments shown in Figs. 3 and 4 may be combined with the embodiments shown in Figs.
1 and 2, respectively, in order to aggregate the advantages of subcooling the refrigerant
under high load conditions with the advantages of cooling the refrigerant comprised
within the receiver 10 when the refrigeration circuit 2, 32, 42, 52 is not working
and the compressors 30a, 30b, 30c are stopped.
[0050] While the invention has been described before with respect to a two-stage expansion,
which is in particular efficient when a refrigerant including CO
2 is used, the skilled person will easily understand that the invention is also applicable
to a one-stage expansion refrigeration circuit, which does not include a high-pressure
expansion device 8.
[0051] By the exemplary embodiments of the invention, as described herein, pressure increase
during stand still can reliably be avoided, and peak load shaving can be allowed by
increasing load during high coefficient of performance operations while increasing
the coefficient of performance during low load durations.
[0052] The coldness storage device may include a phase change material, which changes its
phase when storing or delivering coldness. A phase change material is very efficient
in storing and releasing heat and coldness, respectively.
[0053] The refrigerating may include a flash gas line extending from the receiver through
the coldness storage device to the compressor and configured for tapping flash gas
from the receiver.
[0054] The flash gas line may include a flash gas expansion device, which is located upstream
of the coldness storage device and configured for expanding the flash gas. Expanded
flash gas allows to cool the coldness medium within the coldness storage device very
efficiently.
[0055] The refrigerating system may further include a cooling-storage-device-refrigerant
line extending from the receiver through the coldness storage device to the compressor
and configured to deliver liquid refrigerant from the receiver to the coldness storage
device. This allows to efficiently cool the coldness storage medium arranged within
the coldness storage device.
[0056] A coldness storage expansion device may be arranged in the storage-device-refrigerant
line upstream of the coldness storage device. Expanding the refrigerant from the receiver
improves the efficiency of cooling the coldness storage medium arranged within the
coldness storage device.
[0057] The storage-device-refrigerant line may be formed as a heat-exchanger within the
coldness storage device in order to improve the heat exchange between the refrigerant
flowing through the storage-device-refrigerant line and the coldness storage medium
arranged within the coldness storage device.
[0058] The may by atwo-stage expansion refrigerating system comprising a high pressure expansion
device arranged between the heat rejecting heat exchanger and the receiver. Two-stage
expansion increases the efficiency of the refrigeration circuit.
[0059] The refrigerant may include CO
2. CO
2 provides a very efficient refrigerant.
1. A refrigerating system (2; 32; 42; 52) configured for circulating a refrigerant and
comprising in flow direction of the refrigerant:
a heat rejecting heat exchanger (4), a receiver (10), an expansion device (24a, 24b),
an evaporator (26a, 26b) and a compressor (30a, 30b, 30c),
characterized in that the refrigerating system (2; 32; 42; 52) further comprises a coldness storage device
(15) which is configured
a) to receive and store coldness during the operation of the refrigerating system
(2; 32; 42; 52), and
b) to cool refrigerant stored within the receiver (10) or to cool refrigerant leaving
the heat rejecting heat exchanger (4) before entering the receiver (10).
2. The refrigerating system (2; 32; 42; 52) of claim 1, wherein the coldness storage
device (15) includes a phase change material (13), which changes its phase when storing
or delivering coldness.
3. The refrigerating system (42; 52) of any of the preceding claims, comprising a coldness-storage-device-refrigerant-line
(36) extending from the receiver (10) through the coldness storage device (15) to
the compressor (30a, 30b, 30c) and configured to deliver liquid refrigerant from the
receiver (10) to the coldness storage device (15).
4. The refrigerating system (42; 52) of claim 3, the coldness-storage-device-refrigerant-line
(36) includes a further expansion device (34) upstream of the coldness storage device
(15).
5. The refrigerating system (42; 52) of claim 3 or 4, wherein the coldness-storage-device-refrigerant-line
(36) includes a heat-exchanger arranged within the coldness storage device (15), wherein
the coldness-storage-device-refrigerant-line (36) is in particular formed as a heat-exchanger
within the coldness storage device (15).
6. The refrigerating system (2; 32; 42; 52) of any of the preceding claims, wherein the
refrigerating system (2; 32; 42; 52) is a two-stage expansion refrigerating system
comprising a high pressure expansion device (8) arranged between the heat rejecting
heat exchanger (4) and the receiver (10).
7. The refrigerating system (2; 32; 42; 52) of any of the preceding claims, wherein the
refrigerant includes CO2.
8. The refrigerating system (2; 32) of any of the preceding claims, comprising a flash
gas line (16) extending from the receiver (10) through the coldness storage device
(15) to the compressor (30a, 30b, 30c) and configured for tapping flash gas from the
receiver (10).
9. The refrigerating system (2; 32) of claim 8, wherein the flash gas line (16) includes
a flash gas expansion device (18), which is located upstream of the coldness storage
device (15) and configured for expanding the flash gas.
10. A method of operating a refrigerating system (2; 32; 42; 52) comprising in flow direction
of a refrigerant a heat rejecting heat exchanger (4), a receiver (10), an expansion
device (24a, 24b), an evaporator (26a, 26b) and a compressor (30a, 30b, 30c),
characterized in that the method comprises the step of cooling refrigerant stored in the receiver (10)
by tapping flash gas from the receiver (10), flowing the flash gas through a coolness
storage device (15), which is configured to receive and store coldness during the
operation of the refrigerating system (2; 32; 42; 52), and returning the cooled flash
gas to the receiver (10) or the step of cooling refrigerant leaving the heat rejecting
heat exchanger (4) before entering the receiver (10) by flowing the refrigerant through
a coldness storage device (15), which is configured to receive and store coldness
during the operation of the refrigerating system (2; 32; 42; 52).
11. The method of claim 10, wherein the coldness storage device (15) includes a coldness
storage medium (13), which changes its phase when storing or delivering coldness.
12. The method of claim 11, wherein the coldness storage medium (13) is cooled by expanded
flash gas tapped from the receiver (10) during normal operation of the cooling system
(2; 32) and/or, wherein the coldness storage medium (13) is cooled by liquid refrigerant
taken from the receiver (10).
13. The method of any of claims 10 to 12, wherein the refrigerant is expanded before entering
the coldness storage device (15).
14. The method of any of claims 10 to 13 comprising the step of partially expanding the
refrigerant from high pressure to medium pressure before entering the receiver (10).
15. The method of any of claims 10 to 14, wherein the refrigerant comprises CO2.
1. Kühlsystem (2; 32; 42; 52), konfiguriert zum Zirkulieren eines Kältemittels und in
Strömungsrichtung des Kältemittels Folgendes umfassend:
einen wärmeabgebenden Wärmetauscher (4), einen Sammelbehälter (10), eine Expansionseinrichtung
(24a, 24b), einen Verdampfer (26a, 26b) und einen Verdichter (30a, 30b, 30c),
dadurch gekennzeichnet, dass das Kühlsystem (2; 32; 42; 52) ferner eine Kältespeichereinrichtung (15) umfasst,
die dazu konfiguriert ist,
a) Kälte während des Betriebs des Kühlsystems (2; 32; 42; 52) aufzunehmen und zu speichern,
und
b) in dem Sammelbehälter (10) gespeichertes Kältemittel zu kühlen oder Kältemittel,
das den wärmeabgebenden Wärmetauscher (4) verlässt, vor dem Eintreten in den Sammelbehälter
(10) zu kühlen.
2. Kühlsystem (2; 32; 42; 52) nach Anspruch 1, wobei die Kältespeichereinrichtung (15)
ein Phasenänderungsmaterial (13) beinhaltet, das seine Phase beim Speichern oder Zuführen
von Kälte ändert.
3. Kühlsystem (42; 52) nach einem der vorstehenden Ansprüche, umfassend eine Kältespeichereinrichtungs-Kältemittelleitung
(36), die sich von dem Sammelbehälter (10) durch die Kältespeichereinrichtung (15)
zu dem Verdichter (30a, 30b, 30c) erstreckt und dazu konfiguriert ist, flüssiges Kältemittel
von dem Sammelbehälter (10) zu der Kältespeichereinrichtung (15) zuzuführen.
4. Kühlsystem (42; 52) nach Anspruch 3, wobei die Kältespeichereinrichtungs-Kältemittelleitung
(36) eine weitere Expansionseinrichtung (34) stromaufwärts der Kältespeichereinrichtung
(15) beinhaltet.
5. Kühlsystem (42; 52) nach Anspruch 3 oder 4, wobei die Kältespeichereinrichtungs-Kältemittelleitung
(36) einen Wärmetauscher beinhaltet, der innerhalb der Kältespeichereinrichtung (15)
angeordnet ist, wobei die Kältespeichereinrichtungs-Kältemittelleitung (36) insbesondere
als ein Wärmetauscher innerhalb der Kältespeichereinrichtung (15) ausgebildet ist.
6. Kühlsystem (2; 32; 42; 52) nach einem der vorstehenden Ansprüche, wobei das Kühlsystem
(2; 32; 42; 52) ein Zweistufenexpansions-Kühlsystem ist, das eine Hochdruck-Expansionseinrichtung
(8) umfasst, die zwischen dem wärmeabgebenden Wärmetauscher (4) und dem Sammelbehälter
(10) angeordnet ist.
7. Kühlsystem (2; 32; 42; 52) nach einem der vorstehenden Ansprüche, wobei das Kältemittel
CO2 beinhaltet.
8. Kühlsystem (2; 32) nach einem der vorstehenden Ansprüche, umfassend eine Flashgasleitung
(16), die sich von dem Sammelbehälter (10) durch die Kältespeichereinrichtung (15)
zu dem Verdichter (30a, 30b, 30c) erstreckt und dazu konfiguriert ist, Flashgas aus
dem Sammelbehälter (10) zu abzuleiten.
9. Kühlsystem (2; 32) nach Anspruch 8, wobei die Flashgasleitung (16) eine Flashgas-Expansionseinrichtung
(18) beinhaltet, die sich stromaufwärts der Kältespeichereinrichtung (15) befindet
und zum Expandieren des Flashgases konfiguriert ist.
10. Verfahren zum Betreiben eines Kühlsystems (2; 32; 42; 52), umfassend, in Strömungsrichtung
eines Kältemittels, einen wärmeabgebenden Wärmetauscher (4), einen Sammelbehälter
(10), eine Expansionseinrichtung (24a, 24b), einen Verdampfer (26a, 26b) und einen
Verdichter (30a, 30b, 30c),
dadurch gekennzeichnet, dass das Verfahren den Schritt des Kühlens von Kältemittel, das in dem Sammelbehälter
(10) gespeichert ist, durch Ableiten von Flashgas aus dem Sammelbehälter (10), Strömen
des Flashgases durch eine Kältespeichereinrichtung (15), die dazu konfiguriert ist,
Kälte während des Betriebs des Kühlsystems (2; 32; 42; 52) aufzunehmen und zu speichern,
und Rückführen des gekühlten Flashgases zu dem Sammelbehälter (10) oder den Schritt
des Kühlens von Kältemittel, das den wärmeabgebenden Wärmetauscher (4) verlässt, vor
dem Eintreten in den Sammelbehälter (10) durch Strömen des Kältemittels durch eine
Kältespeichereinrichtung (15), die dazu konfiguriert ist, Kälte während des Betriebs
des Kühlsystems (2; 32; 42; 52) aufzunehmen und zu speichern, umfasst.
11. Verfahren nach Anspruch 10, wobei die Kältespeichereinrichtung (15) ein Kältespeichermedium
(13) beinhaltet, das seine Phase beim Speichern oder Zuführen von Kälte ändert.
12. Verfahren nach Anspruch 11, wobei das Kältespeichermedium (13) durch expandiertes
Flashgas, das aus dem Sammelbehälter (10) abgeleitet wird, während Normalbetriebs
des Kühlsystems (2; 32) gekühlt wird, und/oder wobei das Kältespeichermedium (13)
durch flüssiges Kältemittel, das aus dem Sammelbehälter (10) entnommen wird, gekühlt
wird.
13. Verfahren nach einem der Ansprüche 10 bis 12, wobei das Kältemittel expandiert wird,
bevor es in die Kältespeichereinrichtung (15) eintritt.
14. Verfahren nach einem der Ansprüche 10 bis 13, umfassend den Schritt des teilweisen
Expandierens des Kältemittels von Hochdruck zu Mitteldruck vor Eintreten in den Sammelbehälter
(10) .
15. Verfahren nach einem der Ansprüche 10 bis 14, wobei das Kältemittel CO2 umfasst.
1. Système de refroidissement (2 ; 32 ; 42 ; 52) conçu pour faire circuler un réfrigérant
et comprenant une direction d'écoulement du réfrigérant :
un échangeur de chaleur à rejet de chaleur (4), un récepteur (10), un dispositif de
détente (24a, 24b), un évaporateur (26a, 26b) et un compresseur (30a, 30b, 30c),
caractérisé en ce que le système de refroidissement (2 ; 32 ; 42 ; 52) comprend en outre un dispositif
de stockage de froid (15) qui est conçu
a) pour recevoir et stocker le froid pendant le fonctionnement du système de refroidissement
(2 ; 32 ; 42 ; 52), et
b) pour refroidir un réfrigérant stocké à l'intérieur du récepteur (10) ou refroidir
un réfrigérant quittant l'échangeur de chaleur à rejet de chaleur (4) avant d'entrer
dans le récepteur (10).
2. Système de refroidissement (2 ; 32 ; 42 ; 52) selon la revendication 1, dans lequel
le dispositif de stockage de froid (15) comprend un matériau de changement de phase
(13), qui change sa phase lors du stockage et de la distribution de froid.
3. Système de refroidissement (42 ; 52) selon l'une quelconque des revendications précédentes,
comprenant une conduite de réfrigérant du dispositif de stockage de froid (36) s'étendant
du récepteur (10) à travers le dispositif de stockage de froid (15) au compresseur
(30a, 30b, 30c) et conçue pour distribuer un réfrigérant liquide du récepteur (10)
au dispositif de stockage de froid (15).
4. Système de refroidissement (42 ; 52) selon la revendication 3, la conduite de réfrigérant
du dispositif de stockage de froid (36) comprend un autre dispositif de détente (34)
en amont du dispositif de stockage de froid (15).
5. Système de refroidissement (42 ; 52) selon la revendication 3 ou 4, dans lequel la
conduite de réfrigérant du dispositif de stockage de froid (36) comprend un échangeur
de chaleur agencé à l'intérieur du dispositif de stockage de froid (15), dans lequel
la conduite de réfrigérant du dispositif de stockage de froid (36) est en particulier
formée en tant qu'échangeur de chaleur à l'intérieur du dispositif de stockage de
froid (15).
6. Système de refroidissement (2 ; 32 ; 42 ; 52) selon l'une quelconque des revendications
précédentes, dans lequel le système de refroidissement (2 ; 32 ; 42 ; 52) est un système
de refroidissement à détente à deux étages comprenant un dispositif de détente haute
pression (8) agencé entre l'échangeur de chaleur à rejet de chaleur (4) et le récepteur
(10) .
7. Système de refroidissement (2 ; 32 ; 42 ; 52) selon l'une quelconque des revendications
précédentes, dans lequel le réfrigérant comprend du CO2.
8. Système de refroidissement (2 ; 32) selon l'une quelconque des revendications précédentes,
comprenant une conduite de vapeur instantanée (16) s'étendant du récepteur (10) à
travers le dispositif de stockage de froid (15) au compresseur (30a, 30b, 30c) et
conçue pour prélever la vapeur instantanée à partir du récepteur (10).
9. Système de refroidissement (2 ; 32) selon la revendication 8, dans lequel la conduite
de vapeur instantanée (16) comprend un dispositif de détente de vapeur instantanée
(18), qui est situé en amont du dispositif de stockage de froid (15) et conçu pour
détendre la vapeur instantanée.
10. Procédé de fonctionnement d'un système de refroidissement (2 ; 32 ; 42 ; 52) comprenant
dans la direction d'écoulement d'un réfrigérant un échangeur de chaleur à rejet de
chaleur (4), un récepteur (10), un dispositif de détente (24a, 24b), un évaporateur
(26a, 26b) et un compresseur (30a, 30b, 30c),
caractérisé en ce que le procédé comprend l'étape de refroidissement du réfrigérant stocké dans le récepteur
(10) en prélevant la vapeur instantanée à partir du récepteur (10), en faisant circuler
la vapeur instantanée à travers un dispositif de stockage de froid (15), qui est conçu
pour recevoir et stocker le froid pendant le fonctionnement du système de refroidissement
(2 ; 32 ; 42 ; 52) et en renvoyant la vapeur instantanée refroidie vers le récepteur
(10) ou l'étape de refroidissement du réfrigérant quittant l'échangeur de chaleur
à rejet de chaleur (4) avant d'entrer dans le récepteur (10) en faisant circuler le
réfrigérant à travers un dispositif de stockage de froid (15) qui est conçu pour recevoir
et stocker le froid pendant le fonctionnement du système de refroidissement (2 ; 32
; 42 ; 52).
11. Procédé selon la revendication 10, dans lequel le dispositif de stockage de froid
(15) comprend un support de stockage de froid (13), qui change sa phase lors du stockage
ou de la distribution de froid.
12. Procédé selon la revendication 11, dans lequel le support de stockage de froid (13)
est refroidi par la vapeur instantanée détendue prélevée à partir du récepteur (10)
pendant un fonctionnement normal du système de refroidissement (2 ; 32) et/ou, dans
lequel le support de stockage de froid (13) est refroidi par le réfrigérant liquide
prélevé à partir du récepteur (10).
13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel le réfrigérant
est détendu avant d'entrer dans le dispositif de stockage de froid (15).
14. Procédé selon l'une quelconque des revendications 10 à 13, comprenant l'étape de détente
partielle du réfrigérant d'une pression élevée vers une pression moyenne avant d'entrer
dans le récepteur (10).
15. Procédé selon l'une quelconque des revendications 10 à 14, dans lequel le réfrigérant
comprend du CO2.