TECHNICAL FIELD
[0001] The present invention relates to a low alloy steel.
BACKGROUND ART
[0002] In the development of submarine oilfields, a steel pipe called a riser, flowline,
or trunkline is used for transmission of crude oil or natural gas between an oil well
or gas well located at the bottom of the sea and a platform on the sea or between
the platform and a refinery station on the land. On the other hand, with the worldwide
exhaustion of fossil fuels, oil fields containing much hydrogen sulfide having corrosiveness
have been developed actively. A steel pipe for transmitting crude oil or natural gas
exploited from oil fields containing such a corrosive gas is sometimes broken by embrittlement
attributable to hydrogen formed from a corrosion reaction called hydrogen induced
cracking (hereinafter, referred to as "HIC") and sulfide stress cracking (hereinafter,
referred to as "SSC"). Many steels developed from the viewpoint of improving the HIC
resistance and SSC resistance have traditionally been proposed.
[0003] For example, Patent Document 1 (
JP5-255746A) proposes a steel provided with excellent HIC resistance by defining the heat history
and heat treatment conditions at the production time without substantially containing
Ni, Cu and Ca. Also, Patent Document 2 (
JP6-336639A) proposes a steel provided with HIC resistance and SSC resistance by essentially
adding Cr, Ni and Cu. Further, Patent Document 3 (
JP2002-60894A) proposes a steel in which the HIC resistance and SSC resistance are enhanced by
defining the specific ranges of amounts of C, Ti, N, V and O.
[0004] When a structure is assembled by using any of these steels, for example, when a steel
pipe consisting of any of these steels is laid, welding work is generally performed.
Unfortunately, for example, as described in Non-Patent Document 1, it is widely known
that the SSC susceptibility is increased by the increase in hardness. When a steel
undergoes heating due to welding, a hardened portion is produced in a so-called weld
heat affected zone (hereinafter, referred to as a "HAZ: Heat Affected Zone"). As a
result, however much the HIC resistance and SSC resistance of the steel itself are
enhanced, practically sufficient performance of a welded structure cannot be achieved
in many cases.
[0005] Therefore, in recent years, as described in Patent Document 4 (
JP2010-24504A), there has also been proposed a high-strength steel in which, by reducing the amounts
of C and Mn and by adding 0.5% or more of Mo, the hardening of weld heat affected
zone is restrained, and both of HIC resistance and SSC resistance of base metal and
HAZ are achieved.
[0006] Patent Document 5 describes a resistance welded tube for hollow stabilizer having
a composition containing C: 0.03 to 0.10 weight%, Si: 0.20 to 1.0 weight%, Mn: 1.0-2.5
weight%, P: 0.03 weight% or less, S: 0.005 weight% or less, N+O: 150 ppm or less,
Al: 0.01 to 0.1 weight%, B: 0.0050 weight% or less, Ti: 0.02-0.20 weight%, Nb: 0.02-0.10
weight% and Ca: 0.0050 weight% or less.
LIST OF PRIOR ART DOCUMENT(S)
DISCLOSURE OF THE INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0008] In the invention of Patent Document 4, Mo, which is an expensive element, is essential.
[0009] An objective of the present invention is to provide a low alloy steel in which a
HAZ has excellent hydrogen embrittlement resistance in wet hydrogen sulfide environments
or the like without requiring much cost.
MEANS FOR SOLVING THE PROBLEMS
[0010] The present inventors conducted examinations and studies to optimize the chemical
composition capable of enhancing the hydrogen embrittlement resistance of a weld heat
affected zone (HAZ: Heat Affected Zone, hereinafter, referred to as a "HAZ").
[0011] It is considered that the reason why the HAZ is highly susceptible to hydrogen embrittlement
is as follows. In the case where a steel is exposed to a corrosive environment containing
hydrogen sulfide, hydrogen intrudes into the steel on account of corrosion reaction.
This hydrogen can move freely in the crystal lattice of the steel. This hydrogen is
so-called diffusible hydrogen. This hydrogen accumulates in a dislocation or a vacancy,
which is one kind of defects in the crystal lattice to embrittle the steel. The HAZ
is an as-quenched structure being heated to a high temperature by the heat history
of welding, and cooled rapidly. Therefore, in the HAZ, the dislocations and vacancies
in which hydrogen is trapped exist densely as compared with a thermally refined base
metal. As a result, it is considered that the HAZ is highly susceptible to hydrogen
embrittlement as compared with the base metal.
[0012] As a result of repeated earnest studies, it was found that, in order to enhance the
hydrogen embrittlement susceptibility of HAZ, it was very effective to positively
contain B, specifically, to contain 0.005 to 0.050% of B. The reason for this is considered
to be as follows. Because having a small atom radius like hydrogen, B exists in a
crystal lattice, and can move in the lattice. In addition, B has a tendency to segregate
in a lattice defect and to exist stably. Therefore, for the steel containing much
B, it is considered that hydrogen can be prevented from accumulating in the dislocation
or vacancy introduced into the HAZ, and embrittlement can be suppressed.
[0013] The present invention has been made based on the above-described findings, and the
scope thereof is defined by the appended claims.
EFFECTS OF THE INVENTION
[0014] According to the present invention, there can be provided a low alloy steel in which
a HAZ has excellent resistance to embrittlement attributable to hydrogen such as stress
corrosion cracking in wet hydrogen sulfide environments. This low alloy steel is best
suitable as a starting material of a steel pipe for the transmission of crude oil
or natural gas.
MODE FOR CARRYING OUT THE INVENTION
[0015] Hereunder, the range of chemical composition of the low alloy steel in accordance
with the present invention and the reason for restricting the chemical composition
are explained. In the following explanation, "%" representing the content of each
element means "mass%".
C: 0.01 to 0.15%
[0016] C (carbon) is an element effective in enhancing the hardenability of steel and increasing
the strength thereof. In order to achieve these effects, 0.01% or more of C must be
contained. However, if the content of C exceeds 0.15%, the hardness in the quenched
state increases too much, and the HAZ is hardened, so that the hydrogen embrittlement
susceptibility of HAZ is enhanced. Therefore, the C content is set to 0.01 to 0.15%.
The lower limit of the C content is preferably 0.02%, further preferably 0.03%. The
C content is preferably 0.12% or less, further preferably less than 0.10%.
Si: 3% or less
[0017] Si (silicon) is an element effective for deoxidation, but brings about a decrease
in toughness if being contained excessively. Therefore, the Si content is set to 3%
or less. The Si content is preferably 2% or less. The lower limit of the Si content
is not particularly defined; however, even if the Si content is decreased, the deoxidizing
effect decreases, the cleanliness of steel is deteriorated, and an excessive decrease
in the Si content leads to an increase in production cost. Therefore, the Si content
is 0.01% or more.
Mn: 3% or less
[0018] Like Si, Mn (manganese) is an element effective for deoxidation, and also is an element
contributing to the enhancement of hardenability of steel and to the increase in strength
thereof. However, if Mn is contained excessively, remarkable hardening of HAZ is caused,
and the hydrogen embrittlement susceptibility is enhanced. Therefore, the Mn content
is set to 3% or less. The lower limit of the Mn content is not particularly defined;
however, in order to achieve the strength increasing effect of Mn, 0.2% or more of
Mn is contained. The lower limit thereof is further preferably 0.4%, and the preferable
upper limit thereof is 2.8%.
B: 0.006 to 0.050%
[0019] B (boron) is an element that constitutes the findings, which are the basis of the
present invention. As described before, B occupies the accumulation site of hydrogen,
such as the dislocation or vacancy in the HAZ. Therefore, B is an element effective
in enhancing the hydrogen embrittlement resistance. Furthermore, when a steel material
is produced, B segregates at grain boundaries, thereby enhancing the hardenability
indirectly, and contributes to the improvement in strength. In order to achieve these
effects, 0.005% or more of B must be contained. On the other hand, if B is contained
excessively, borides precipitate in large amounts in the HAZ, the interface between
a matrix and borides acts as the accumulation site of hydrogen, and inversely embrittlement
is produced. Therefore, the B content is set to 0.006 to 0.050%. The lower limit of
the B content is preferably 0.008%. The upper limit thereof is preferably 0.045%,
further preferably 0.040%.
[0020] In the case where the hardness of HAZ increases, the dislocation density increases,
so that it is preferable that, in order to attain sufficient hydrogen embrittlement
resistance, the lower limit of the B content be controlled according to the highest
hardness of HAZ. That is to say, in order to attain sufficient hydrogen embrittlement
resistance, the B content is in the range satisfying Formula (1) in the relationship
with the maximum value of Vickers hardness of HAZ:
where, "Hv" in the formula means the maximum value of Vickers hardness of HAZ, and
"B" means the content of B (mass%). The maximum value of Vickers hardness of HAZ is
a value that is determined by a Vickers test in which the test force is 98.07N in
conformity to JIS Z2244.
Al: 0.08% or less
[0021] A1 (aluminum) is an element effective for deoxidation, but if being contained excessively,
the effect is saturated, and also the toughness is decreased. Therefore, the Al content
is set to 0.08% or less. The Al content is preferably 0.06% or less. The lower limit
of the Al content is not particularly defined; however, an excessive decrease in the
Al content does not sufficiently achieve the deoxidizing effect, deteriorates the
cleanliness of steel, and also increases the production cost. Therefore, 0.001% or
more of Al is contained. The Al content in the present invention means the content
of acid soluble Al (so-called "sol.Al").
[0022] The low alloy steel in accordance with the present invention contains the above-described
elements, and the balance consists of Fe and impurities. The "impurities" mean components
that are mixed on account of various factors including raw materials such as ore or
scrap when a steel material is produced on an industrial scale. Of the impurities,
concerning the elements described below, the content thereof must be restricted stringently.
N: 0.01% or less
[0023] N (nitrogen) exists in the steel as an impurity. Nitrogen produces embrittlement
when fine carbo-nitrides are formed, and decreases the toughness even when being dissolved.
Therefore, the N content must be restricted to 0.01% or less. The N content is preferably
0.008% or less. The lower limit of the N content is not particularly defined; however,
an excessive decrease in the N content leads to a remarkable increase in production
cost. Therefore, the lower limit of the N content is preferably 0.0001%.
P: 0.05% or less
[0024] P (phosphorus) exists in the steel as an impurity. Phosphorus segregates at grain
boundaries in HAZ, and decreases the toughness. Therefore, the P content is restricted
to 0.05% or less. The lower limit of the P content is not particularly defined; however,
an excessive decrease in the P content leads to a remarkable increase in production
cost. Therefore, the lower limit of the P content is preferably 0.001%.
S: 0.03% or less
[0025] Like P, S (sulfur) exists in the steel as an impurity. Sulfur forms sulfides in a
steel material, and since the interface with a matrix acts as an accumulation site
of hydrogen, S enhances the hydrogen embrittlement susceptibility, and also decreases
the HAZ toughness. Therefore, the S content is restricted to 0.03% or less, more severely
than P. The lower limit of the S content is not particularly defined; however, an
excessive decrease in the S content leads to a remarkable increase in production cost.
Therefore, the lower limit of the S content is preferably 0.0001%.
O: 0.03% or less
[0026] O (oxygen) exists in the steel as an impurity. If much O is contained, large amounts
of oxides are formed, and the workability and ductility are deteriorated. Therefore,
the O content must be set to 0.03% or less. The O content is preferably 0.025% or
less. The lower limit of the O content need not particularly be defined; however,
an excessive decrease in the O content leads to a remarkable increase in production
cost. Therefore, the O content is preferably 0.0005% or more.
[0027] The low alloy steel in accordance with the present invention may contain the elements
described below in lieu of a part of Fe.
One or more elements selected from Cr, Mo, Ni and Cu: 1.5% or less in total
[0028] One or more elements selected from Cr (chromium), Mo (molybdenum), Ni (nickel) and
Cu (copper) may be contained because these elements enhance the hardenability and
contribute to the improvement in strength. However, if the contents thereof are excessively
high, the HAZ is hardened remarkably, and therefore the hydrogen embrittlement susceptibility
may be enhanced. Therefore, if one or more elements of these elements are contained,
the contents thereof are set to 1.5% or less in total. The lower limit of the contents
of these elements is preferably 0.02%, further preferably 0.05%. The upper limit thereof
is preferably 1.2%.
One or more elements selected from Ti, V and Nb: 0.2% or less in total
[0029] One or more elements selected from Ti (titanium), V (vanadium) and Nb (niobium) may
be contained because these elements are elements that form fine carbo-nitrides and
contribute to the improvement in strength, and also stably supplement diffusible hydrogen,
and bring about a considerable effect of reducing the hydrogen embrittlement susceptibility.
However, if the contents thereof are excessively high, the formation of carbo-nitrides
becomes excessive, and therefore the toughness may be decreased. Therefore, if one
or more elements of these elements are contained, the contents thereof are set to
0.2% or less in total. The lower limit of the contents of these elements is preferably
0.001%, further preferably 0.003%. The upper limit thereof is preferably 0.15%.
Ca and/or Mg: 0.05% or less in total
[0030] At least one of Ca (calcium) and Mg (magnesium) may be contained because these elements
improve the hot workability of steel. However, if the contents thereof are excessively
high, these elements combine with oxygen to remarkably decrease the cleanliness, so
that the hot workability may rather be deteriorated. Therefore, if at least one kind
of these elements is contained, the contents thereof are set to 0.05% or less in total.
The lower limit of the contents of Ca and/or Mg is preferably 0.0005%, further preferably
0.001%. The upper limit thereof is preferably 0.03%.
EXAMPLE(S)
[0031] To confirm the effects of the present invention, the experiments described below
were conducted. A test material was prepared by machining a 12 mm-thick low alloy
steel plate having the chemical composition given in Table 1 into a 12 mm square and
a 100 mm length. This test material was subjected to HAZ-simulated thermal cycle in
which the test material was heated to a temperature of 1350°C, at which the hardening
of HAZ was remarkable, for 3 seconds by high-frequency induction heating, and thereafter
was rapidly cooled. By using this test material, the tests described below were conducted.
<Tension test>
[0032] In conformity to JIS Z2241, a round-bar tensile test specimen having a parallel part
diameter of 6 mm and a parallel part length of 10 mm was sampled from the obtained
test material, and a tension test was conducted at normal temperature.
<Vickers test>
[0033] In conformity to JIS Z2244, the cross section of the obtained test material was caused
to appear, and a Vickers test in which the test force was 98.07N was conducted to
measure the Vickers hardness.
<SCC resistance test>
[0034] A test specimen having a thickness of 2 mm, a width of 10 mm, and a length of 75
mm was sampled from the obtained test material, and the SCC resistance was evaluated
by a four-point bending test in conformity to EFC16 specified by the European Federation
of Corrosion. In the test, after a stress corresponding to 50% of 0.2% yield stress,
which was derived from the tension test, had been applied to the sampled test specimen
by four-point bending, the test specimen was immersed in a 5% common salt + 0.5% acetic
acid aqueous solution of normal temperature (24°C), in which 1 atm hydrogen sulfide
gas is saturated, for 336 hours, whereby the presence of occurrence of SSC was examined.
In addition, the same test was also conducted in a 5% common salt + 0.5% acetic acid
aqueous solution of 4°C, which temperature is more stringent as an SSC environment.
Test No. in which SSC did not occur was made acceptable, and test No. in which SSC
occurred was made unacceptable.
[0035] These test results are given in Table 2.
Table 1
No. |
Chemical composition(mass% Balance being Fe and impurities) |
C |
Si |
Mn |
P |
S |
B |
Al |
N |
O |
Cr |
Ni |
Mo |
Ti |
Nb |
V |
Others |
A1 |
0.10 |
0.25 |
1.99 |
0.013 |
0.001 |
0.0087 |
0.024 |
0.0063 |
0.001 |
- |
- |
- |
- |
- |
- |
- |
A2 |
0.10 |
0.25 |
1.98 |
0.013 |
0.001 |
0.0140 |
0.024 |
0.0062 |
0.002 |
- |
- |
0.03 |
0.003 |
- |
- |
- |
A3 |
0.09 |
0.24 |
1.98 |
0.013 |
0.001 |
0.0170 |
0.024 |
0.0061 |
0.002 |
- |
- |
- |
- |
- |
- |
- |
A4 |
0.05 |
0.24 |
2.04 |
0.013 |
0.001 |
0.0095 |
0.020 |
0.0047 |
0.002 |
- |
- |
- |
- |
- |
- |
- |
A5 |
0.03 |
0.23 |
2.00 |
0.014 |
0.001 |
0.0140 |
0.016 |
0.0045 |
0.002 |
0.02 |
0.02 |
0.03 |
- |
0.01 |
0.01 |
Cu:0.02 |
A6 |
0.05 |
0.24 |
1.62 |
0.014 |
0.001 |
0.0130 |
0.019 |
0.0050 |
0.001 |
- |
0.03 |
- |
0.05 |
- |
- |
Ca:0.003 |
A7 |
0.10 |
0.25 |
1.81 |
0.015 |
0.001 |
0.0079 |
0.021 |
0.0050 |
0.001 |
0.20 |
- |
- |
- |
- |
0.01 |
- |
A8 |
0.01 |
0.25 |
1.81 |
0.015 |
0.001 |
0.0065 |
0.020 |
0.0046 |
0.003 |
- |
0.60 |
- |
- |
- |
- |
Mg:0.002 |
B1 |
0.10 |
0.24 |
2.02 |
0.014 |
0.001 |
0.0001* |
0.021 |
0.0044 |
0.001 |
- |
- |
- |
- |
- |
- |
- |
B2 |
0.05 |
0.23 |
2.93 |
0.014 |
0.001 |
0.0001* |
0.021 |
0.0052 |
0.001 |
- |
- |
- |
- |
- |
- |
- |
B3 |
0.05 |
0.24 |
2.53 |
0.014 |
0.001 |
0.0035* |
0.017 |
0.0056 |
0.001 |
- |
0.05 |
0.01 |
0.01 |
- |
- |
- |
B4 |
0.10 |
0.26 |
1.80 |
0.014 |
0.001 |
0.0048* |
0.022 |
0.0048 |
0.003 |
0.03 |
- |
- |
- |
0.02 |
0.01 |
- |
B5 |
0.05 |
0.24 |
1.61 |
0.014 |
0.001 |
0.0531* |
0.020 |
0.0051 |
0.002 |
- |
0.03 |
0.03 |
- |
- |
- |
- |
* indicates it does not satisfy the claimed range. |
Table 2
No. |
B content (mass%) |
Hardness (Hv) |
The left side value of formula (1) |
Evaluation of SSC test |
24°C |
4°C |
A1 |
0.0087 |
328 |
0.0078 |
No SSC |
No SSC |
A2 |
0.0140 |
330 |
0.0078 |
No SSC |
No SSC |
A3 |
0.0170 |
331 |
0.0078 |
No SSC |
No SSC |
A4 |
0.0095 |
299 |
0.0073 |
No SSC |
No SSC |
A5 |
0.0140 |
262 |
0.0067 |
No SSC |
No SSC |
A6 |
0.0130 |
273 |
0.0069 |
No SSC |
No SSC |
A7 |
0.0079 |
279 |
0.0070 |
No SSC |
No SSC |
A8 |
0.0065 |
249 |
0.0065 |
No SSC |
No SSC |
B1 |
0.0001 |
330 |
0.0078 |
SSC |
SSC |
B2 |
0.0001 |
317 |
0.0076 |
SSC |
SSC |
B3 |
0.0035 |
318 |
0.0076 |
SSC |
SSC |
B4 |
0.0048 |
267 |
0.0068 |
No SSC |
SSC |
B5 |
0.0531 |
251 |
0.0065 |
SSC |
SSC |
[0036] As shown in Table 2, because the content of B contained in the steel was less than
0.005% in test Nos. B1 to B3, and because the content of B contained in the steel
exceeded 0.050% in test No. B5, large amounts of borides were precipitated in the
HAZ, and since the precipitated borides became the starting point of embrittlement,
SSC occurred in the four-point bending test at normal temperature. Also, in test No.
B4, although the B content was as low as 0.0048%, and SSC did not occur at normal
temperature, under the more stringent condition of 4°C, SSC occurred. Contrarily,
in test Nos. A1 to A8 in which the requirements of the present invention were met,
the occurrence of SSC was not recognized in the four-point bending test under both
of the test conditions of normal temperature and 4°C.
INDUSTRIAL APPLICABILITY
[0037] According to the present invention, there can be provided a low alloy steel in which
a HAZ has excellent resistance to embrittlement attributable to hydrogen such as stress
corrosion cracking in wet hydrogen sulfide environments. This low alloy steel is best
suitable as a starting material of a steel pipe for the transmission of crude oil
or natural gas.
1. A steel pipe for the transmission of crude oil or natural gas, wherein the steel pipe
is made of a low alloy steel consisting of, by mass percent,
C: 0.01 to 0.15%,
Si: 0.01% to 3%,
Mn: 0.2% to 3%,
B: 0.006 to 0.050%,
Al: 0.001% to 0.08%,
optionally
one or more elements selected from Cr, Mo, Ni and Cu: 1.5% or less in total;
one or more elements selected from Ti, V and Nb: 0.2% or less in total; and
Ca and/or Mg: 0.05% or less in total,
the balance being Fe and impurities,
wherein in the impurities,
N: 0.01% or less,
P: 0.05% or less,
S: 0.03% or less, and
O: 0.03% or less, wherein
the content of B satisfies Formula (1):
where, "Hv" in the formula means the maximum value of Vickers hardness of a heat
affected zone, and "B" means the content of B in mass%.
2. The steel pipe for the transmission of crude oil or natural gas according to claim
1, wherein the low alloy steel contains, by mass percent,
one or more elements selected from Cr, Mo, Ni and Cu: 0.02 to 1.5% in total.
3. The steel pipe for the transmission of crude oil or natural gas according to claim
1 or 2, wherein the low alloy steel contains, by mass percent,
one or more elements selected from Ti, V and Nb: 0.001 to 0.2% in total.
4. The steel pipe for the transmission of crude oil or natural gas according to any one
of claims 1 to 3, wherein the low alloy steel contains, by mass percent,
Ca and/or Mg: 0.0005 to 0.05% in total.
5. Use of a low alloy steel for a steel pipe for the transmission of crude oil or natural
gas,
the low alloy steel consisting of, by mass percent,
C: 0.01 to 0.15%,
Si: 0.01% to 3%,
Mn: 0.2% to 3%,
B: 0.006 to 0.050%,
Al: 0.001% to 0.08%,
optionally
one or more elements selected from Cr, Mo, Ni and Cu: 1.5% or less in total;
one or more elements selected from Ti, V and Nb: 0.2% or less in total; and
Ca and/or Mg: 0.05% or less in total,
the balance being Fe and impurities,
wherein in the impurities,
N: 0.01% or less,
P: 0.05% or less,
S: 0.03% or less, and
O: 0.03% or less, wherein
the content of B satisfies Formula (1):
where, "Hv" in the formula means the maximum value of Vickers hardness of a heat
affected zone, and "B" means the content of B in mass%.
6. Use of a low alloy steel for a steel pipe for the transmission of crude oil or natural
gas according to claim 5, wherein the low alloy steel contains, by mass percent,
one or more elements selected from Cr, Mo, Ni and Cu: 0.02 to 1.5% in total.
7. Use of a low alloy steel for a steel pipe for the transmission of crude oil or natural
gas according to claim 5 or 6, wherein the low alloy steel contains, by mass percent,
one or more elements selected from Ti, V and Nb: 0.001 to 0.2% in total.
8. Use of a low alloy steel for a steel pipe for the transmission of crude oil or natural
gas according to any one of claims 5 to 7, wherein the low alloy steel contains, by
mass percent,
Ca and/or Mg: 0.0005 to 0.05% in total.
1. Stahlrohr für die Übertragung von Rohöl oder Erdgas, wobei das Stahlrohr aus einem
Niederlegierungsstahl hergestellt ist, nach Masseprozent bestehend aus
C: 0,01 bis 0,15 %,
Si: 0,01 % bis 3 %,
Mn: 0,2 % bis 3 %,
B: 0,006 bis 0,050 %,
Al: 0,001 % bis 0,08 %,
optional
einem oder mehreren Elementen, ausgewählt aus Cr, Mo, Ni und Cu: insgesamt 1,5 % oder
weniger;
einem oder mehreren Elementen, ausgewählt aus Ti, V und Nb: insgesamt 0,2 % oder weniger;
und
Ca und/oder Mg: insgesamt 0,05 % oder weniger,
wobei der Rest Fe und Verunreinigungen sind,
wobei in den Verunreinigungen
N: 0,01 % oder weniger,
P: 0,05 % oder weniger,
S: 0,03 % oder weniger und
O: 0,03 % oder weniger sind, wobei
der Gehalt an B Formel (1) erfüllt:
wobei "Hv" in der Formel den Maximalwert der Vickers-Härte einer wärmebeeinflussten
Zone bedeutet und "B" den Gehalt an B in Masse-% bedeutet.
2. Stahlrohr für die Übertragung von Rohöl oder Erdgas nach Anspruch 1, wobei der Niederlegierungsstahl
nach Masseprozent enthält:
ein oder mehrere Elemente, ausgewählt aus Cr, Mo, Ni und Cu: insgesamt 0,02 bis 1,5
%.
3. Stahlrohr für die Übertragung von Rohöl oder Erdgas nach Anspruch 1 oder 2, wobei
der Niederlegierungsstahl nach Masseprozent enthält:
ein oder mehrere Elemente, ausgewählt aus Ti, V und Nb: insgesamt 0,001 bis 0,2 %.
4. Stahlrohr für die Übertragung von Rohöl oder Erdgas nach einem der Ansprüche 1 bis
3, wobei der Niederlegierungsstahl nach Masseprozent enthält
Ca und/oder Mg: insgesamt 0,0005 bis 0,05 %.
5. Verwendung eines Niederlegierungsstahls für ein Stahlrohr für die Übertragung von
Rohöl oder Erdgas,
wobei der Niederlegierungsstahl nach Masseprozent besteht aus
C: 0,01 bis 0,15 %,
Si: 0,01 % bis 3 %,
Mn: 0,2 % bis 3 %,
B: 0,006 bis 0,050 %,
Al: 0,001 % bis 0,08 %,
optional
ein oder mehrere Elemente, ausgewählt aus Cr, Mo, Ni und Cu: insgesamt 1,5 % oder
weniger;
ein oder mehrere Elemente, ausgewählt aus Ti, V und Nb: insgesamt 0,2 % oder weniger;
und
Ca und/oder Mg: insgesamt 0,05 % oder weniger,
wobei der Rest Fe und Verunreinigungen sind,
wobei die Verunreinigungen
N: 0,01 % oder weniger,
P: 0,05 % oder weniger,
S: 0,03 % oder weniger und
O: 0,03 % oder weniger sind, wobei
der Gehalt an B Formel (1) erfüllt:
wobei "Hv" in der Formel den Maximalwert der Vickers-Härte einer wärmebeeinflussten
Zone bedeutet und "B" den Gehalt an B in Masse-% bedeutet.
6. Verwendung eines Niederlegierungsstahls für ein Stahlrohr für die Übertragung von
Rohöl oder Erdgas nach Anspruch 5, wobei der Niederlegierungsstahl nach Masseprozent
enthält:
ein oder mehrere Elemente, ausgewählt aus Cr, Mo, Ni und Cu: insgesamt 0,02 bis 1,5
%.
7. Verwendung eines Niederlegierungsstahls für ein Stahlrohr für die Übertragung von
Rohöl oder Erdgas nach Anspruch 5 oder 6, wobei der Niederlegierungsstahl nach Masseprozent
enthält:
ein oder mehrere Elemente, ausgewählt aus Ti, V und Nb: insgesamt 0,001 bis 0,2 %.
8. Verwendung eines Niederlegierungsstahls für ein Stahlrohr für die Übertragung von
Rohöl oder Erdgas nach einem der Ansprüche 5 bis 7, wobei der Niederlegierungsstahl
nach Masseprozent enthält:
Ca und/oder Mg: insgesamt 0,0005 bis 0,05 %.
1. Tube d'acier servant à transmettre du pétrole brut ou du gaz naturel, sachant que
le tube d'acier est fait d'acier faiblement allié constitué de, en pourcentage massique,
C : 0,01 à 0,15 %,
Si : 0,01 % à 3 %,
Mn : 0,2 % à 3 %,
B : 0,006 à 0,050 %,
Al : 0,001 % à 0,08 %,
optionellement
un ou plusieurs éléments sélectionnés parmi Cr, Mo, Ni et Cu : 1,5 % ou moins au total
;
un ou plusieurs éléments sélectionnés parmi Ti, V et Nb : 0,2 % ou moins au total
; et
Ca et/ou Mg : 0,05 % ou moins au total ;
l'équilibre étant en Fe et en impuretés,
sachant que dans les impuretés,
N : 0,01 % ou moins,
P : 0,05 % ou moins,
S : 0,03 % ou moins, et
O : 0,03 % ou moins, sachant que
la teneur en B satisfait la Formule (1) :
la valeur « Hv » de la formule indiquant la valeur maximum de la dureté de Vickers
dans une zone affectée par la chaleur et « B » indiquant la teneur en B en % massique.
2. Tube d'acier servant à transmettre du pétrole brut ou du gaz naturel selon la revendication
1, sachant que l'acier faiblement allié contient, en pourcentage en masse,
un ou plusieurs éléments sélectionnés parmi Cr, Mo, Ni et Cu : de 0,02 à 1,5 % au
total.
3. Tube d'acier servant à transmettre du pétrole brut ou du gaz naturel selon la revendication
1 ou 2, sachant que l'acier faiblement allié contient, en pourcentage massique,
un ou plusieurs éléments sélectionnés parmi Ti, V et Nb : 0,001 à 0,2 % au total.
4. Tube d'acier servant à transmettre du pétrole brut ou du gaz naturel selon l'une des
revendications de 1 à 3, sachant que l'acier faiblement allié contient, en pourcentage
massique,
Ca et/ou Mg : 0,0005 à 0,05 % au total.
5. Utilisation d'un acier faiblement allié pour un tube d'acier servant à transmettre
du pétrole brut ou du gaz naturel,
l'acier faiblement allié étant constitué de, en pourcentage massique,
C : 0,01 à 0,15 %,
Si : 0,01 % à 3 %,
Mn : 0,2 % à 3 %,
B : 0,006 à 0,050 %,
Al : 0,001 % à 0,08 %,
optionnellement
un ou plusieurs éléments sélectionnés parmi Cr, Mo, Ni et Cu : 1,5 % ou moins au total
;
un ou plusieurs éléments sélectionnés parmi Ti, V et Nb : 0,2 % ou moins au total
; et
Ca et/ou Mg : 0,05 % ou moins au total ;
l'équilibre étant en Fe et en impuretés,
sachant que dans les impuretés,
N : 0,01 % ou moins,
P : 0,05 % ou moins,
S : 0,03 % ou moins, et
O : 0,03 % ou moins, sachant que
la teneur en B satisfait la Formule (1) :
la valeur « Hv » de la formule indiquant la valeur maximum de la dureté de Vickers
dans une zone affectée par la chaleur et « B » indiquant la teneur en B en % massique.
6. Utilisation d'un acier faiblement allié pour un tube d'acier servant à transmettre
du pétrole brut ou du gaz naturel selon la revendication 5, où l'acier faiblement
allié contient, en pourcentage massique,
un ou plusieurs éléments sélectionnés parmi Cr, Mo, Ni et Cu : 0,02 à 1,5 % au total.
7. Utilisation d'un acier faiblement allié servant à transmettre du pétrole brut ou du
gaz naturel selon la revendication 5 ou 6, où l'acier faiblement allié contient, en
pourcentage massique,
un ou plusieurs éléments sélectionnés parmi Ti, V et Nb : 0,001 à 0,2 % au total.
8. Utilisation d'un acier faiblement allié pour un tube d'acier servant à transmettre
du pétrole brut ou du gaz naturel selon une des revendications 5 à 7, où l'acier faiblement
allié contient, en pourcentage massique,
Ca et/ou Mg : 0,0005 à 0,05 % au total.