[0001] The present invention relates to a diagnostic method for an electric heater which
is part of a heating circuit of an appliance, preferably a domestic appliance, and
an appliance configured to carry out such method.
[0002] More in detail, the object of the present invention is a method for determining when
an electric heater installed into an appliance, preferably a domestic appliance, needs
to be replaced because its operational status is deteriorated compared to its nominal
working conditions/behavior.
[0003] In is generally known in the art that some appliances, particularly for household
installation (i.e. domestic appliances such as a washing machine, a dishwasher, a
boiler, a water kettle, an oven), are equipped with at least one electric heater.
It is also generally known that thanks to aging and oxidation processes, such heaters
deteriorates their performances during their lifetime. Such reduced performances include
the lost of electrical insulation towards their supporting structure which causes
electric current leakages from the component. In order to protect users from electric
shocks, national and international standards request the connection to earth/ground
of the supporting structure of the electric heater. At a certain level of performance,
the electric heater needs to be replaced.
[0004] From
EP-A-1266542 it is known a method according to which the temperature of the heater can be established
though the measurement of leakage current. However the detection of failures of the
heater based on leakage current are not therein considered, nor suggested.
[0005] From
EP-A-0924331 it is known a safety circuit for monitoring the electric potentials of a circuit
for washing machine or a dishwasher, which includes a heater. Potentials are monitored
in order to verify whether the switches through which the heater is supplied, are
properly configured. However, the disclosure of this application does not enable the
specific diagnostic of the performances of the heating element.
[0006] Aim of the present invention is to further improve the methods known in the art which
allows identifying a decreased performance or a fault of the electric heater and/or
a missing or deteriorated electric connection of its support structure to earth/ground.
These results are achieved through the steps as detailed in appended claim 1, alone,
or in combination with the steps listed in the dependent claims.
[0007] Further features and advantages of the method according to the present invention
will become apparent from the following non description of a preferred embodiment,
meant as a not limiting example of the present invention, described in combination
with the appended drawings, in which:
- Fig. 1 is a schematic diagram of a heating circuit according prior art;
- Fig. 2 is an second schematic diagram of a heating circuit according to prior art;
- Fig. 3 Is a third schematic diagram of a heating circuit in which a resistive path
towards earth/ground can be created through the water;
- Fig. 4 is a flow chart diagram describing the method according to the present invention.
- Fig. 5 is a flow chart diagram describing an alternative embodiment of the method
according to the present invention.
[0008] It is here pointed out that consistent numbering references in the above mentioned
drawings are used when describing the present invention.
[0009] In Fig. 1 it is described an example of heating circuit for an appliance known in
the art, for instance a washing machine or a dishwasher through which the method of
the present invention can be carried out. The heating circuit which is connected to
the line L and netrual N terminals of the power supply network PS and comprises a
series connection of a heating switching contact HRL and a heating element HE. The
heating circuit optionally comprises a second switch HRN and/or safety switch.
[0010] As shown in Fig. 3 a household power plant, the neutral terminal L of the power supply
network can be connected to ground/earth GND after the connection of the appliance
to the same network with a plug G. A breaker B is also typically present in the household
power plant.
[0011] In another embodiment (fig. 2) the heating circuits comprises a measuring resistor
Rm branching-off at the junction a between the heating switching contact SW and the
heating resistor HE. Possibly, the measuring resistor Rm is connected to the inoperative
side of the safety switch SiS in which the heating circuit presents a specific potential
of the supply voltage at that junction in the initial state (that is, when SW is open
and the safety switch SiS is in its initial position).
[0012] In a preferred embodiment the heating element HE is a resistive heater, for instance
a radiant tubular heater, even though the method of the present invention can be applied
to any electric heater HE provided with an electric insulation.
[0013] In a preferred configuration of the appliance, the support of the heating element
HE in said appliance is electrically connected to earth/ground GND, through an electric
conductive path, together with the metallic chassis of said appliance.
[0014] Preferably, the heating element HE can enter in contact with water or, even more,
being submerged by the water as it may occur in washing machines or in electric kettles,
and through the water become connected to ground.
[0015] The electric conductive path to earth/ground GND potential can be also temporary,
due to the presence of water inside the appliance, or created through a water stream
flowing into or out from said appliance. Flowing water and/or drained water can be
generated through automatic actuation of a hydraulic valve and/or through the actuation
of a pump.
[0016] The connection of the heating element to the power supply network L1, N1 may be effected
in known manner via a logic circuit LC which controls the switch SW, which determines
the actuation of the heating element HE, in a known manner.
[0017] The heating circuit further comprises a measuring circuit LS (a monitoring circuit)
for measuring the electric parameters of the heating element HE. This measuring circuit
LS can be integrated with the logic circuit LC into a single electronic control unit
(an ECU)
[0018] Moreover, the measuring circuit could present at least one voltage divider and/or
a filter for properly conditioning the monitored signal(s) to be sampled.
[0019] One or more voltage dividers SP1, SP2, SP3 connected on one side to junctions a,
b and c and to the other side to the measuring circuit LS, can be implemented through
impedance partitions, for instance through resistors R3 and R4, as illustrated in
the embodiment of Fig.1. A filter can be implemented introducing additional capacitors
and/or inductors in the monitoring circuit (not illustrated), or in a digital manner
after the sampling process.
[0020] Voltage dividers can be connected at one or more terminals of the heating switching
contact HRL, HRN and optionally to the safety switch SiS.
[0021] When required, sampled signals are acquired and processed by the measuring circuit
LS. For instance they are compared with prescribed conditions stored into monitoring
circuit (and/or into the control unit).
[0022] Depending on the status of the switches in the heating circuit and from the status
of the heating element HE, voltages u1, u2 and u3 at the junctions change in the heating
circuit, particularly at junction of the heating element HE.
[0023] As known in the art, prescribed potential conditions can be stored in the control
unit, and they correspond to potential conditions which are correlated to the correct
switching states of the heating circuit (e.g. initial position and operative state).
[0024] For the purposes of the present invention, the monitoring circuit LS is configured
to determine (through a measurement) or to estimate any voltage linked with the heating
element HE and/or any current flowing through the heating element H, including any
leakage current of the same heater HE dispersed towards earth/ground GND, and/or the
corresponding resistance to earth/ground GND of the same heating element HE.
[0025] For these purposes the heating circuit can include, in addition or in an alternative
to the above described heating circuits, at least one shunt resistor (not illustrated)
connected in series to the heating element in order to measure the current flowing
through the heating element HE. In a more expensive alternative manner, a contactless
Hall effect sensor (not illustrated) connected to the measuring circuit can be used
to measure the electric current flowing through the heating element HE.
[0026] According to prior art, the safety of the heating circuit is obtained without temperature
limiters or thermostats being used. In fact, if a fault occurs in the heating circuit,
e.g. a short circuit, a component disconnection, a defective heating a switching contact
and/or a defective safety switching contact, then the monitoring circuit detects a
deviation from the permissible potential conditions and issues a switch-off signal,
which may be used to switch-off the heating circuit or the machine. However, the same
monitoring circuit can be used for measuring leakage currents and/or the resistance
to ground/earth of the heating element HE through the measurements of voltages at
least at one of its terminals.
[0027] According to the present invention the monitoring of these potentials will allow
to determine not even when faults in the components of the heating circuit are present
(as known in the art), but more specifically it will allow to establish whether the
operating conditions of the heating element are sufficiently deteriorated for requiring
the component to be replaced, even before to become completely inoperative (faulty).
Moreover the monitoring of these potentials will further allow determining whether
the electric connection to earth/ground of the heating element HE is deteriorated
or even missing.
[0028] It is here pointed out that even though the present invention is described with reference
to the resistance to earth/ground GND of the heating element HE, the measurement or
the estimation of the leakage current of the heating element HE has to be understood
as an equivalent measurement or estimation of said resistance to earth/ground GND
of the same heating element HE, for the purposes of the present invention.
[0029] According to the method of the present invention in a first step the heating element
HE is kept substantially stable at a first predetermined temperature T1. Preferably,
this first predetermined temperature T1 is the ambient temperature, the temperature
at which the heating element rests before to be operated. However, the step of keeping
said electric heater at a first predetermined temperature T1 can also be achieved
by operating the heating element in a known manner in order to bring it to a first
stable controlled condition, i.e. a condition in which its average temperature is
substantially stable at said first predetermined temperature T1 value.
[0030] In a second step a first resistance R1 to ground/earth of said heater HE is determined
or estimated in a known manner through the measuring circuit LS, for instance as described
in
EP-A- 2353485 in regard to Rg.
[0031] It is here clarified that in any of the steps of determining or estimating the resistance
to earth/ground R1 and/or R2 of the heating element HE which is linked to the value
of its insulation resistance, include the step of sampling one or more voltage/current
signals from said heating element HE and the step of processing said one or more voltage/current
sampled signals.
[0032] During said steps the heating element HE can be electrically supplied by closing
one or more switch contacts (HRL, HRN, SiS) by the logic circuit LC and/or of a control
circuit, before determining or estimating said resistance R1 and/or R2to earth/ground
GND.
[0033] In another embodiment (figure 3)an electric leakage current from said heating element
flows over the water resistive path WP when determining or estimating said first resistance
R1 (=Rg+Rb in case of the water creates a resistive path trough the support, or =Rb
in the case the resistive path is created directly through the water and the resistive
element) to earth/ground GND and/or when determining or estimating said second resistance
R2 to earth/ground GND.
[0034] According to the present invention, in a following third step, the first resistance
to earth/ground R1 is compared with a first predetermined resistance threshold THR1
in order to establish if that heating element HE is deteriorated and/or if it has
to be replaced.
[0035] More in detail, the resistance to ground of the heating element HE is compared with
a range of expected values in order to establish the status of its insulating properties.
The first predetermined resistance threshold THR1 is therefore in a range of values
for which the insulating resistance of the electric or electronic component (HE) can
be considered out of it operational specification, said insulating resistance being
preferably in the range from 1 Ohm to 10 GOhm, optimally in the range from around
30 kOhm, up to more than 10 MOhm, and more preferably around 70 kOhm.
[0036] The value of said first predetermined resistance threshold THR1 determines the acceptable
operating conditions at said first predetermined temperature T1 below which the heater
should be replaced, and depends on the technology of which the heater is made.
[0037] Certainly, if the value of the resistance to ground R1 is lower than 300 kOhm, it
could be assessed that the heating element HE is in defected, for instance it is in
short circuit.
[0038] In an further fourth step, which can be alternative to said third step, said heating
element HE is kept substantially stable to a second predetermined temperature T2,
normally obtained by electrically operating the heating element, for instance by varying
its duty cycle in a known manner. Preferably, the second predetermined temperature
value T2 of said heating element HE is substantially different from said first predetermined
temperature value T1 of said heating element HE in order to vary the insulating properties
of the heating element HE, so that a significant variation of the resistance to earth/ground
is expected for the heating element HE. Preferably the difference between the second
predetermined temperature T2 and the first predetermined temperature is greater than
100 °C.
[0039] In a further fifth step following the third step, a second resistance R2 to earth/ground
GND of said heater HE is determined or estimated in a known manner through the measuring
circuit LS.
[0040] In a further sixth step, said second resistance R2 to earth/ground is compared to
a second predetermined threshold value THR2, in order to establish whether the operating
conditions of the heating element HE are deteriorated and/or if the heating element
HE has to be replaced.
[0041] More in detail, the resistance to ground of the heating element HE, which is linked
to the changes of its insulation properties (the resistivity), varies with the temperature
of the heating element HE. For a heating element HE in acceptable operating conditions
(i.e. not presenting deteriorations) the second resistance to earth/ground R2 measured
at higher temperature is expected to be lower than the first resistance to earth/ground
R1 of the same heater HE measured at lower temperature. As a consequence, according
to the present invention the second predetermined resistance threshold THR2 should
be lower than said first predetermined resistance threshold THR1 and is optimally
in the range between 100 kOhm and 1M Ohm, preferably about 300 kOhm.
[0042] The value of said second predetermined resistance threshold THR2 determines the acceptable
operating conditions at said second predetermined temperature T2 below which the heater
should be replaced, and depends on the technology of which the heater is made.
[0043] In a step alternative to the above sixth step, the second resistance R2 to ground/earth
is directly compared with said first resistance R1 to ground/earth, in order to establish
whether the operating conditions of the heating element HE are deteriorated and/or
if the heating element HE has to be replaced.
[0044] A more accurate control can be made by taking into consideration the tolerances of
the power supply voltage, as described in
EP-A- 2353485.
[0045] Finally, according to the present invention the appliance can be further provided
with a user interface for notifying the user in case of a fault of the heating circuit,
or in case of decreased performances of said heating circuit, in particular of said
heating element HE.
[0046] It has been so disclosed here a diagnostic method for an electric heater which is
part of a heating circuit of an appliance. According to the method, the reliability
of the heating circuit is further improved by evaluating the operating conditions
of the heating element HE.
[0047] It is also disclosed here an appliance, preferably a domestic appliance specifically
configured for carrying out the method above described.
1. Diagnostic method for an electric heating element (HE) of an appliance, preferably
a domestic appliance, provided with a logic unit (LC) for monitoring said heating
circuit, the heating element (HE) being provided with a support connected to earth/ground
(GND) for dispersing leakage currents, the method comprising the step of:
keeping the heating element (HE) substantially stable at a first predetermined average
temperature value (Tl);
determining or estimating a first resistance (RI) of said heating element (HE) to
ground/earth (GND) at said first predetermined temperature value (T1),
characterised in that the method further comprises a step of comparing said determined or estimated first
resistance (RI) to earth/ground (GND) with a first predetermined resistance threshold
(THR1) in order to assess a decreased performance or a fault in said heating element
(HE).
2. Method according to claim 1 further comprising the steps of
keeping the heating element (HE) substantially stable at a second predetermined average
temperature value (T2), this step being additional or alternative to the step of comparing
said determined or estimated first resistance (RI) to earth/ground (GND) with a first
predetermined resistance threshold (THR1),
determining or estimating a second resistance (R2) to earth/ground (GND) of said heating
element (HE) at said second predetermined temperature value (T2),
and also comprising the step of comparing said second resistance (R2) to ground/earth
to a second predetermined resistance threshold (THR2) in order to further assess a
defect or a fault in said heating element (HE).
3. Method according to claim 1 further comprising the steps of
keeping the heating element (HE) substantially stable at a second predetermined average
temperature value (T2), this step being alternative to the step of comparing said
determined or estimated first resistance (RI) to earth/ground (GND) with a first predetermined
resistance threshold (THR1),
determining or estimating a second resistance (R2) to earth/ground (GND) of said heating
element (HE) at said second predetermined temperature value (T2),
and also comprising the step of comparing said first resistance (R 1) to earth/ground
(GND) to said second resistance (R2) to earth/ground (GND), in order to further assess
whether there is a missing or deteriorated electrical connection to earth/ground (GND)
of the heating circuit and/or of said appliance containing said heating circuit.
4. Method according to claim 1 or 2 wherein the step of keeping the heating element (HE)
substantially stable at said first predetermined average temperature value (T1) or
to said second predetermined average temperature value (T2) is achieved by electrically
operating the heating element (HE) in a controlled manner by a logic circuit (LC).
5. Method according to any of the preceding claims in which the step of determining or
estimating said first resistance (RI) to earth/ground (GND) or said second resistance
(R2) to earth/ground (GND) of said heating element (HE), further include the step
of sampling one or more voltage/current signals from said heating element (HE) and
the step of processing said one or more voltage/current sampled signals in order to
determine or to estimate an insulation resistance of said electric or electronic component
(HE).
6. Method according to any of the preceding claims in which said heating element (HE)
is electrically supplied by closing one or more switch contacts (HRL, HRN, SiS) by
a logic circuit (LC) and/or of a control circuit before determining or estimating
at least one of said first resistance (RI) to earth/ground (GND) or said second resistance
(R2) to earth/ground (GND), of said heating element (HE).
7. Method according to any of the preceding claims in which said first predetermined
resistance threshold (THR1) is in a range of values for which the insulating resistance
of the electric or electronic component (HE) can be considered out of its operational
specification, said insulating resistance being preferably in the range from 1 Ohm
to 10 GOhm, optimally in the range from around 30 kOhm, up to more than 10 MOhm, and
more preferably around 70 kOhm.
8. Method according to any of the preceding claims in which said second predetermined
resistance threshold (THR2) is lower than said first predetermined resistance threshold
(THR1) and is optimally in the range between 100 kOhm and 1 MOhm, preferably about
300 kOhm.
9. Method according to any of the preceding claims wherein said first predetermined temperature
value (T1) of said heating element (HE) is substantially different from said second
predetermined temperature value (T2) of said heating element (HE).
10. Method according to any of the preceding claims wherein a temporary resistive path
is created by flowing a water stream into said appliance or by draining water from
said appliance, preferably through automatic actuation of a hydraulic valve and/or
through the actuation of a pump, and through which electric leakage current flows
when determining or estimating said first resistance (RI) to earth/ground (GND) and/or
said second resistance (R2) to earth/ground (GND).
11. Method according to any of the preceding claims wherein, when a failure or decreased
performances are detected, the appliance notifies it to a user with a visual and/or
with an acoustic signal.
12. Appliance, preferably a domestic appliance, provided with at least a heating circuit
which comprises a heating element (HE), the appliance being also provided with a monitoring
circuit and/or a logic circuit (LC) for the detection of a fault of said heating element
(HE) characterized in that the appliance is configured to implement a method according to any of the preceding
claims.
13. Appliance according to claim 13 in which said appliance is configured for having the
heating element (HE) in an electric conductive path to earth/ground (GND) due to the
presence of water in the appliance.
14. Appliance according to claim 13 or 14 further provided with a user interface for notifying
the user in case of a fault or in case of decreased performances of said heating circuit,
in particular of said heating element (HE).
1. Diagnoseverfahren für ein elektrisches Heizelement (HE) einer Vorrichtung, vorzugsweise
eines Haushaltsgerätes, das mit einer Logikeinheit (LC) zur Überwachung des Heizkreises
bereitgestellt wird, wobei das Heizelement (HE) mit einem mit Erde/Masse (GND) verbundenen
Träger zur Ableitung von Leckströmen bereitgestellt wird, wobei das Verfahren den
Schritt umfasst des:
- im Wesentlichen stabilen Haltens des Heizelements (HE) bei einem ersten vorbestimmten
Durchschnittstemperaturwert (T1);
- Bestimmens oder Schätzens eines ersten Widerstands (R1) des Heizelements (HE) gegen
Masse/Erde (GND) bei dem ersten vorbestimmten Temperaturwert (T1),
- dadurch gekennzeichnet, dass das Verfahren ferner einen Schritt des Vergleichens des bestimmten oder geschätzten
ersten Widerstands (R1) gegen Erde/Masse (GND) mit einem ersten vorbestimmten Widerstandsschwellenwert
(THR1) umfasst, um eine verringerte Leistung oder einen Fehler in dem Heizelement
(HE) festzustellen.
2. Verfahren nach Anspruch 1, ferner umfassend die Schritte des
- im Wesentlichen stabilen Haltens des Heizelements (HE) bei einem zweiten vorbestimmten
Durchschnittstemperaturwert (T2), wobei dieser Schritt zusätzlich oder alternativ
zu dem Schritt des Vergleichens des bestimmten oder geschätzten ersten Widerstands
(R1) gegen Erde/Masse (GND) mit einem ersten vorbestimmten Widerstandsschwellenwert
(THR1) ist,
- Bestimmens oder Schätzens eines zweiten Widerstands (R2) gegen Erde/Masse (GND)
des Heizelements (HE) bei dem zweiten vorbestimmten Temperaturwert (T2),
- und auch umfassend den Schritt des Vergleichens des zweiten Widerstandes (R2) gegen
Masse/Erde mit einem zweiten vorbestimmten Widerstandsschwellenwert (THR2), um weiterhin
einen Defekt oder einen Fehler in dem Heizelement (HE) festzustellen.
3. Verfahren nach Anspruch 1, ferner umfassend die Schritte des
- im Wesentlichen stabilen Haltens des Heizelements (HE) bei einem zweiten vorbestimmten
Durchschnittstemperaturwert (T2), wobei dieser Schritt alternativ zu dem Schritt des
Vergleichens des bestimmten oder geschätzten ersten Widerstands (R1) gegen Erde/Masse
(GND) mit einem ersten vorbestimmten Widerstandsschwellenwert (THR1) ist,
- Bestimmens oder Abschätzens eines zweiten Widerstands (R2) gegen Erde/Masse (GND)
des Heizelements (HE) bei dem zweiten vorbestimmten Temperaturwert (T2),
- und ebenso umfassend den Schritt des Vergleichens des ersten Widerstands (R1) gegen
Erde/Masse (GND) mit dem zweiten Widerstand (R2) gegen Erde/Masse (GND), um weiter
festzustellen, ob eine fehlende oder verschlechterte elektrische Verbindung zu Erde/Masse
(GND) des Heizkreises und/oder der den Heizkreis enthaltenden Vorrichtung besteht.
4. Verfahren nach Anspruch 1 oder 2, wobei der Schritt des im Wesentlichen stabilen Haltens
des Heizelement (HE) bei dem ersten vorbestimmten Durchschnittstemperaturwert (T1)
oder bei dem zweiten vorbestimmten Durchschnittstemperaturwert (T2) durch elektrisches
Betreiben des Heizelements (HE) in einer gesteuerten Weise durch eine Logikschaltung
(LC) erreicht wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Schritt des Bestimmens
oder Schätzens des ersten Widerstands (R1) gegen Erde/Masse (GND) oder des zweiten
Widerstands (R2) gegen Erde/Masse (GND) des Heizelements (HE) weiterhin den Schritt
des Abtastens eines oder mehrerer Spannungs-/Stromsignale von dem Heizelement (HE)
und den Schritt des Verarbeitens des einen oder der mehreren abgetasteten Spannungs-/Stromsignale
umfasst, um einen Isolationswiderstand des elektrischen oder elektronischen Bauteils
(HE) zu bestimmen oder zu schätzen.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Heizelement (HE) durch
Schließen eines oder mehrerer Schaltkontakte (HRL, HRN, SiS) durch eine Logikschaltung
(LC) und/oder einer Steuerschaltung elektrisch versorgt wird, bevor mindestens einer
des ersten Widerstands (R1) gegen Erde/Masse (GND) oder des zweiten Widerstands (R2)
gegen Erde/Masse (GND) des Heizelements (HE) bestimmt oder geschätzt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste vorbestimmte
Widerstandsschwellenwert (THR1) in einem Wertebereich liegt, für den der Isolationswiderstand
des elektrischen oder elektronischen Bauteils (HE) außerhalb seiner Betriebsspezifikation
betrachtet werden kann, wobei der Isolationswiderstand vorzugsweise im Bereich von
1 Ohm bis 10 GOhm, optimal im Bereich von etwa 30 kOhm, bis zu mehr als 10 MOhm und
bevorzugter um 70 kOhm liegt.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der zweite vorbestimmte
Widerstandsschwellenwert (THR2) niedriger ist als der erste vorbestimmte Widerstandsschwellenwert
(THR1) und optimal im Bereich zwischen 100 kOhm und 1 MOhm, vorzugsweise um etwa 300
kOhm, liegt.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei sich der erste vorbestimmte
Temperaturwert (T1) des Heizelements (HE) wesentlich von dem zweiten vorbestimmten
Temperaturwert (T2) des Heizelements (HE) unterscheidet.
10. Verfahren nach einem der vorstehenden Ansprüche, bei dem ein vorübergehender Widerstandsweg
durch Einströmen eines Wasserstroms in die Vorrichtung oder durch Ableiten von Wasser
aus der Vorrichtung, vorzugsweise durch automatische Betätigung eines Hydraulikventils
und/oder durch Betätigung einer Pumpe, erzeugt wird und durch den elektrischer Leckstrom
fließt, wenn der erste Widerstand (R1) gegen Erde/Masse (GND) und/oder der zweite
Widerstand (R2) gegen Erde/Masse (GND) bestimmt oder geschätzt wird.
11. Verfahren nach einer der vorstehenden Ansprüche, wobei wenn ein Ausfall oder eine
verminderte Leistung erkannt werden, dies die Vorrichtung einem Benutzer mit einem
optischen und/oder akustischen Signal mitteilt.
12. Vorrichtung, vorzugsweise ein Haushaltsgerät, mit mindestens einem Heizkreis, der
ein Heizelement (HE) umfasst, wobei das Gerät auch mit einer Überwachungsschaltung
und/oder einer Logikschaltung (LC) zur Erkennung eines Fehlers des Heizelements (HE)
bereitgestellt wird, dadurch gekennzeichnet, dass die Vorrichtung konfiguriert ist, um ein Verfahren nach einem der vorstehenden Ansprüche
durchzuführen.
13. Vorrichtung nach Anspruch 13, bei der die Vorrichtung konfiguriert ist, um das Heizelement
(HE) aufgrund des Vorhandenseins von Wasser in der Vorrichtung elektrisch leitend
zu Erde/Masse (GND) verbunden zu haben.
14. Vorrichtung nach Anspruch 13 oder 14, ferner bereitgestellt mit einer Bedienoberfläche
zur Benachrichtigung des Benutzers im Falle eines Fehlers oder im Falle verminderter
Leistung des Heizkreises, insbesondere des Heizelements (HE).
1. Procédé de diagnostic pour un élément chauffant électrique (HE) d'un appareil électrique,
de préférence un appareil électrique ménager, pourvu d'une unité logique (LC) pour
surveiller ledit circuit de chauffage, l'élément chauffant (HE) étant pourvu d'un
support relié à la terre/la masse (GND) pour disperser des courants de fuite, le procédé
comprenant l'étape consistant à :
- maintenir l'élément chauffant (HE) sensiblement stable à une première valeur de
température moyenne prédéterminée (T1) ;
- déterminer ou estimer une première résistance (R1) dudit élément chauffant (HE)
à la terre/la masse (GND) à ladite première valeur de température prédéterminée (T1),
- caractérisé en ce que le procédé comprend en outre une étape consistant à comparer ladite première résistance
déterminée ou estimée (R1) à la terre/la masse (GND) à un premier seuil de résistance
prédéterminé (THR1) afin d'évaluer une diminution de la performance ou une anomalie
dans ledit élément chauffant (HE).
2. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
- maintenir l'élément chauffant (HE) sensiblement stable à une seconde valeur de température
moyenne prédéterminée (T2), cette étape étant complémentaire ou alternative à l'étape
consistant à comparer ladite première résistance déterminée ou estimée (R1) à la terre/la
masse (GND) à un premier seuil de résistance prédéterminé (THR1),
- déterminer ou estimer une seconde résistance (R2) à la terre/la masse (GND) dudit
élément chauffant (HE) à ladite seconde valeur de température prédéterminée (T2),
- et comprenant également l'étape consistant à comparer ladite seconde résistance
(R2) à la terre/la masse à un second seuil de résistance prédéterminé (THR2) afin
d'évaluer en outre un défaut ou une anomalie dans ledit élément chauffant (HE).
3. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
- maintenir l'élément chauffant (HE) sensiblement stable à une seconde valeur de température
moyenne prédéterminée (T2), cette étape étant alternative à l'étape consistant à comparer
ladite première résistance déterminée ou estimée (R1) à la terre/la masse (GND) à
un premier seuil de résistance prédéterminé (THR1),
- déterminer ou estimer une seconde résistance (R2) à la terre/la masse (GND) dudit
élément chauffant (HE) à ladite seconde valeur de température prédéterminée (T2),
- et comprenant également l'étape consistant à comparer ladite première résistance
(R1) à la terre/la masse (GND) à ladite seconde résistance (R2) à la terre/la masse
(GND), afin d'évaluer en outre s'il existe une connexion électrique à la terre/la
masse (GND) manquante ou détériorée du circuit de chauffage et/ou dudit appareil électrique
contenant ledit circuit de chauffage.
4. Procédé selon la revendication 1 ou 2 dans lequel l'étape consistant à maintenir l'élément
chauffant (HE) sensiblement stable à ladite première valeur de température moyenne
prédéterminée (T1) ou à ladite seconde valeur de température moyenne prédéterminée
(T2) est exécutée en faisant fonctionner l'élément chauffant (HE) électriquement d'une
manière contrôlée par un circuit logique (LC).
5. Procédé selon l'une quelconque des revendications précédentes dans lequel l'étape
consistant à déterminer ou estimer ladite première résistance (R1) à la terre/la masse
(GND) ou ladite seconde résistance (R2) à la terre/la masse (GND) dudit élément chauffant
(HE), comprend en outre l'étape consistant à échantillonner un ou plusieurs signaux
de tension/de courant à partir dudit élément chauffant (HE), et l'étape consistant
à traiter lesdits un ou plusieurs signaux échantillonnés de tension/de courant afin
de déterminer ou d'estimer une résistance d'isolement dudit composant électrique ou
électronique (HE).
6. Procédé selon l'une quelconque des revendications précédentes dans lequel ledit élément
chauffant (HE) est alimenté électriquement via la fermeture d'un ou plusieurs contacts
d'interrupteur (HRL, HRN, SiS) par un circuit logique (LC) et/ou d'un circuit de contrôle
avant de déterminer ou d'estimer au moins une de ladite première résistance (R1) à
la terre/la masse (GND) ou de ladite seconde résistance (R2) à la terre/la masse (GND),
dudit élément chauffant (HE).
7. Procédé selon l'une quelconque des revendications précédentes dans lequel ledit premier
seuil de résistance prédéterminé (THR1) se situe dans une plage de valeurs pour lesquelles
la résistance d'isolement du composant électrique ou électronique (HE) peut être considérée
comme étant extérieure à sa spécification opérationnelle, ladite résistance d'isolement
se situant de préférence dans la plage de 1 ohm à 10 giga-ohm, de façon optimale dans
la plage d'environ 30 kilo-ohm, jusqu'à plus de 10 méga-ohm, et de façon plus préférentielle
d'environ 70 kilo-ohm.
8. Procédé selon l'une quelconque des revendications précédentes dans lequel ledit second
seuil de résistance prédéterminé (THR2) est inférieur au dit premier seuil de résistance
prédéterminé (THR1) et se situe de façon optimale dans la plage de entre 100 kilo-ohm
et 1 méga-ohm, de préférence d'environ 300 kilo-ohm.
9. Procédé selon l'une quelconque des revendications précédentes dans lequel ladite première
valeur de température prédéterminée (T1) dudit élément chauffant (HE) est sensiblement
différente de ladite seconde valeur de température prédéterminée (T2) dudit élément
chauffant (HE).
10. Procédé selon l'une quelconque des revendications précédentes dans lequel un trajet
résistif temporaire est créé en faisant circuler un flux d'eau dans ledit appareil
électrique ou en vidangeant l'eau à partir dudit appareil électrique, de préférence
via un actionnement automatique d'une vanne hydraulique et/ou via l'actionnement d'une
pompe, et à travers lequel un courant de fuite électrique circule lors de la détermination
ou de l'estimation de ladite première résistance (R1) à la terre/la masse (GND) et/ou
de ladite seconde résistance (R2) à la terre/la masse (GND).
11. Procédé selon l'une quelconque des revendications précédentes dans lequel, lorsqu'une
panne ou une diminution des performances est détectée, l'appareil électrique le signale
à un utilisateur par un signal visuel et/ou par un signal acoustique.
12. Appareil électrique, de préférence a appareil électrique ménager, comprenant au moins
un circuit de chauffage qui comprend un élément chauffant (HE), l'appareil électrique
étant également pourvu d'un circuit de surveillance et/ou d'un circuit logique (LC)
pour la détection d'une anomalie dudit élément chauffant (HE) caractérisé en ce que l'appareil électrique est configuré pour implémenter un procédé selon l'une quelconque
des revendications précédentes.
13. Appareil électrique selon la revendication 13 dans lequel ledit appareil électrique
est configuré de sorte à avoir l'élément chauffant (HE) dans un trajet de conduction
électrique à la terre/la masse (GND) en raison de la présence d'eau dans l'appareil
électrique.
14. Appareil électrique selon la revendication 13 ou 14 comprenant en outre une interface
utilisateur pour avertir l'utilisateur dans le cas d'une anomalie ou dans le cas d'une
diminution des performances dudit circuit de chauffage, en particulier dudit élément
chauffant (HE).