[0001] The invention relates to ultra-high strength AA6xxx-series aluminium alloy forgings
particularly suitable for automotive, rail or transportation structural components,
exhibiting an ultimate tensile strength UTS typically higher than 400 MPa in T6 temper,
preferably higher than 450 MPa, and excellent corrosion resistance.
More particularly such forgings are produced through a manufacturing process which,
besides including subsequent extrusion and forging steps, includes multiple solutionising
and quench steps in order to achieve, after ultimate age hardening, high strength
and excellent corrosion resistance on Cu-doped AA6xxx-series alloys.
[0002] Unless otherwise stated, all information concerning the chemical composition of the
alloys is expressed as a percentage by weight based on the total weight of the alloy.
"6xxx aluminium alloy" or "6xxx alloy" designate an aluminium alloy having magnesium
and silicon as major alloying elements. "AA6xxx-series aluminium alloy" designates
any 6xxx aluminium alloy listed in "International Alloy Designations and Chemical
Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys" published by
The Aluminum Association, Inc. Unless otherwise stated, the definitions of metallurgical
tempers listed in the European standard EN 515 will apply. Static tensile mechanical
characteristics, in other words, the ultimate tensile strength R
m (or UTS), the tensile yield strength at 0.2% plastic elongation R
p0,2 (or YTS), and elongation A% (or E%), are determined by a tensile test according to
NF EN ISO 6892-1.
[0003] Aluminium alloy compositions and tempers have been developed for obtaining satisfying
strength and corrosion behavior in car components such as chassis-suspension or body
structure parts, but also rail or transportation structural components in particular
when they are made from forgings obtained from extruded rough products.
In order to achieve tensile properties in excess of 400 MPa in 6xxx alloys, it is
essential to maximise both the ageing response through an adequate solutionising of
solute elements, predominantly Mg, Si and Cu, while maximising retention of the fibrous
structure through minimal recrystallisation. Said recrystallisation is controlled
through the addition of dispersoid elements, typically Mn, Cr and Zr and appropriate
homogenisation temperatures. It is also controlled through alloy processing conditions,
which are defined so as to minimise stored-energy and thereby maximise recrystallization
temperature.
To achieve adequate solutionising, according to the prior art, highly alloyed 6xxx
alloys are usually separately solutionised and quenched after the ultimate hot forming
step (in this case forging). Such a solution can be found in the patent application
EP 2548933 A1 by "Nissan Motor Co". When alloys are strongly alloyed it is often required to apply
an extended solutionising treatment (in excess of 90min) at high temperature (530-560°C)
in order to achieve excellent solutionising. Such a case is described in the patent
application
JP2012-097321 by "Furukawa Sky Aluminium-Corp". The corollary to this is that extended recrystallization
will occur on highly alloyed alloys (unless significant dispersoid additions are made)
as they are brought to a fully solutionised temper and the additional strength gained
by improved solutionising shall be mitigated by recovery and recrystallisation.
[0004] The invention relates to forgings manufactured through a process including, besides
subsequent extrusion and forging steps, multiple solutionising and quench steps, to
achieve excellent solutionising and strong retention of the fibrous structure on 6xxx
type alloys, achieving typically, after last step age hardening (T6 temper), an ultimate
tensile strength UTS higher than 400 MPa, and preferably higher than 450 MPa, and
an excellent corrosion resistance.
[0005] Solidus Ts is the temperature below which the alloy exhibits a solid fraction equal
to 1. Solvus defines the temperature, which is the limit of solid solubility in the
equilibrium phase diagram of the alloy. For high strength requirements, eutectic alloying
elements such as Si, Mg and Cu should be added to form precipitated hardening phases.
However, the addition of alloying elements generally results in a decrease in the
difference between solidus and solvus temperatures. When the content of eutectic alloying
elements is higher than a critical value, the solidus to solvus range of the alloy
becomes a narrow "window", with typically a solidus to solvus difference lower than
20°C, and consequently the solution heat treatment of the aforementioned elements
usually achieved during extrusion cannot be obtained without observing incipient melting.
Indeed local temperature gradients achieved during extrusion and forging, generally
exceed 20°C implying that, as solvus is reached, parts of the product will display
temperatures in excess of solidus Ts.
[0006] According to the prior art, high strength forgings obtained from extruded rough products,
and from 6xxx-series aluminium alloys characterised by a minimum Silicon content of
0.7 % and minimum Magnesium content of 0.6 %, for example of the AA 6082, 6182, 6110,
or 6056 type, are produced by:
- a) casting one of the following aluminium alloys AA6082, 6110, 6182 or 6056 acc. to
AA standard or to a restricted composition within AA standard;
- b) homogenising;
- c) cooling to room temperature;
- d) heating a homogenised cast billet to a temperature 50°C to 100°C lower than solidus
temperature (approx. 575°C);
- e) extruding said billet through a die to produce a solid section profile with an
exit temperature (typically 500°C) lower than solidus (typically 550°C), in order
to avoid incipient melting due to non-equilibrium melting of eutectic phases in profile
hot-spots but still allowing to dissolve part of the constituent particles;
- f) cooling to room temperature;
- g) stretching;
- h) heating cut-to-length extruded rod to forging temperature (400-520°C);
- i) forging in heated mould (150-350°C);
- j) separate solutionising at 530-560°C for durations between 30 min. and 90 min.;
- k) water quenching the forged material down to room temperature;
- l) room temperature ageing;
- m) ageing to T6 temper by a one-or multiple-step heat treatment at temperatures ranging
from 150 to 200°C for holding times ranging from 2 to 20 hours.
[0007] However, ultimate tensile strengths achieved with this processing route do not exceed
450MPa. Generally speaking, 400MPa is a maximum especially when ageing has to be shifted
away from peak ageing T66 in order to guarantee minimum elongation values higher than
10 %.
[0009] The applicant decided to develop a novel combination of 6xxx-series alloy and process
which secures an ultimate tensile strength higher than 400 MPa, preferably higher
than 450MPa, and even higher than 480 MPa.
[0010] A first object of the invention is an aluminium alloy forged product obtained by
following steps of claim 1. The following is a more general description, not according
to the invention:
- a) casting a billet from a 6xxx aluminium alloy comprising: Si: 0.7-1.3 wt. %; Fe
: ≤ 0.5 wt. %; Cu: 0.1-1.5 wt. %; Mn: 0.4-1.0 wt. %; Mg: 0.6-1.2 wt. %; Cr: 0.05-0.25
wt.%; Zr: 0.05-0.2 wt. %; Zn: ≤ 0.2 wt.%; Ti: ≤ 0.2 wt.%, the rest being aluminium
and inevitable impurities;
- b) homogenising the cast billet at a temperature TH which is 5°C to 80°C lower than solidus temperature Ts, typically TH in the range of 500-560°C, for a duration between 2 and 10 hours to ensure high level
of dissolution of constituent particles while ensuring precipitation and controlled
coarsening of dispersoid phases;
- c) quenching said billet down to room temperature by using water quench system;
- d) heating the homogenised billet to a temperature Th between (Ts - 5°C) and (Ts - 125°C);
- e) extruding said billet through a die to produce a solid section with an exit temperature
(typically 530°C) lower than Ts (typically 550°C), in order to avoid incipient melting
due to non-equilibrium melting of eutectic phases in profile hot-spots but still allowing
to dissolve part of the constituent particles, and with an extruding ratio of at least
8;
- f) quenching the extruded product down to room temperature by using water quench system;
- g) stretching the extruded product to obtain a plastic deformation typically between
0.5% and 10%, preferably up to 5%;
- h) heating cut-to-length extruded rod to forging temperature, typically between 400
and 520°C;
- i) forging in heated mould between 150 and 350°C;
- j) separate solutionising at a temperature between 530 and 560°C for durations between
2 min. and 1 hour;
- k) water quenching the forged and solutionised material down to room temperature;
- l) room temperature ageing for a duration between 6 hours and 30 days;
- m) ageing to T6 temper by a one-or multiple-step heat treatment at temperatures ranging
from 150 to 200°C for holding times ranging from 2 to 20 hours.
and presenting a ultimate tensile strength higher than 400 MPa.
[0011] According to the general description (not according to the invention, which is defined
by the appended claims) the aluminium alloy extruded product is obtained by casting
a billet from a 6xxx aluminium alloy comprising: Si: 0.7-1.3 wt. %; Fe: ≤ 0.5 wt.
%; Cu: 0.1-1.5 wt. %; Mn: 0.4-1.0 wt. %; Mg: 0.6-1.2 wt. %; Cr: 0.05-0.25 wt.%; Zr:
0.05-0.2 wt. %; Zn: ≤ 0.2 wt.%; Ti: ≤ 0.2 wt.%, the rest being aluminium and inevitable
impurities. The aluminium alloy according to the invention is of the AlMgSi type,
which, compared with other such as e.g. AlZnMg alloys, provides an excellent combination
of high tensile strength and resistance to corrosion.
[0012] The process according to the invention consists in particular in replacing conventional
homogenising followed by slow cooling, heating and extruding followed again by slow
cooling of AA6xxx alloy billets, by high temperature homogenising and quenching followed
by heating, extruding and quenching again, and does not comprise a separate post-extrusion
solution heat treatment, because, as a result of steps b) and c), most part of the
alloying elements which contribute to the formation of hardening particles are in
solid solution in the lattice of the extrudate.
[0013] The present invention therefore provides a process to manufacture a range of 6xxx
alloys with superior mechanical properties, especially if applied to a sufficiently
copper-doped AlMgSiCu, with strength levels in excess of 400 MPa and even 450 or 480
MPa, hitherto not achieved through a conventional route. In addition, good extrudability
and forgeability is maintained because the limitation with extrusion speed due to
premature speed cracking resulting from incipient melting is minimised due to a higher
level of dissolution of constituent particles while ensuring precipitation and controlled
coarsening of dispersoid phases prior to extrusion.
[0014] According to the invention, a billet is provided resulting from casting a given 6xxx
aluminium alloy, i.e. an aluminium alloy having magnesium and silicon as major alloying
elements. This aluminium alloy is a high-strength 6xxx aluminium alloy, of the same
family as AA6082, AA6182, AA6056, AA6110 or any copper-doped alloy derived from the
said AA6xxx aluminium alloys.
[0015] This alloy has a composition as defined in the claims and it belongs to the family
of 6xxx alloys with a high Cu content, typically between 0.1 and 1.5 wt. %, more preferably
between 0.4 and 1.2 wt. %, even more preferably between 0.6 and 1.0 wt. %. Dispersoid
elements, Mn with a content of 0.4-1.0 wt. %, Cr with a content of 0.05-0.25 wt. %
and Zr with a content of 0.05-0.2 wt. %, are added to control recrystallization and
maximize the retention of fibrous structure of the extrudate and the forged component.
[0016] Si and Mg content are defined so as to ensure high level of dissolved Mg2Si while
minimising presence of undissolved Mg2Si in the forged component after ultimate solutionising
step, with a maximum content of 0.5 wt.%. For example, when solutionising at 550°C
is applied at the ultimate step of the invention, the content of dissolved Mg is 0.623
wt.%, dissolved Si is 0.977 wt.% and undissolved Mg2Si 0.45wt.%.
[0017] Si is combined with Mg to form Mg2Si. The precipitation of Mg2Si contributes to increasing
the strength of the final aluminium alloy forged product.
If the Si content is less than 0.7 wt.%, the final product does not have a sufficiently
high strength, it means a tensile strength not higher than 400 MPa. If it is lower
than 0.9 wt.%, tensile strength will be at most 450 MPa and with less than 1.1wt.%
it will be lower than 480 MPa.
On the other hand, if the Si content is more than 1.3 wt.%, the level of undissolved
Mg2Si is too high and extrudability is reduced as well as corrosion resistance and
toughness of the resultant final forged product.
[0018] Mg is combined with Si to form Mg2Si. Therefore Mg is indispensable for strengthening
the product of the present invention. If the Mg content is lower than 0.7 wt.%, the
effect is too weak. On the other hand, if the Mg content is higher than 1.2 wt.%,
the billet becomes difficult to be extruded and the extruded bar to be forged. Moreover,
a large amount of Mg2Si particles tends to precipitate during quenching process after
the solution treatment. In addition, the Mg content is preferably between 0.8 wt.%
and 1.0 wt.%.
[0019] Fe is an impurity and combines with other elements to form intermetallic compounds.
These precipitated particles lower fracture toughness and fatigue strength of the
final forged product. Especially, if the Fe content is higher than 0.5 wt.% it is
difficult to obtain an aluminium alloy forged product with both high strength and
high toughness as required for automotive structure and suspension applications. Preferably,
its content is lower than or equal to 0.3 wt.% and more preferably, lower than or
equal to 0.2 wt.%.
[0020] Mn also combines with Al to form intermetallic compounds which control recrystallisation.
However, if the Mn content is less than 0.4 wt.%, the effect is not sufficient. On
the other hand, if the content of Mn is higher than 1.0 wt.%, coarse precipitated
particles are formed and both the workability and the toughness of the aluminium alloy
are reduced. The Mn content is preferably between 0.5 wt.% and 0.9 wt.% and more preferably
between 0.5 wt.% and 0.7 wt.%.
[0021] The cast billet according to the invention is homogenised for a duration between
2 and 10 hours at a temperature between 5°C and 80°C lower than solidus, and then
water quenched.
[0022] The homogenised and quenched cast billet to be extruded is heated to a soaking temperature
T
h below the solidus temperature Ts, between Ts-5°C and Ts-125°C. For example, solidus
temperature is near 575°C for alloys AA6082 and AA6182. The billets are preferably
heated and held at the soaking temperature during ten seconds to several minutes.
[0023] The billet is then introduced in the extrusion press and extruded through a die to
form a solid extruded product or extrudate. The extrusion speed is controlled to have
an extrudate surface exit temperature lower than solidus temperature Ts, respectively
530 and 550°C approximately. The exit temperature should be high enough to merely
avoid precipitation. Practically, the targeted extrudate surface temperature is commonly
ranging from 530°C to 550°C, to have an extrusion speed compatible with a satisfying
productivity and avoid incipient melting due to non-equilibrium melting of eutectic
phases in profile hot-spots but still allowing to dissolve part of the constituent
particles. The extrusion ratio (starting cross-sectional area divided by final cross-sectional
area) is at least 8 to maximize the fibrous structure of the extrudate.
[0024] The extruded product is then water quenched at the exit of the extrusion press, i.e.
in an area located between 500 mm and 5 m of the exit from the die. It is cooled down
to room temperature with an intense cooling device, for example a device projecting
sprayed water or a water based cooling liquid on the extrudate.
[0025] The extrudate is then stretched to obtain a plastic deformation typically between
0.5% and 10%, preferably up to 5%, in order to have stress-relieved straight profiles.
[0026] The extruded bar is then cut to length, heated to forging temperature, typically
between 400 and 520°C, and then forged in a heated mould typically between 150 and
350°C.
[0027] After forging, parts undergo a separate solutionising at a temperature between 530
and 560°C for a duration comprised between 2 min. and 1 hour and then water quenched
with an intense cooling device, for example a device projecting sprayed water or a
water based cooling liquid, down to room temperature.
[0028] The product is then aged at room temperature for a duration between 6 hours and 30
days, after which artificial ageing is applied to achieve T6 temper by a one-or multiple-step
heat treatment at temperatures ranging from 150 to 200°C for holding times ranging
from 2 to 20 hours.
[0029] The process according to the invention allows to obtain forged products made from
Cu-doped 6xxx alloys, which were until now very difficult to solutionise because of
their very narrow solvus-solidus temperature window and the risk of recrystallization
during ultimate separate solutionising prior to final age-hardening treatment. The
process and chemical composition of the invention permits to obtain a forged product
displaying a near to fully wrought structure by retaining the wrought structure generated
during extrusion in parts of the forged component submitted to limited or no deformation
during forging and by limiting the extent of recrystallization occurring during the
ultimate separate solutionising step. This process is particularly well suited to
alloys with Mg2Si content comprised between 1.2 wt. % and 1.6 wt. %, Si excess up
to 0.7%, particularly if comprised between 0.2 wt. % and 0.7 wt. %, and especially
if copper content lies between 0.4 wt.% and 1.5 wt.%, which gives a solvus to solidus
temperature difference approximately equal to or even lower than 10°C, and renders
such alloy almost impossible to extrude when processed according to the prior art
route.
[0030] As this alloy comprises, further to Mn, additional dispersoid elements zirconium,
between 0.05 and 0.2 wt. %, and Cr, between 0.05 and 0.25 wt. %, the microstructures
of the extrudates show a strong fibrous retention providing an additional strengthening
contribution, considered important in meeting such high mechanical property values.
After having applied the process according to the invention to Cu doped AlMgSiCu aluminium
alloys, the applicant was able to obtain forged components having at T6 temper ultimate
tensile strengths higher than 450 MPa, even higher than 480 MPa.
[0031] Mechanical properties achieved in T6 temper on invention forgings after manufacturing
according to the aforementioned process were significantly higher than by using conventional
process on AA 6082 and displayed a far higher tolerance to solutionising conditions
i.e. increased ease of solutionising at low temperature and soaking time and high
resistance to recrystallization.
[0032] Moreover a forged product manufactured according to the invention also displays a
limited sensitivity to intergranular corrosion as assessed according to ISO 11846B
and opposed to what the copper level would lead a corrosion expert to expect.
[0033] Such forged products are particularly suitable as automotive body structure or chassis-suspension
parts and especially suspension arms.
EXAMPLE
[0034] Forged suspension arms were made from two 6xxx aluminium alloys, the first one being
of the AA6082 type, the other one according to the invention, starting from extruded
round bars with a diameter of 40 mm.
[0035] Said bars were extruded by following two different process routes: the current prior
art route for AA6082 alloys and the route according to the invention for others.
[0036] The chemical compositions of these alloys are shown on Table I in weight %.
Table I
|
Si |
Fe |
Cu |
Mn |
Mg |
Cr |
Ni |
Zn |
Ti |
Pb |
V |
Zr |
AA6082 |
1.112 |
0.197 |
0.061 |
0.744 |
0.807 |
0.193 |
0.003 |
0.012 |
0.029 |
0.001 |
|
|
Invention |
1.3 |
0.16 |
0.74 |
0.53 |
0.89 |
0.1 |
0.04 |
0.008 |
0.019 |
0.0011 |
0.011 |
0.13 |
[0037] Homogenised cast billets having a diameter of 308 mm and a length of 1200 mm were
heated, introduced into an extrusion press and pressed to form 40 mm in diameter bars.
[0038] Forged suspension arms were obtained by following a conventional route for AA6082
alloys:
a) homogenising the cast billet at a temperature TH close to 480°C, for a duration of 5 hours;
b) cooling said billet down to room temperature;
c) heating the homogenised billet to a temperature Th close to 500°C;
c) extruding said billet through a die to produce round bars with an exit temperature
close to 530°C;
d) cooling the extruded product down to room temperature;
e) stretching the extruded product to obtain a plastic deformation close to 1%;
f) heating cut-to-length extruded rod to forging temperature, close to 500°C;
g) forging in mould heated close to 300°C;
h) separate solutionising at a temperature close to 530°C for 30 min.;
i) water quenching the forged material with an intense cooling device down to room
temperature;
j) room temperature ageing for a duration of 1 day;
k) ageing to T6 temper by a one-step heat treatment at 175°C for 8 hours.
[0039] Forged suspension arms were obtained by following the route according to the invention
for other ones ("Invention"):
- a) homogenising the cast billet at a temperature TH close to 520°C, for a duration of 5 hours;
- b) quenching said billet down to room temperature by using water quench system;
- c) heating the homogenised billet to a temperature Th close to 500°C;
- d) extruding said billet through a die to produce round bars with an exit temperature
close to 530°C;
- e) quenching the extruded product down to room temperature by using water quench system;
- f) stretching the extruded product to obtain a plastic deformation close to 1%;
- g) heating cut-to-length extruded rod to forging temperature close to 500°C;
- h) forging in heated mould close to 300°C;
- i) separate solutionising at a temperature close to 550°C for 30 min.;
- j) quenching the forged material with an intense cooling device down to room temperature;
- k) room temperature ageing for a duration of 1day;
- l) ageing to T6 temper by a one-step heat treatment at 170°C for 8 hours.
[0040] Tensile test specimens were machined in the suspension arms. Table 2 shows the ultimate
tensile strength (UTS), the yield strength (YS) and the elongation of forged products.
Table 2
Alloy |
Solutionising |
Ageing |
Temper |
Rm [MPa] |
Rp0,2 [MPa] |
A [%] |
AA 6082 |
530°C/30 min. |
175°C/8h |
T6 |
378 |
358 |
11 |
AA 6082 |
530°C/30 min. |
175°C/8h |
T6 |
376 |
354 |
12.5 |
Invention |
550°C/30 min. |
170°C/8h |
T6 |
481 |
452 |
13 |
Invention |
550°C/30 min. |
170°C/8h |
T6 |
484 |
456 |
12 |
[0041] The results of table 2 show that the process route according to the invention enables
the manufacture of aluminium alloy forged products having significantly higher strength
(UTS and YS) than products obtained by a conventional route, and similar elongation.
[0042] Corrosion tests were performed using the ISO 11846B test for 24 hours of exposure
time on suspension arms as above, the ones obtained from AA6082 alloy following the
prior art route, the other ones according to the invention.
[0043] Figure 1 shows no significant difference for products according to the invention,
with a maximum surface attack depth of 310 microns and a maximum end grain attack
depth of 380 microns for the product according to the invention compared to respectively
390 and and 320 microns for AA6082 alloys processed through a prior art route.
[0044] These results show that the process route according to the invention enables the
manufacture of aluminium alloy extruded products having simultaneously better strength
(UTS and YS) and equivalent corrosion resistance than products obtained by a conventional
route.
1. An aluminium alloy forged product obtained by following steps:
a) casting a billet from a 6xxx aluminium alloy comprising:
Si: 0.7-1.3 wt. %; Fe: ≤ 0.5 wt. %; Cu: 0.6-1.0 wt. %; Mn: 0.4-1.0 wt. %; Mg: 0.7-1.0
wt. %; Cr: 0.05-0.25 wt.%; Zr: 0.05-0.2 wt. %; Zn: ≤ 0.2 wt.%; Ti: ≤ 0.2 wt.%, the
rest being aluminium and inevitable impurities;
b) homogenising the cast billet at a temperature TH which is 5°C to 80°C lower than solidus temperature Ts, typically TH in the range of 500-560°C, for a duration between 2 and 10 hours to ensure high level
of dissolution of constituent particles while ensuring precipitation and controlled
coarsening of dispersoid phases;
c) quenching said billet down to room temperature by using water quench system;
d) heating the homogenised billet to a temperature Th between (Ts - 5°C) and (Ts - 125°C);
e) extruding said billet through a die to produce a solid section with an exit temperature
(typically 530°C) lower than Ts (typically 550°C), to avoid incipient melting due
to non-equilibrium melting of eutectic phases in profile hot spots but still allowing
to dissolve part of the constituent particles and with an extruding ratio of at least
8;
f) quenching the extruded product down to room temperature by using water quench system;
g) stretching the extruded product to obtain a plastic deformation typically between
0.5% and 10%, preferably up to 5%;
h) heating cut-to-length extruded rod to forging temperature, typically between 400
and 520°C;
i) forging in heated mould between 150 and 350°C;
j) separate solutionising at a temperature between 530 and 560°C for durations between
2 min. and 1 hour;
k) water quenching the forged and solutionised material down to room temperature;
l) room temperature ageing for a duration between 6 hours and 30 days;
m) ageing to T6 temper by a one-or multiple-step heat treatment at temperatures ranging
from 150 to 200°C for holding times ranging from 2 to 20 hours.
2. An aluminium alloy forged product according to claim 1 characterised in that said 6xxx aluminium alloy comprises Si: 0.9-1.3 wt.%, preferably 1.1-1.3 wt.%.
3. An aluminium alloy forged product according to any of claims 1 or 2 characterised in that said 6xxx aluminium alloy comprises Mn: 0.5-0.9 wt.%, preferably 0.5-0.7 wt.%.
4. An aluminium alloy forged product according to any of claims 1 to 3 characterised in that Fe ≤ 0.3 wt. %, preferably ≤ 0.2 wt. %.
5. An aluminium alloy forged product according to any of claims 1 to 4 characterised in that its ultimate tensile strength is higher than 400 MPa, preferably higher than 450MPa,
and more preferably higher than 480 MPa.
6. An aluminium alloy forged product according to any of claims 1 to 5 characterised in that it is an automotive body-structure part.
7. An aluminium alloy forged product according to any of claims 1 to 6 characterised in that it is an automotive chassis-suspension part.
8. An aluminium alloy forged product according to any of claims 1 to 6 characterised in that it is an automotive suspension arm.
9. A process for manufacturing an aluminium alloy forged product according to any of
claims 1 to 8 comprising the following steps:
a) casting a billet from a 6xxx aluminium alloy comprising:
Si: 0.7-1.3 wt. %; Fe: ≤ 0.5 wt. %; Cu: 0.6-1.0 wt. %; Mn: 0.4-1.0 wt. %; Mg: 0.7-1.0
wt. %; Cr: 0.05-0.25 wt.%; Zr: 0.05-0.2 wt. %; Zn: ≤ 0.2 wt.%; Ti: ≤ 0.2 wt.%, the
rest being aluminium and inevitable impurities;
b) homogenising the cast billet at a temperature TH which is 5°C to 80°C lower than solidus temperature Ts, typically TH in the range of 500-560°C, for a duration between 2 and 10 hours to ensure high level
of dissolution of constituent particles while ensuring precipitation and controlled
coarsening of dispersoid phases;
c) quenching said billet down to room temperature by using water quench system;
d) heating the homogenised billet to a temperature Th between (Ts - 5°C) and (Ts - 125°C);
e) extruding said billet through a die to produce a solid section with an exit temperature(typically
530°C) lower than Ts (typically 550°C) to avoid incipient melting due to non-equilibrium
melting of eutectic phases in profile hot spots but still allowing to dissolve part
of the constituent particles, and with an extruding ratio of at least 8;
f) quenching the extruded product down to room temperature by using water quench system;
g) stretching the extruded product to obtain a plastic deformation typically between
0.5% and 10%, preferably up to 5%;
h) heating cut-to-length extruded rod to forging temperature, typically between 400
and 520°C;
i) forging in heated mould between 150 and 350°C;
j) separate solutionising at a temperature between 530 and 560°C for durations between
2 min. and 1 hour;
k) water quenching the forged and solutionised material down to room temperature;
l) room temperature ageing for a duration between 6 hours and 30 days;
m) ageing to T6 temper by a one-or multiple-step heat treatment at temperatures ranging
from 150 to 200°C for holding times ranging from 2 to 20 hours.
1. Aluminiumlegierungs-Schmiedeerzeugnis, das über folgende Schritte erhalten wird:
a) Gießen eines Knüppels aus einer 6xxx-Aluminiumlegierung, umfassend:
Si: 0,7-1,3 Gew.-%; Fe: ≤ 0,5 Gew.-%; Cu: 0,6-1,0 Gew.-%; Mn: 0,4-1,0 Gew.-%; Mg:
0,7-1,0 Gew.-%; Cr: 0,05-0,25 Gew.-%; Zr: 0,05-0,2 Gew.-%; Zn: ≤ 0,2 Gew.-%; Ti: ≤
0,2 Gew.-%, wobei der Rest Aluminium und unvermeidliche Verunreinigungen sind;
b) Homogenisieren des gegossenen Knüppels bei einer Temperatur TH, die 5 °C bis 80 °C niedriger ist als Solidustemperatur Ts, typischerweise TH im Bereich von 500-560 °C, für eine Dauer zwischen 2 und 10 Stunden, um hohen Auflösungsgrad
von bestandteilbildenden Teilchen bei gleichzeitiger Sicherstellung von Ausfällung
und kontrollierter Vergröberung von Dispersoidphasen sicherzustellen;
c) Abschrecken des Knüppels auf Raumtemperatur hinab durch Verwenden von Wasserabschrecksystem;
d) Erhitzen des homogenisierten Knüppels auf eine Temperatur Th zwischen (Ts - 5 °C) und (Ts - 125 °C);
e) Strangpressen des Knüppels durch eine Matrize, um einen massiven Abschnitt mit
einer Austrittstemperatur (typischerweise 530 °C) von niedriger als Ts (typischerweise
550 °C) zu erzeugen, um einsetzendes Schmelzen aufgrund von ungleichgewichtigem Schmelzen
von eutektischen Phasen in örtlich überhitzten Profilstellen zu vermeiden, aber dennoch
zu ermöglichen, einen Teil der bestandteilbildenden Teilchen aufzulösen, und mit einem
Strangpressverhältnis von mindestens 8;
f) Abschrecken des stranggepressten Erzeugnisses auf Raumtemperatur hinab durch Verwenden
von Wasserabschrecksystem;
g) Recken des stranggepressten Erzeugnisses, um eine plastische Verformung typischerweise
zwischen 0,5 % und 10 %, vorzugsweise bis zu 5 % zu erhalten;
h) Erhitzen von abgelängtem stranggepresstem Stab auf Schmiedetemperatur, typischerweise
zwischen 400 und 520 °C;
i) Schmieden in erhitzter Kokille zwischen 150 und 350 °C;
j) separates Homogenisierungsglühen bei einer Temperatur zwischen 530 und 560 °C für
Dauern zwischen 2 Min. und 1 Stunde;
k) Wasserabschrecken des geschmiedeten und homogenisierungsgeglühten Materials auf
Raumtemperatur hinab;
l) Raumtemperaturauslagern für eine Dauer zwischen 6 Stunden und 30 Tagen;
m) Auslagern auf Werkstoffzustand T6 über eine ein- oder mehrstufige Wärmebehandlung
bei Temperaturen im Bereich von 150 bis 200 °C für Haltezeiten von 2 bis 20 Stunden.
2. Aluminiumlegierungs-Schmiedeerzeugnis nach Anspruch 1, dadurch gekennzeichnet, dass die 6xxx-Aluminiumlegierung umfasst Si: 0,9-1,3 Gew.-%, vorzugsweise 1,1-1,3 Gew.-%.
3. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die 6xxx-Aluminiumlegierung umfasst Mn: 0,5-0,9 Gew.-%, vorzugsweise 0,5-0,7 Gew.-%.
4. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Fe ≤ 0,3 Gew.-%, vorzugsweise ≤ 0,2 Gew.-%.
5. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass seine Zugfestigkeit höher als 400 MPa, vorzugsweise höher als 450 MPa, und stärker
bevorzugt höher als 480 MPa ist.
6. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es ein Kraftfahrzeug-Karosseriestrukturteil ist.
7. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es ein Kraftfahrzeug-Rahmenaufhängungsteil ist.
8. Aluminiumlegierungs-Schmiedeerzeugnis nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es ein Kraftfahrzeugaufhängungsarm ist.
9. Verfahren zur Herstellung eines Aluminiumlegierungs-Schmiedeerzeugnisses nach einem
der Ansprüche 1 bis 8, umfassend die folgenden Schritte:
a) Gießen eines Knüppels aus einer 6xxx-Aluminiumlegierung, umfassend:
Si: 0,7-1,3 Gew.-%; Fe: ≤ 0,5 Gew.-%; Cu: 0,6-1,0 Gew.-%; Mn: 0,4-1,0 Gew.-%; Mg:
0,7-1,0 Gew.-%; Cr: 0,05-0,25 Gew.-%; Zr: 0,05-0,2 Gew.-%; Zn: ≤ 0,2 Gew.-%; Ti: ≤
0,2 Gew.-%, wobei der Rest Aluminium und unvermeidliche Verunreinigungen sind;
b) Homogenisieren des gegossenen Knüppels bei einer Temperatur TH, die 5 °C bis 80 °C niedriger ist als Solidustemperatur Ts, typischerweise TH im Bereich von 500-560 °C, für eine Dauer zwischen 2 und 10 Stunden, um hohen Auflösungsgrad
von bestandteilbildenden Teilchen bei gleichzeitiger Sicherstellung von Ausfällung
und kontrollierter Vergröberung von Dispersoidphasen sicherzustellen;
c) Abschrecken des Knüppels auf Raumtemperatur hinab durch Verwenden von Wasserabschrecksystem;
d) Erhitzen des homogenisierten Knüppels auf eine Temperatur Th zwischen (Ts - 5 °C) und (Ts - 125 °C);
e) Strangpressen des Knüppels durch eine Matrize, um einen massiven Abschnitt mit
einer Austrittstemperatur (typischerweise 530 °C) von niedriger als Ts (typischerweise
550 °C) zu erzeugen, um einsetzendes Schmelzen aufgrund von ungleichgewichtigem Schmelzen
von eutektischen Phasen in örtlich überhitzten Profilstellen zu vermeiden, aber dennoch
zu ermöglichen, einen Teil der bestandteilbildenden Teilchen aufzulösen, und mit einem
Strangpressverhältnis von mindestens 8;
f) Abschrecken des stranggepressten Erzeugnisses auf Raumtemperatur hinab durch Verwenden
von Wasserabschrecksystem;
g) Recken des stranggepressten Erzeugnisses, um eine plastische Verformung typischerweise
zwischen 0,5 % und 10 %, vorzugsweise bis zu 5 % zu erhalten;
h) Erhitzen von abgelängtem stranggepresstem Stab auf Schmiedetemperatur, typischerweise
zwischen 400 und 520 °C;
i) Schmieden in erhitzter Kokille zwischen 150 und 350 °C;
j) separates Homogenisierungsglühen bei einer Temperatur zwischen 530 und 560 °C für
Dauern zwischen 2 Min. und 1 Stunde;
k) Wasserabschrecken des geschmiedeten und homogenisierungsgeglühten Materials auf
Raumtemperatur hinab;
l) Raumtemperaturauslagern für eine Dauer zwischen 6 Stunden und 30 Tagen;
m) Auslagern auf Werkstoffzustand T6 über eine ein- oder mehrstufige Wärmebehandlung
bei Temperaturen im Bereich von 150 bis 200 °C für Haltezeiten von 2 bis 20 Stunden.
1. Produit forgé en alliage d'aluminium obtenu par les étapes suivantes :
a) coulage d'une billette issue d'un alliage d'aluminium 6xxx comprenant :
Si : 0,7 à 1,3 % en poids ; Fe : ≤ 0,5 % en poids ; Cu : 0,6 à 1,0 % en poids ; Mn
: 0,4 à 1,0 % en poids ; Mg : 0,7 à 1,0 % en poids ; Cr : 0,05 à 0,25 % en poids ;
Zr : 0,05 à 0,2 % en poids ; Zn : ≤ 0,2 % en poids ; Ti : ≤ 0,2 % en poids ; le reste
étant de l'aluminium et des impuretés inévitables ;
b) homogénéisation de la billette coulée à une température TH qui est de 5 °C à 80 °C inférieure à la température de solidus Ts, typiquement TH dans la plage de 500 à 560 °C, pendant une durée entre 2 et 10 heures pour assurer
un haut niveau de dissolution de particules constitutives tout en assurant une précipitation
et un grossissement contrôlé de phases dispersoïdes ;
c) trempe de ladite billette jusqu'à température ambiante par l'utilisation d'un système
de trempe à l'eau ;
d) chauffage de la billette homogénéisée à une température Th entre (Ts - 5 °C) et (Ts - 125 °C) ;
e) extrusion de ladite billette à travers une filière pour produire une section solide
de température de sortie (typiquement 530 °C) inférieure à Ts (typiquement 550 °C),
pour éviter une fusion naissante due à une fusion de non-équilibre de phases eutectiques
dans des points chauds de profilé mais en laissant encore une partie des particules
constitutives se dissoudre et avec un rapport d'extrusion d'au moins 8 ;
f) trempe du produit extrudé jusqu'à température ambiante par l'utilisation d'un système
de trempe à l'eau ;
g) étirement du produit extrudé pour obtenir une déformation plastique typiquement
entre 0,5 % et 10 %, de préférence jusqu'à 5 % ;
h) chauffage d'une tige extrudée coupée à la longueur à une température de forgeage,
typiquement entre 400 et 520 °C ;
i) forgeage dans un moule chauffé entre 150 et 350 °C ;
j) mise en solution séparée à une température entre 530 et 560 °C pendant des durées
entre 2 min et 1 heure ;
k) trempe à l'eau de la matière forgée et mise en solution jusqu'à température ambiante
;
l) vieillissement à température ambiante pendant une durée entre 6 heures et 30 jours
;
m) vieillissement au revenu T6 par un traitement à la chaleur en une ou plusieurs
étapes à des températures allant de 150 à 200 °C pendant des temps de maintien allant
de 2 à 20 heures.
2. Produit forgé en alliage d'aluminium selon la revendication 1, caractérisé en ce que ledit alliage d'aluminium 6xxx comprend Si : 0,9 à 1,3 % en poids, de préférence
1,1 à 1,3 % en poids.
3. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 ou
2, caractérisé en ce que ledit alliage d'aluminium 6xxx comprend Mn : 0,5 à 0,9 % en poids, de préférence
0,5 à 0,7 % en poids.
4. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 à
3, caractérisé en ce que Fe ≤ 0,3 % en poids, de préférence ≤ 0,2 % en poids.
5. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 à
4, caractérisé en ce que sa résistance ultime à la traction est supérieure à 400 MPa, de préférence supérieure
à 450 MPa, et de manière davantage préférée supérieure à 480 MPa.
6. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 à
5, caractérisé en ce qu'il s'agit d'une pièce de structure de caisse automobile.
7. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 à
6, caractérisé en ce qu'il s'agit d'une pièce de suspension de châssis automobile.
8. Produit forgé en alliage d'aluminium selon l'une quelconque des revendications 1 à
6, caractérisé en ce qu'il s'agit d'un bras de suspension automobile.
9. Procédé de fabrication d'un produit forgé en alliage d'aluminium selon l'une quelconque
des revendications 1 à 8, comprenant les étapes suivantes :
a) coulage d'une billette issue d'un alliage d'aluminium 6xxx comprenant :
Si : 0,7 à 1,3 % en poids ; Fe : ≤ 0,5 % en poids ; Cu : 0,6 à 1,0 % en poids ; Mn
: 0,4 à 1,0 % en poids ; Mg : 0,7 à 1,0 % en poids ; Cr : 0,05 à 0,25 % en poids ;
Zr : 0,05 à 0,2 % en poids ; Zn : ≤ 0,2 % en poids ; Ti : ≤ 0,2 % en poids ; le reste
étant de l'aluminium et des impuretés inévitables ;
b) homogénéisation de la billette coulée à une température TH qui est de 5 °C à 80 °C inférieure à la température de solidus Ts, typiquement TH dans la plage de 500 à 560 °C, pendant une durée entre 2 et 10 heures pour assurer
un haut niveau de dissolution de particules constitutives tout en assurant une précipitation
et un grossissement contrôlé de phases dispersoïdes ;
c) trempe de ladite billette jusqu'à température ambiante par l'utilisation d'un système
de trempe à l'eau ;
d) chauffage de la billette homogénéisée à une température Th entre (Ts - 5 °C) et (Ts - 125 °C) ;
e) extrusion de ladite billette à travers une filière pour produire une section solide
de température de sortie (typiquement 530 °C) inférieure à Ts (typiquement 550 °C),
pour éviter une fusion naissante due à une fusion de non-équilibre de phases eutectiques
dans des points chauds de profilé mais en laissant encore une partie des particules
constitutives se dissoudre et avec un rapport d'extrusion d'au moins 8 ;
f) trempe du produit extrudé jusqu'à température ambiante par l'utilisation d'un système
de trempe à l'eau ;
g) étirement du produit extrudé pour obtenir une déformation plastique typiquement
entre 0,5 % et 10 %, de préférence jusqu'à 5 % ;
h) chauffage d'une tige extrudée coupée à la longueur à une température de forgeage,
typiquement entre 400 et 520 °C ;
i) forgeage dans un moule chauffé entre 150 et 350 °C ;
j) mise en solution séparée à une température entre 530 et 560 °C pendant des durées
entre 2 min et 1 heure ;
k) trempe à l'eau de la matière forgée et mise en solution jusqu'à température ambiante
;
l) vieillissement à température ambiante pendant une durée entre 6 heures et 30 jours
;
m) vieillissement au revenu T6 par un traitement à la chaleur en une ou plusieurs
étapes à des températures allant de 150 à 200 °C pendant des temps de maintien allant
de 2 à 20 heures.