Technical Field
[0001] The present invention is for an improved cyclonic elevator. More particularly, this
cyclonic elevator includes helical venturis and will be primarily used for pumping
fluid.
Background Art
[0003] Patent
3,857,651 discloses coaxial pumping units for cylindrical cyclonic elevator tubes in which
a manifold circumscribing the latter for supplying fluid under pressure thereto has
communication therewith via an annular transition ring provided with a plurality of
circumferentially spaced jet orifices set at inwardly and circumferentially directed
compound angles for ejecting vortically directed jets of fluid under pressure through
the tubular elevator to effect transportation of comminuted and/or fluid material
through such tubes.
[0004] Patent
3,301,606 relates to a cyclonic elevator device wherein particulate material is raised by means
of a rotating, pulsing air column. It comprises a tube for lifignt the material, at
least one chamber surrounding the tube, a plurality of passages leading from the chamber
to the interior of the tube arranged about the tube in a spiral pattern, and means
for introducing compressed air to the chamber and through the passages to impart a
swirling motion to the material being lifted through the tube.
[0005] This invention is a great improvement over the Bruno patents.
[0006] Patent
FR 1200 145 A discloses devices for driving a jet of fluid or the compression of a gaseous fluid.
US 3857651 discloses pumping units for a cyclonic elevator.
Disclosure of Invention
[0007] The present invention is a cyclonic elevator comprising: a cylindrical chamber; a
plurality of helically shaped venturi tubes spaced around the internal circumference
of the chamber; a manifold connected to the inlet ends of the venturi tubes; and a
high pressure gas supply connected to the manifold.
[0008] The helix can be right or left handed and preferably the venturi tubes extend for
less than one turn of the helix. The angle that the tangent of the helix makes with
the longitudinal axis of the chamber is between 1° and 89°. The internal circumference
of the chamber may be larger at the inlet end than at the outlet end.
[0009] A nozzle may be attached to the inlet end of the chamber. The nozzle circumference
may larger at the nozzle inlet end than at the nozzle outlet end.; Preferably there
are openings in the side wall of the nozzle.
[0010] Two or more of these chambers may be connected together in series with tubing to
form a high capacity pump.
[0011] An appreciation of the other aims and objectives of the present invention and an
understanding of it may be achieved by referring to the accompanying drawings and
description of a preferred embodiment.
Brief Description of Drawings
[0012]
Figure 1 illustrates venturi effect.
Figure 2 shows the helix (cos t, sin t, t) from t = 0 to 4π.
Figure 3 is a side view of a three stage version of this invention.
Figure 4A is a perspective view from the inlet end of the three stage version of this
invention.
Figure 4B is an end view of the three stage version of this invention.
Figure 5 is a perspective, off center view of the segments comprising the three stage
version of this invention.
Figure 6 is a side view of the three stage version of this invention showing some
of its internal structure.
Figure 7 is a longitudinal cross section along the line 7-7 of Figure 6
Figure 8A is a side, partially cut away view of the outlet tube of the invention.
Figure 8B is an end view of the outlet tube of the invention.
Figure 9A is a side, partially cut away view of the uppermost venturi chamber of the
three stage version of this invention.
Figure 9B is an end view of the uppermost venturi chamber of the three stage version
of this invention from one end.
Figure 9C is an end view of the uppermost venturi chamber of the three stage version
of this invention from the other end.
Figure 9D is a view along the lines D-D of Figure 9A.
Figure 9E is an enlargement detail E on Figure 9D.
Figure 10A is a side, partially cut away view of the upper manifold section of the
three stage version of this invention.
Figure 10B is a view of the upper manifold section of the three stage version of this
invention from one end.
Figure 11A is a side, partially cut away view of the middle connection tube of the
three stage version of this invention.
Figure 11B is a view of the middle connection tube of the three stage version of this
invention from one end.
Figure 12A is a side, partially cut away view of the middle venturi chamber of the
three stage version of this invention.
Figure 12B is view of the middle venturi chamber of the three stage version of this
invention from one end.
Figure 12C is view of the middle venturi chamber of the three stage version of this
invention from the other end.
Figure 12D is a view along the lines D-D of Figure 12A.
Figure 12E is an enlargement of detail E on Figure 12D.
Figure 13A is a side, partially cut away view of the middle manifold section of the
three stage version of this invention.
Figure 13B is a view of the middle manifold section of the three stage version of
this invention from one end.
Figure 14A is a side, partially cut away view of the lower connection tube of the
three stage version of this invention.
Figure 14B is a view of the lower connection tube of the three stage version of this
invention from one end.
Figure 15A is a side, partially cut away view of the lower Venturi section of the
three stage version of this invention.
Figure 15B is a side, partially cut away view of the lower Venturi section of the
three stage version of this invention from one end.
Figure 15C is a view of the lower Venturi section of the three stage version of this
invention from the other end. Some detail is omitted for clarity.
Figure 15D is an enlargement of the detail shown at D on Figure 15C. Some detail is
omitted for clarity.
Figure 16 is a side, partially cut away view of the lower manifold section of the
three stage version of this invention.
Figure 17A is a side, partially cut away view of the inlet nozzle for this invention.
Figure 17B is a view of the inlet nozzle for this invention from one end
Figure 17C is a view of the inlet nozzle for this invention from the other end.
Figure 18 is a perspective, cutaway view showing how air and water move through the
invention.
Figure 19 is a perspective, cutaway view showing how air and water are diametrically
distributed across the cross section in the lower section of the invention.
Figure 20 is a perspective, cutaway view showing how air and water are diametrically
distributed across the cross section at the junction of the middle and upper sections
of the invention.
Figure 21 is a perspective, cutaway view showing how air and water are diametrically
distributed across the cross section in the outlet tube section of the invention.
Figure 22 is a perspective, cutaway view showing how air and water are longitudinally
distributed across the cross section in the outlet tube section of the invention.
Best Mode for Carrying Out Invention
[0013] While the present invention is described herein with reference to illustrative embodiments
for particular applications, it should be understood that the invention is not limited
thereto. Those having ordinary skill in the art and access to the teachings provided
herein will recognize additional modifications, applications, and embodiments within
the scope thereof and additional fields in which the present invention would be of
significant utility.
[0014] There are two principles that must be grasped to fully understand this invention
and how it works. These are the venturi effect and helices.
[0015] According to the laws governing fluid dynamics, a fluid's velocity must increase
as it passes through a constriction to satisfy the conservation of mass, while its
pressure must decrease to satisfy the conservation of energy. Thus any gain in kinetic
energy a fluid may accrue due to its increased velocity through a constriction is
negated by a drop in pressure. An equation for the drop in pressure due to the Venturi
effect may be derived from a combination of Bernoulli's principle and the continuity
equation.
[0016] The limiting case of the Venturi effect is when a fluid reaches the state of choked
flow, where the fluid velocity approaches the local speed of sound. In choked flow
the mass flow rate will not increase with a further decrease in the downstream pressure
environment.
[0017] However, mass flow rate for a compressible fluid can increase with increased upstream
pressure, which will increase the density of the fluid through the constriction (though
the velocity will remain constant). This is the principle of operation of a de Laval
nozzle.
[0018] Referring to Figure 1, using Bernoulli's equation in the special case of incompressible
flows (such as the flow of water or other liquid, or low speed flow of gas), the theoretical
pressure drop (p1 - p2) at the constriction would be given by:

where Pis the density of the fluid, v1 is the (slower) fluid velocity where the pipe
is wider, v2 is the (faster) fluid velocity where the pipe is narrower. This assumes
the flowing fluid (or other substance) is not significantly compressible - even though
pressure varies, the density is assumed to remain approximately constant.
[0019] A helix is a type of space curve, i.e. a smooth curve in three-dimensional space.
It is characterized by the fact that the tangent line at any point makes a constant
angle with a fixed line called the axis.
[0020] Helices can be either right-handed or left-handed. With the line of sight along the
helix's axis, if a clockwise screwing motion moves the helix away from the observer,
then it is called a right-handed helix; if towards the observer then it is a left-handed
helix. A right-handed helix cannot be turned or flipped to look like a left-handed,
and vice versa.
[0021] The pitch of a helix is the width of one complete helix turn, measured parallel to
the axis (Z in Figure 2) of the helix.
[0022] A circular helix, (i.e. one with constant radius) has constant band curvature and
constant torsion.
[0024] As the parameter t increases, the point (x(t), y(t), z(t)) traces a right-handed
helix of pitch 2π and radius 1 about the z-axis, in a right-handed coordinate system.
[0025] This invention 10 will be illustrated with a three stages 46 version. It will be
obvious to those familiar with the art to which this invention pertains, that this
invention 10 could have more that three stages 46. In the following description and
the attached drawings, unless otherwise obvious, elements without a suffix are of
similar design and function in each section 46. Reference numbers without a suffix
will refer to that element generically. An "a" suffix to a reference number will,
unless otherwise obvious, be used to designate elements of the first or lowest stage
46a of this invention 10; a "b" suffix to a reference number will, unless otherwise
obvious, be used to designate elements of the second or middle stage 46b of this invention
10; and a "c" suffix to a reference number will, unless otherwise obvious, be used
to designate elements of the third or upper stage 46c of this invention 10.
[0026] Figures 3, 4A, 4B, 5 and 6 show various views and features of the three stage 46
version of the invention 10. The three stages, 46a, 46b, 46c are connected together
in series. Each stage 46 includes a manifold section 78, a venturi section 14 and
a connecting tube 94. Each of these is tubular or annular in overall shape. Figures
8A, 8B, 9A, 9B, 9C, 9D, 9E, 10A, 10B, 11A, 11B, 12A, 12B, 12C, 12D, 12E, 13A, 13B,
14A, 14B, 15A, 15B, 15C, 15D, 16, 17A, 17B and 17C are detail views of all the components
of this invention 10.
[0027] In each stage 46 the venturi section 14 fits inside the manifold section 78 and the
front or lower flange 90 of the tubular section mates with the upper or rear surface
of the venturi section 14 and the upper or rear surface 54 of the manifold section
78. The outside diameter of the venturi section 14 is slightly less than inside diameter
of the manifold section so that it will fit snugly inside. Gaskets and bolts, O-rings
and seals (not illustrated) are used between components in normal fashion in order
to ensure a gas and liquid tight fit. Alternatively, a sealant may be used to join
the sections and ensure a gas and liquid tight fit.
[0028] Each manifold section78 has at least one radial hole 76 through it. It is through
this hole that pressurized gas is introduced. Typically a fitting 80 is fitted to
each hole 76. This fitting 80 is used to connect with a high pressure gas line (not
illustrated).
[0029] Of course, the upper or rear flange 91b of the middle segment 46b is mated with front
or lower surface 50c of the upper manifold section 78c. Also, there are one or more
radial holes 72 in the lower manifold section 78a. These may be covered by a fluid
inlet tube 74.
[0030] There may additionally be a nozzle 58 fitted to the lower surface 50a of the lower
manifold section 78a. The outside and inside diameters of the nozzle 58 are larger
at the inlet end 66 than at the outlet end 62. Further the outside of the nozzle 58
is shaped so that it fits inside and mates with the lower manifold section 78a and
the lower venturi section 14a. Again, gaskets and bolts, O-rings and seals (not illustrated)
are used between the nozzle 58 and the lower manifold section 78a and venturi section
14a in normal fashion in order to ensure a gas and liquid tight fit.
[0031] As has previously been described, each stage 46 of this invention 10 includes a venturi
section 14. A plurality of venturi tubes 18 are spaced around the internal circumference
of each venturi section 14. Each of the Venturi tubes 18 has a helical shape, an inlet
internal diameter at the inlet end 26a and an outlet internal diameter at the outlet
end 30a. The inlet ends 26a of the venturi tubes 18 are located adjacent the inlet
ends 34a of the sections 14, and the outlet ends 30a are located adjacent the outlet
ends 38a of the sections 14. In addition, the inlet diameters are larger than the
outlet diameters.
[0032] Further, in each venturi section 14 there are a plurality of air inlets 22 running
at an angle between the outside of the section 14 and the venturi tubes 18. Such tubes
22 are best illustrated in Figures 12A, 12D and 12E.
[0033] In each venturi section 14, the internal diameter 40 at the inlet 34 is larger than
the internal diameter 41 at the outlet end 38. The path described by each venturi
tube 18 in each venturi section is a helix. Also, each tube 18 decreases in diameter
as it increases in displacement. The tubes 18 can have a right hand or left hand helical
shape and preferably the tubes extend for less than one turn of the helix. The angle
that the tangent 42 of the helix makes with the longitudinal axis 44 can be anywhere
between 1° and 89°.
[0034] The internal configuration of each manifold section 78 and the external configuration
of each corresponding venturi section 14 are designed to channel the high pressure
gas from each high pressure inlet 76 to the inlet 26 of each venturi tube 18. To operate
this invention 10, it is immersed in a fluid and pressurized gas is introduced into
the inlet ends 26 of the tubes 18. Venturi action of the gas forces the fluid to move
from the inlet ends 50 to the outlet ends 91 of each section. Preferably the fluid
is water and the gas is compressed air.
[0035] The primary use for this invention is pumping or dredging of materials from the ocean
floor. The high pressure gas will typically be provided by an air compressor. Tubing
(not illustrated), preferably flexible tubing will be connected from the air compressor
to each fitting 80. In addition there will be another flexible tube (not illustrated)
connecting the uppermost flange 91c to a location where it is desired to deposit the
material to be pumped.
[0036] When everything is ready the pump will be lowered into the water to the desired depth
and the air compressor activated. The compressed air will flow through the venturi
tubes 18 and the air inlets 22. The venturi effect of the gas on the water will suck
the water etc. in to the inlet end of the invention, preferably the inlet end 66 of
the nozzle 58, and expel it from the outlet end 91c. From here the material will move
through the long tube and be deposited at the desired location. The gas tends to stay
close to the inner walls of the tubes 94 and venturi sections, thus reducing friction
and providing protection from the material being pumped. If the inlet end 66 of the
invention gets plugged with material, lifting it slightly to allow the side wall openings
72 to clear the material will allow clear water to be sucked into the pump thus clearing
it.
[0037] The preferred design parameters for the pump version of this invention 10 are as
follows:
Stage |
Internal diameter 40 or 41 |
No. of venturi tubes 18 |
Internal diameter of tube at inlet 26 |
Internal diameter of tube at outlet 30 |
Angle of helix tangent 42 to axis 44 |
I - bottom 46a |
0.5m (20") |
45 |
0.025m (1") |
0.02m (5/8") |
1.05 rad (60°) |
II - intermediate 46b |
0.3m (12") |
36 |
0.01m (3/8") |
0.006m (¼") |
1.22 rad (70°) |
III - top 46c |
0.25m (10") |
36 |
0.013m (½") |
0.006m (¼") |
1.40 rad (80°) |
[0038] Figure 18 is a perspective, cutaway view showing how air and water move through the
invention. Air is indicated by the darker arrows, water by the lighter arrows. Gas
injection is scaled among the different orifice levels in proportion to the inward
orifice area as follows:
Flow rate at first level venturis 18a 1.47978 m3/sec 52.26 %
Flow rate at second level venturis 18b 2 0.42749 m3/sec 15.10 %
Flow rate at third level venturis 18c 0.65585 m3/sec 23.16 %
Flow rate at third level air inlets 22c 4 0.26855 m3/sec 9.48 %
Total air flow rate 2.83168 m3/sec 6000.00 cfm
[0039] Figures 19-21 are perspective, cutaway views showing how air and water are diametrically
distributed across the cross sections of the invention 10. Figure 22 is a perspective,
cutaway view showing how air and water are longitudinally distributed along the invention
10. It can be seen from the keys in the drawings that most air flows along the walls
of the invention. As the air flows it sucks the water along with it upwards.
[0040] The pump version of this invention is designed to suck materials off the ocean floor
at depths of 3,048 m (10,000') or more. It will operate without creating turbidity
and will produces a fluid flow of 1,515.4 l.s
-1 (20,000 gals./min.) with an air flow of 2,832m
3s
-1 (6,000 cu.ft./min.) at sea level. At depth static pressure will have an influence
necessitating less air and higher fluid flow, for example 3,030.7 l.s
-1 (40,000 gals/min) or more.
[0041] The following reference numerals are used on the Figures:
- 10
- this invention
- 14
- venturi section
- 18
- venturi tube
- 22
- air inlet
- 26
- inlet end of venturi tube
- 30
- outlet end of venturi tube
- 34
- lower or inlet surface of venturi section
- 38
- upper or outlet surface of venturi section
- 40
- internal diameter of inlet end of venturi section
- 41
- internal diameter of outlet end of venturi section
- 42
- tangent of the helix
- 44
- longitudinal axis of helix
- 46
- stage of invention
- 50
- inlet surface of manifold section
- 54
- outlet surface of manifold section
- 58
- nozzle
- 62
- outlet surface of nozzle
- 66
- inlet surface of nozzle
- 72
- side inlet opening
- 74
- fluid inlet
- 76
- gas inlet
- 78
- manifold section
- 90
- lower or inlet flange
- 91
- outlet or upper flange
- 94
- connection tubing
[0042] The suffix "a" added to a reference numeral indicates first or lowest stage; the
suffix "b" the middle or second stage; and the suffix "c" the outlet, third or upper
stage.
[0043] Thus, the present invention 10 has been described herein with reference to a particular
embodiment for a particular application. Those having ordinary skill in the art and
access to the present teachings will recognize additional modifications, applications
and embodiments within the scope thereof.
[0044] It is therefore intended by the appended claims to cover any and all such applications,
modifications and embodiments within the scope of the present invention.
1. An apparatus for pumping fluid (10) comprising:
a) a venturi section (14) having a wall, an internal circumference, a longitudinal
axis, an inlet end (34) and an outlet end (38) wherein said internal circumference
is larger at said inlet end (34) than at said outlet end (38);
b) a plurality of venturi tubes (18) spaced around said internal circumference; each
of venturi tubes (18) having a helical shape wherein the angle that the tangent (42)
of said helix makes with said longitudinal axis (44) is between 1° and 89°; each of
said venturi tubes (18) having an inlet diameter adjacent said inlet end (34) and
an outlet diameter adjacent said outlet end (38); said inlet diameter being larger
than said outlet diameter;
c) a manifold section (78) connected to said inlet diameters; and
d) a high pressure gas supply connected to said manifold section (78).
2. An apparatus (10) as claimed in claim 1 in which said venturi tubes (18) extend for
less than one turn of said helix.
3. An apparatus (10) as claimed in claim 1 or 2 in which said helix is right handed or
left handed.
4. An apparatus (10) as claimed in any of the previous claims in which said fluid is
water.
5. An apparatus (10) as claimed in any of the previous claims in which said gas is air.
6. An apparatus (10) as claimed in any of the previous claims further comprising a plurality
of air inlets (22) through said wall and connected to said manifold section (78) at
one end and said venturi tubes (18) an the other end.
7. An apparatus (10) as claimed in any of the previous claims further comprising a nozzle
(58) attached to said inlet end (34); said nozzle having a tubular shape, a nozzle
circumference, a nozzle inlet end (66), a nozzle outlet end (62) and a side wall.
8. An apparatus (10) as claimed in claim 7 in which said nozzle outlet circumference
matches said internal circumference at said outlet end (62).
9. An apparatus (10) as claimed in claim 7 or 8 in which said nozzle circumference is
larger at said nozzle inlet end (66) than at said nozzle outlet end (62).
10. An apparatus (10) as claimed in any of claims 7 to 9 further comprising an opening
(72) in side wall.
11. An apparatus (10) comprising at least two of said apparati, as described in any of
the previous claims connected together in series.
12. A method for pumping fluid comprising the steps of:
a) fabricating a cylindrical chamber (14) having a wall, an internal circumference,
a longitudinal axis, an inlet end (34) and an outlet end (38) wherein said internal
circumference is larger at said inlet end (34) than at said outlet end (38);
b) fabricating a plurality of venturi tubes; each of venturi tubes (18) having a helical
shape wherein the angle that the tangent (42) of said helix makes with said longitudinal
axis (44) is between 1° and 89°; each of said venturi tubes (18) having an inlet diameter
(40) adjacent said inlet end (34) and an outlet diameter adjacent said outlet end
(38); said inlet diameter (40) being larger than said outlet diameter;
c) spacing said venturi tubes (18) around said internal circumference
d) fabricating a manifold (78);
e) connecting said inlet diameters (40) to said manifold (78);
f) providing a high pressure gas supply;
g) connecting said high pressure gas supply to said manifold (78);
h) placing said inlet end (66) in said fluid; and
i) activating said high pressure gas supply;
whereby said fluid will be sucked in to said inlet end (66) and expelled from said
outlet end (91C) by venturi effect of said gas on said fluid.
1. Vorrichtung zum Pumpen von Fluid (10), umfassend:
a) einen Venturiabschnitt (14), der eine Wand, einen Innenumfang, eine Längsachse,
ein Einlassende (34) und ein Auslassende (38) aufweist, wobei der Innenumfang an dem
Einlassende (34) größer als an dem Auslassende (38) ist;
b) eine Vielzahl von Venturirohren (18), die um den Innenumfang beabstandet sind;
wobei jedes der Venturirohre (18) eine Spiralform aufweist, wobei der Winkel, den
die Tangente (42) der Spirale mit der Längsachse (44) bildet zwischen 1° und 89° beträgt;
wobei jedes der Venturirohre (18) einen Einlassdurchmesser neben dem Einlassende (34)
und einen Auslassdurchmesser neben dem Auslassende (38) aufweist; wobei der Einlassdurchmesser
größer als der Auslassdurchmesser ist;
c) einen Verteilerabschnitt (78), der mit den Einlassdurchmessern verbunden ist; und
d) eine Hochdruckgasversorgung, die mit dem Verteilerabschnitt (78) verbunden ist.
2. Vorrichtung (10) nach Anspruch 1, wobei die Venturirohre (18) sich über weniger als
eine Windung der Spirale erstrecken.
3. Vorrichtung (10) nach Anspruch 1 oder 2, wobei die Spirale rechtsdrehend oder linksdrehend
ist.
4. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Fluid
um Wasser handelt.
5. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Gas
um Luft handelt.
6. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, ferner umfassend eine Vielzahl
von Lufteinlässen (22) durch die Wand, die mit dem Verteilerabschnitt (78) an einem
Ende und mit den Venturirohren (18) an dem anderen Ende verbunden sind.
7. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, ferner umfassend eine Düse
(58), die an dem Einlassende (34) befestigt ist; wobei die Düse eine Röhrenform, einen
Düsenumfang, ein Düseneinlassende (66), ein Düsenauslassende (62) und eine Seitenwand
aufweist.
8. Vorrichtung (10) nach Anspruch 7, wobei der Düsenauslassumfang mit dem Innenumfang
an dem Auslassende (62) übereinstimmt.
9. Vorrichtung (10) nach Anspruch 7 oder 8, wobei der Düsenumfang an dem Düseneinlassende
(66) größer als an dem Düsenauslassende (62) ist.
10. Vorrichtung (10) nach einem der Ansprüche 7 bis 9, ferner umfassend eine Öffnung (72)
in der Seitenwand.
11. Vorrichtung (10), umfassend zumindest zwei von den Vorrichtungen, wie in einem der
vorhergehenden Ansprüche beschrieben, die in Reihe miteinander verbunden sind.
12. Verfahren zum Pumpen von Fluid, die folgenden Schritte umfassend:
a) Herstellen einer zylinderförmigen Kammer (14), die eine Wand, einen Innenumfang,
eine Längsachse, ein Einlassende (34) und ein Auslassende (38) aufweist, wobei der
Innenumfang an dem Einlassende (34) größer als an dem Auslassende (38) ist;
b) Herstellen einer Vielzahl von Venturirohren; wobei jedes der Venturirohre (18)
eine Spiralform aufweist, wobei der Winkel, den die Tangente (42) der Spirale mit
der Längsachse (44) bildet zwischen 1° und 89° beträgt; wobei jedes der Venturirohre
(18) einen Einlassdurchmesser (40) neben dem Einlassende (34) und einen Auslassdurchmesser
neben dem Auslassende (38) aufweist; wobei der Einlassdurchmesser (40) größer als
der Auslassdurchmesser ist;
c) Beabstanden der Venturirohre (18) um den Innenumfang
d) Herstellen eines Verteilers (78);
e) Verbinden der Einlassdurchmesser (40) mit dem Verteiler (78) ;
f) Bereitstellen einer Hochdruckgasversorgung;
g) Verbinden der Hochdruckgasversorgung mit dem Verteiler (78) ;
h) Platzieren des Einlassendes (66) in dem Fluid; und
i) Aktivieren der Hochdruckgasversorgung;
wobei das Fluid in das Einlassende (66) gesaugt wird und aus dem Auslassende (91C)
durch den Venturieffekt des Gases auf das Fluid ausgestoßen wird.
1. Appareil de pompage de fluide (10) comprenant :
a) un segment de venturi (14) ayant une paroi, une périphérie interne, un axe longitudinal,
une extrémité d'entrée (34) et une extrémité de sortie (38), la périphérie interne
étant plus grande au niveau de l'extrémité d'entrée (34) qu'au niveau de l'extrémité
de sortie (38),
b) un ensemble de tubes de venturi (18) situés à distance les uns des autres autour
de la périphérie interne, chacun des tubes de venturi (18) ayant une forme hélicoïdale,
dans laquelle l'angle défini par la tangente (42) de l'hélice avec l'axe longitudinal
(44) est compris entre 1° et 89°, chacun des tubes de venturi (18) ayant un diamètre
d'entrée au voisinage de l'extrémité d'entrée (34) et un diamètre de sortie au voisinage
de l'extrémité de sortie (38), le diamètre d'entrée étant supérieur au diamètre de
sortie,
c) un segment de collecteur (78) relié aux diamètres d'entrée, et
d) une alimentation en gaz haute pression reliée au segment de collecteur (78).
2. Appareil (10) conforme à la revendication 1,
dans lequel les tubes de venturi (18) s'étendent sur moins d'un tour de l'hélice.
3. Appareil (10) conforme à la revendication 1 ou 2,
caractérisé en ce que
l'hélice est une hélice droite ou une hélice gauche.
4. Appareil (10) conforme à l'une quelconque des revendications précédentes,
dans lequel le fluide est de l'eau.
5. Appareil (10) conforme à l'une quelconque des revendications précédentes,
dans lequel le gaz est de l'air.
6. Appareil (10) conforme à l'une quelconque des revendications précédentes,
comprenant en outre un ensemble d'entrées d'air (22) situées au travers de la paroi
et reliées au segment de collecteur (78) à une extrémité et au tube de venturi (18)
à l'autre extrémité.
7. Appareil (10) conforme à l'une quelconque des revendications précédentes,
comprenant en outre une buse (58) fixée à l'extrémité d'entrée (34), cette buse ayant
une forme tubulaire, une périphérie de buse, une extrémité d'entrée de buse (66),
une extrémité de sortie de buse (62) et une paroi latérale.
8. Appareil (10) conforme à ka revendication 7,
dans lequel la périphérie de sortie de la buse correspond à la périphérie interne
au niveau de l'extrémité de sortie (62).
9. Appareil (10) conforme à la revendication 7 ou 8,
dans lequel la périphérie de la buse est plus grande au niveau de l'extrémité d'entrée
de la buse (66) qu'au niveau de l'extrémité de sortie de la buse (62).
10. Appareil (10) conforme à l'une quelconque des revendications 7 à 9, comprenant en
outre une ouverture (72) dans la paroi latérale.
11. Appareil (10) comprenant au moins deux appareils conformes à l'une quelconque des
revendications précédentes montés en série.
12. Procédé de pompage d'un fluide comprenant des étapes consistant à :
a) fabriquer une chambre cylindrique (14) ayant une paroi, une périphérie interne,
un axe longitudinal, une extrémité d'entrée (34) et une extrémité de sortie (38),
la périphérie interne étant plus grande au niveau de l'extrémité d'entrée (34) qu'au
niveau de l'extrémité de sortie (38),
b) fabriquer un ensemble de tubes de venturi, chacun des tubes de venturi (18) ayant
une forme hélicoïdale, dans laquelle l'angle défini par la tangente (42) de l'hélice
avec l'axe longitudinal (44) est compris entre 1° et 89°, chacun des tubes de venturi
(18) ayant un diamètre d'entrée (40) au voisinage de l'extrémité d'entrée (34) et
un diamètre de sortie au voisinage de l'extrémité de sortie (38), le diamètre d'entrée
(40) étant supérieur au diamètre de sortie,
c) positionner les tubes de venturi (18) à distance autour de la périphérie interne,
d) fabriquer un collecteur (78),
e) relier les diamètres internes (40) au collecteur (78),
f) se procurer une alimentation en gaz haute pression,
g) relier l'alimentation en gaz haute pression au collecteur (78),
h) positionner l'extrémité d'entrée (66) dans le fluide, et
i) activer l'alimentation en gaz haute pression,
le fluide étant aspiré dans l'extrémité d'entrée (66) et expulsé de l'extrémité de
sortie (91C) par l'effet de venturi du gaz sur le fluide.