FIELD OF THE INVENTION
[0001] This invention relates to heat transfer fans, particularly to such fans for use in
conjunction with cooled or heated surfaces, and more particularly, with fossil-fuel
burning stoves.
BACKGROUND OF THE INVENTION
[0002] Heating units such as wood and other fossil-fuel combustible material burning stoves,
hot water radiators and the like disseminate heat into surrounding space by radiation
and by convection of thermal air currents circulating around the unit. Warm air distribution
from the unit may be enhanced by means of an air blower or fan suitably placed on
or adjacent the unit. Presently, such air circulating fans are powered by electric
battery or mains power supply.
[0003] It is known through the so-called "Peltier Effect" that when a direct electric current
is passed through a thermoelectric couple, heat will be absorbed at one end of the
couple to cause cooling thereof, while heat is rejected at the other end of the couple
to cause a rise in temperature. By reversing the current flow, the direction of heat
flow will be reversed.
[0004] Thermoelectric modules are forms of a thermoelectric couple and, typically, comprise
an array of semiconductor couples (P and N pellets) connected electrically in series
and thermally in parallel, sandwiched between metallized ceramic substrates.
[0005] In a reverse manner, by the so-called "Seebeck Thermocouple Effect", a thermoelectric
module behaves like a simple thermocouple in generating an electric potential across
its terminals if a temperature gradient or thermocline is provided across the module
when in an open circuit mode. Thus, electric power is generated as a function of the
temperature difference between both ends of the module.
[0006] Pertinent prior art comprises a demonstration model of a power generation module
powering an air circulation fan disclosed by Tellurex Corporation, Michigan, U.S.A.
The Tellurex Corporation self-powered fan comprises a hot end heat exchanger heated
by a handheld propane torch, electric motor, fan blades, a cold end heat exchanger
and a thermoelectric module sandwiched in thermal contact between the two heat exchangers
and in electric contact with the electric motor. In this demonstration model, the
module is heated by a propane torch to merely demonstrate current generation while
requiring a hand held pyrometer to prevent overheating and destruction of the module.
It is clear from this demonstration model that it could not be satisfactorily and
reliably used to circulate heat from a hot surface, since sufficiently high temperatures
of the hot surface sufficient to provide an effective air circulation effect would
cause the thermoelectric module to simply overheat and be destroyed. Further, the
orientation of the fan and the cool end heat sink are so located relative to the heat
source as to cause passage of the hot gases on the hot side of the thermoelectric
module around and through the cool end heat sink. Thus, the Tellurex Corporation demonstration
model has no practical and reliable utility as a warm air circulating fan if placed
on a heated surface.
[0008] United States Patent No.
5,544,488, issued August 13, 1996 to Reid, Randall H. describes an air circulation fan powered only by a thermoelectric module obtaining
heat available at the heated surface of a heating unit, such as the top of a stove,
can provide useful warm air circulation, notwithstanding the extremely low efficiency
of conversion of thermal energy to electrical energy inherent in the aforesaid Seebeck
Thermocouple Effect. USP
5,544,488 teaches that by judicious selection of components and the physical arrangement of
these components to constitute a hot air circulation fan suitable efficacious warm
air circulation is reliably and safely obtained. Thus, not only is warm air propelled
forward from the unit to provide warm air circulation but that incoming cooler air
pulled by the fan operates to enhance cooling of the heat sink cool end and, when
appropriate, the hot end of the thermocouple module to provide reduced risk of damage
through overheating of the thermocouple module.
[0009] Further, USP
5,544,488 teaches that an air circulation fan powered only by a thermoelectric module cooled
at the cooling surface of a cooling system, such as, for example, provided by ice/water
or a refrigeration system can provide useful air circulation, notwithstanding the
extremely low efficiency of conversion of thermal energy to electrical energy inherent
in the Seebeck Thermocouple Effect. Judicious selection of components and the physical
arrangement of these components to constitute an air circulation fan suitable efficacious
air circulation is reliably and safely obtained.
[0010] There is, however, a need for such self-powered heat transfer fans having improved
performance characteristics.
SUMMARY OF THE INVENTION
[0011] It is an object of the present invention to provide an improved practical air circulation
fan which generates its own electrical power from a temperature difference induced
across distinct members of the fan.
[0012] It is a further object of the present invention to provide an improved air circulation
fan which generates its own electrical power from an external heat source for use
with such heat source, for example a fossil-fuel burning stove.
[0013] It is a yet further object of the present invention to provide an improved fan having
heat transfer means controllable by the cooling assistance of the fan blades.
[0014] These and other advantages and objects of the present invention will become apparent
upon a reading of this specification taken in conjunction with the accompanying drawings.
[0015] Accordingly, the invention provides a self-powered fan for circulating air in combination
with a heat source, said fan comprising a first heat transfer member having a first
heat transfer surface thermally and physically connected with said heat source, electric
motor, fan blades which operably create a first or warm air flow and a second or cooler
air flow, a second heat transfer member having a second heat transfer surface, thermocouple
structure located between said first heat transfer member and said second heat transfer
member, wherein said thermocouple structure co-operable with said motor, said first
heat transfer member and said second heat transfer member, wherein said first heat
transfer member being of suitable material, size, mass and shape as to provide a suitable
temperature gradient between said thermocouple structure and said heat source to operably
allow of such sufficient heat transfer from said first heat transfer member to said
thermocouple structure to generate sufficient power to effect rotation of said blades,
but not to cause thermal damage to said thermocouple structure; and wherein said fan
blades are constructed and arranged to cause a portion of said second air flow to
be drawn past said first heat transfer surface to effect a cooling heat transfer effect
upon said first heat transfer member, the improvement comprising said motor located
on said first transfer member adjacent a side of said thermocouple structure remote
from said second transfer member, whereby said motor does not hinder said second air
flow, and is suitably located as to not be operably thermally damaged by said first
heat transfer member or said heat source.
[0016] In preferred embodiments, the invention provides a self-powered fan for circulating
air in combination with a heat source having a heated surface, said fan comprising:
a base portion having a surface constructed and arranged to contact the heated surface
of the heat source,
a heat transfer portion extending from said base, said heat transfer portion having
first and second ends, said first end being coupled to said base,
a thermoelectric module having first and second end surfaces, said first end surface
being mounted on said second end of said heat transfer portion such that said heat
transfer portion conducts heat to said thermoelectric module,
heat exchange structure mounted on said second end surface of said thermoelectric
module so as to control an amount of heat conducted at the top said thermoelectric
module,
an electric motor electrically coupled to said thermoelectric module, and fan blades
coupled to said electric motor,
wherein said heat transfer portion is constructed and arranged to provide a suitable
temperature gradient between said thermoelectric module and said heat source to allow
sufficient heat transfer from said heat transfer portion to said thermoelectric module
to generate sufficient power to said motor to effect rotation of said blades without
causing thermal damage to said thermoelectric module, said fan blades being constructed
and arranged relative to said base portion and heat transfer portion to cause a portion
of ambient air flow to be drawn past said base portion and heat transfer portion effecting
cooling of said base portion; the improvement comprising said motor suitably located
at said second end of said heat transfer portion adjacent said first end surface of
said thermoelectric module as to not be operably thermally damaged by said heat transfer
portion or said heat source and remote from said second transfer member whereby said
motor does not hinder said second air flow.
[0017] The invention is of particular value when the heat transfer means comprises a base
of the fan which rests upon the top of or is adjacent in contact with a heat source
such as a fossil-fuel burning stove, for instance a coal fired or wood burning stove.
[0018] The fan according to a preferred aspect of the invention is a device to circulate
warmed air from the hot stove surface. The fan uses the difference in temperature
between the hot surface of the stove upon which the fan is resting and the surrounding
air to power the fan. The power is derived by utilizing a thermoelectric module, preferably
consisting of an array of thermocouples. The current generated is used to power a
d.c. motor which operates the fan blades to circulate warm air and maintain the temperature
difference across the thermocouple. The fan draws all of its power from the heated
surface and requires no external electrical power source. Most importantly, the fan
stops, starts and runs automatically and provides variable air circulation in proportion
to the amount of heat provided to the hot side heat exchanger base and resultant thermocline
across the thermocouple module.
[0019] By suitable selection of material and the surface area, size, mass and shape of the
hot end heat exchanger, suitable temperature gradients between the thermocouple module
and the stove can be obtained to operably allow sufficient heat to reach the hot end
of the module, without destroying it, and to generate sufficient power to effect rotation
of the fan blades. Such suitable determination of material, surface area, size, mass
and shape may be readily determined by the skilled person in the art.
[0020] Further, more preferably, the hot end heat exchanger comprises a base, which operatively
abuts the heat source, and a heat conductive member having a length connecting with
the thermocouple for transferring heat thereto. The length of this member is so chosen
as to be sufficient as to provide a suitable temperature gradient between the heat
source and the thermocouple as to effect blade rotation without damage of the thermocouple
by overheating.
[0021] To enhance efficiency of the fan in providing warm air circulation and enhanced safety
in preventing overheating of the thermocouple module, the fan blades are, preferably,
so oriented relative to the hot end heat transfer base as to cause a portion of the
ambient air flow to be drawn past the hot end heat transfer base in order to effect
a cooling heat transfer effect upon the base. Clearly, it can be seen that the greater
the temperature gradient across the module caused by an increase in temperature of
the heated base, the greater the power generated with commensurate fan speed. Increased
fan speed causes faster air flow around the fan and base to enhance cooling of the
latter. Thus, this cooling effect constitutes a useful safety feature.
[0022] Preferably, the axis of rotation of the fan is angularly displaced, most preferably
perpendicularly, to the hot and cold heat transfer means and module.
[0023] Also, preferably, the cool end heat exchanger comprises a plurality of cooling vanes
dissipating heat from the module. It is highly desirable that the vanes are so disposed
relative to the fan blades that the vanes extend through the cool air low stream generated
by the rotation of the fan blades. In one embodiment according to the invention the
cooling vanes are so disposed one vane to another as to take the form of a fan-shaped
array.
[0024] Thus, the fan blades are so shaped and located relative to the module and heat exchange
means as to cause cooler air to pass adjacent to and/or through the heat sink cool
end. In an alternative embodiment of the invention, the fan may have a protective
wire frame or shroud to prevent physical injury, and which also is connected to the
module to act as a cool end heat exchanger to dissipate heat from the module.
[0025] The heat exchanger members of the fan may be formed of any suitable material, such
as a metal or metal alloy, for example of aluminum, copper and iron.
[0026] Hence, fans according to the invention, can provide satisfactory air circulation
when the fan module is operative at a temperature gradient of the order of as low
as 30° C.
BRIEF DESCRIPTION OF THE DRAWINGS
[0027] In order that the invention may be better understood preferred embodiments will now
be described, by way of example only, with reference to the accompanying drawings,
wherein
FIG. 1 represents a schematic isometric view of a prior art thermocouple-powered fan;
FIG. 2 represents a schematic side view of the fan shown in Fig. 1, according to the
prior art;
FIG. 3 represents a schematic side view of the fan shown in Figs. 1 and 2 according
to the prior art on top of a stove with a low fire and showing expected air flows;
FIG. 4 represents a schematic side view of the fan according to the prior art on top
of a stove with a high fire and showing expected air flows;
FIG. 5 represents a schematic isometric view of a thermocouple-powered fan, according
to the invention;
FIG. 6 represents a schematic side view of the fan shown in Fig. 5, according to the
invention;
FIGS. 7 and 7A represent a schematic front view of a fan, in part without blades,
superimposed with a hatched area representing the most effective airflow area and
side view, respectively, according to the prior art;
FIGS. 8 and 8A represent a schematic front view of a fan superimposed with a hatched
area representing the most effective airflow area and side view, respectively, according
to the invention;
FIGS. 9 and 10 represent diagrammatic front views of fans according to the invention
having upper cool heat exchanger units of various shapes and sizes;
FIG. 11 represents graphs of comparative base modular hot side temperatures of fans
according to the prior art (A) and the invention (B);
FIG. 12 represents graphs of comparative power outputs against base temperatures of
fans according to the prior art (A) and the invention (B); and
wherein the same numerals denote like parts.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0028] With reference to Figs. 1 and 2, fan 100 of the prior art exemplified by USP
5,544,488 comprises a TE module 112 (cpl. 0-127-08L Melcor Frigichips, U.S.A.) comprised of
an array of semiconductor couples (P and N pellets) connected electrically in series
and thermally in parallel sandwiched between metallized ceramic substrates 114 and
116 according to the prior art. This module 112 can withstand temperatures only up
to about 80.degree. C. Module 112 has an electrical connection with motor 118, which,
drives fan blades 120, shown in outline only for clarity.
[0029] Fan 100 has a heat transfer member, shown generally as 122 having a rectangular-shaped
base portion 124 having a lower surface 126 in operable contact with a heated surface
of a stove or the like 125. Upstanding from rectangular base member 124 is an integrally
formed vertically aligned planar heat transfer portion 128 upon which is an integrally
formed heat transfer portion 130. Member 122 is, thus, constituted by integrally formed
portions 124, 128 and 130 formed of aluminum. Portion 130 is in thermal communication
with the lower ceramic member 114 of module 112.
[0030] Above module 112 and in thermal communication therewith is a cool end heat exchanger
132 formed of aluminum and consisting of a base 134, connected to module 112, and
an array of vanes 136.
[0031] Portion 128 is so shaped as to provide the necessary heat control of heat from portion
124 to module 112, irrespective of the temperature, within reasonable limits, of the
stove 125 heat source, as hereinafter more fully explained. Stove temperatures of
up to, for example, 500°C may be obtained in practice and acceptable to fans.
[0032] Thus, the mass and shape of base 124 and the distance or length, mass and shape of
128 between base 124 and module 134 is such as to provide a suitable temperature gradient
between base 124 and module 134 as to cause sufficient current generation for desired
fan rotation without damage of module 134 by heat when the heated stove surface 125
is at a temperature of not greater than 500°C.
[0033] Reference is now made to FIGS. 3 and 4, which show fan 100 on top of a stove 125.
[0034] FIG. 3 depicts gentle air circulation created by stove 125 having a low fire and,
thus, low heat transfer therefrom to module 112, via heat transfer member 122. In
this situation, low power generation occurs due to a relatively small thermocline.
Thus, fan 100 produces a gentle air circulation that bends the superheated air from
the convection stream and sends it forwards into the area in front of stove 125. The
airflow is sufficient to bring cool room temperature air through the coolside heat
exchanger to maintain a thermocline across module 112 and produce enough current to
maintain an adequate air circulation. The superheated convection currents are allowed
to pass the base, or hotside heat exchanger and maintain as large a thermocline as
is necessary.
[0035] FIG. 4 depicts air circulation created by stove 125 having a high fire. The increase
in heat provided by the high fire provides more current for fan 100 and the resultant
air passing through fan 100 increases greatly. The superheated air from convection
is now being pushed rapidly across the stovetop and cool room temperature air flows
through the coolside exchanger as in the earlier example, and is also drawn past the
hotside exchanger. This latter process is absolutely critical to the operation of
the unit as it strips heat from the hotside exchanger before it reaches module 112
and keeps module 112 well within operational tolerances with regard to temperature.
Thus, provided that the shape, mass, size and material composition of heat transfer
member 122 is suitable selected, efficient cooling of member 122 by the rapid cool
air flow will prevent excess heat transfer to and damage of module 112.
[0036] It can be seen that motor 118 of fan 100 is located adjacent the cold side of heat
exchanger 132 of module 112, above module 112, i.e. on the side remote from heat transfer
portion 130 in the embodiment shown in Figs. 1 and 2.
[0037] In operation, when fan 100 is placed on a hot surface, commonly a wood stove 125,
heat is transferred to the base 126 from the stove surface and is conducted by stem
128 to the lower module land portion 130 and through thermoelectric module 112 to
the upper module land portion 134 and is dissipated to the surrounding air by vanes
136. This creates an electrical current in module 112 that drives motor 118 and turns
propeller 120 to create the desired warm air flow into the room and to draw the cooler
air from behind stove 125 through vanes 136 to further aid the heat dissipation and
increase current developed in motor 118.
[0038] This arrangement works well enough but has several drawbacks. It is difficult to
assemble as the motor mount, assembly screws, insulators (not shown) and module 112
must all be connected and properly torqued at the same time. Additionally, the upper
exchanger must be designed to maximize the vane surface area where the airflow is
the greatest, which limits the design possibilities, creates a longer path for the
heat to flow from the upper module land 134 to the end of vanes 136 and the fan motor
118 blocks the airflow through the most effective area of the upper heat exchanger.
[0039] With reference now to Figs. 5 and 6 which show, generally as 200, a preferred embodiment
according to the invention, wherein the length of planar heat transfer stem portion
228 is integrally formed with an enlarged heat transfer portion 231 which is in thermal
communication with the lower ceramic member 214 of module 212, itself in communication
with upper ceramic member 216, and, thus, cool end heat exchanger 232 consisting of
base 234 and an array of vanes 236. Lower base 224, stem 228, heat transfer portion
231, upper base 234, and vanes 236 are formed of aluminum.
[0040] Enlarged heat transfer portion 231 has a housing portion which defines a cylindrical
aperture 229, which receives and retains motor 218. This arrangement provides motor
218 to be mounted in the housing portion of the enlarged heat transfer portion 231
below lower module land 230 and, thus, below module 214.
[0041] Thus, motor 218 is located on the side of module 214 remote from cool end heat exchanger
232.
[0042] Cavity 229 in this embodiment is defined as a full depth cylindrical aperture, but
may in less preferred embodiments be a suitably sized and shaped recess. Motor 218
is housed in housing portion 231 by any suitable means (not shown).
[0043] Some advantages provided by the relocation of the motor according to the invention,
includes that the cool heat exchanger 232 facilitates assembly and allows a greater
range of shapes of the upper exchanger to be used, provided exchanger 232 has suitable
surface areas for thermal conductivity and radiation.
[0044] Further, although the location of motor 118 of the aforesaid prior art impedes, somewhat,
the air flows seen in Figs. 3 and 4 through vanes 136, the resultant air turbulence
was thought to enhance the air/vanes heat exchange interaction, as to negate any drop
off in efficiency. However, I have found that relocating motor 218 to the side of
module 214 remote from upper cool heat exchanger 232, results in the airflow through
the latter to be much greater as it is now in line with the most effective area of
the propeller sweep. This
has resulted in an increased temperature drop across module 214 and more power delivered
to motor 218 and enhanced rotational speed of propeller 236. Fig 7 shows the front
view of prior art fan 100 superimposed with a hatched area 301A that shows the most
effective airflow area. Fig. 7a represents a side view of prior art fan 100 with arrows
showing the airflow in cross section. The longer arrows show the most effective airflow
area.
[0045] Fig 8 shows improved design 302 according to the invention with the same hatched
area 301B superimposed. Fig. 8a represents a side view of fan 200 with arrows showing
the airflow in cross section. The longer arrows show the most effective airflow area.
As can be seen, motor 118 blocks the most effective part of the old design upper exchanger
132 whereas the new location of motor 218 of the invention virtually unimpedes the
upper air flows. Additionally, the lesser airflow in the fan 200 is drawn through
and past aperture 229 of motor 218, which cools motor 218 and increases the cooling
of lower exchanger 228.
[0046] In more preferred embodiments of the invention, stem 228 is of a relatively longer
length than heat exchanger stem portion 118 of prior art Fig. 1 embodiment, whilst
other fan dimensions are substantially the same. The longer stem 228 creates a longer
path for the heat to travel to the lower module land 230 and increases the surface
area in consequence of which overheat bimetallic lifters or screws used in the embodiments
of prior art of aforesaid USP
5,544,488 are no longer required. Such bimetallic lifters or screws are required to raise the
fan base from the stove surface when the stove top exceeds the temperature range that
will damage the module, if exceeded. With the preferred stem and motor arrangement
of the present invention and base exchanger, such overheat lifters are no longer required
as enough heat is dissipated from the base and stem to protect the module through
extreme heat.
[0047] Yet further, in preferred embodiments as shown in Figs. 5 and 6, the motor is now
shielded from the direct radiant heat from the stove top and runs much cooler and
prevents the bearings lubrication from drying out as quickly. Motor 218, in preferred
embodiments when located within aperture 229 is protected from overheating from the
heat present in upper stem portion 231, by cool air flow through aperture 229 around
motor 218.
[0048] Another advantage of the fans of the present invention is that any upper heat exchanger
232 can be used without the need to redesign the lower unit 228, providing it has
appropriate conductivity and sufficient swept surface area. Additionally, unit 232
is not limited to extruded parts, but could also use cast pieces to add many more
design categories. Shapes in the form of, for example, birds, flags, flowers and other
sorts of known or abstract shapes is now possible to address different markets. Such
embodiments are shown in Figs. 9 and 10.
[0049] Figure 11 represents comparative graphs of the base temperatures plotted against
the temperatures of the lower module contact surface 130 according to the prior art
(A) and 230 according to the invention (B). It can, surprisingly, be clearly seen
that the module used in the invention fan runs much cooler. At a base temperature
of 302°C the invention fan 200 showed 108°C while prior art fan 100 was at 142°C.
At a base temperature of 148°C the module hot exchanger of the prior art fan reached
170°C. Fan 200 sinks much more heat from the stove surface so that the base could
not be heated beyond 318°C, at which temperature the module side of the heat exchanger
reached 112°C.
[0050] Figure 12 represents comparative graphs of the base temperatures against the power
output from the modules in watts. Both fans carried identical motors. Up to approximately
250°C, the output was virtually the same. However, from that point upwards, surprisingly,
the curves diverge. At a base temperature of 318°C, the prior art fan 100 developed
1.145 watts, while fan 200 developed 1.385 watts, i.e. over 20% higher than the prior
art fan 100. Again, while the test equipment consisted of a 10,000 BTU propane heater,
the base temperature did not rise beyond 318°C in fan 200 as it was stripping the
heat from the test surface. As an aside, it should be noted that the bi-metal overheat
protection strip was not present in fan 100 or the comparative gains would have been
much greater. Although the current generation of TE modules from Tellurix® and Melcor®
company suppliers can withstand 200°C, the motors cannot stand 80°C and the stress
on connectors and the modules is much greater as the temperature rises. Accordingly,
the new fan 200 is, surprisingly, both more powerful and more durable than prior art
fan 100.
[0051] Unexpected benefits resulting from the relocation of the fan motor below the module
and, in preferred embodiments, housed in an aperture in an upper portion of the fan
stem, includes the following.
- 1. The fan blades are now closer to and sweep the entire cooler upper heat exchanger
unit and results in enhanced cool airflow through this unit and resultant higher temperature
drop across the module for improved module efficiency, more power and increased blade
speed;
- 2. The heat path to the lower module is longer and swept by the full length of the
blade so no lifters are required to stay within the limits of the module.
- 3. The motor is protected from the direct radiant heat of the stove and runs cooler.
- 4. The same base can be used for any upper exchanger which will lower production costs
and make a more marketable product.
[0052] Although this disclosure has described and illustrated certain preferred embodiments
of the invention, it is to be understood that the invention is not restricted to those
particular embodiments. Rather, the invention includes all embodiments which are functional
or mechanical equivalence of the specific embodiments and features that have been
described and illustrated.
1. A self-powered fan (200) for circulating air in combination with a heat source (225),
said fan comprising:
a first heat transfer member (228) having a first heat transfer surface (226) which
rests upon, or adjacent to said heat source (225),
an electric motor (218), with fan blades (220) which operably create a first or warm
air flow and a second or cooler air flow,
a second heat transfer member (232) having a second heat transfer surface (234),
a thermocouple module (212) located between said first heat transfer member (228)
and said second heat transfer member (232), wherein said thermocouple module (212)
is co-operable with said motor (218), said first heat transfer member (228) and said
second heat transfer member (232), so as to generate and provide electrical energy
to said motor (218) by a Seebeck Thermocouple Effect,
wherein said first heat transfer member (228) has a size, mass and shape so as to
provide a temperature gradient between said thermocouple module (212) and said heat
source (225) and thereby allow heat transfer from said first heat transfer member
(228) to said thermocouple module (212) in order to generate electrical power for
said motor (218) to be able to effect rotation of said fan blades (220), while avoiding
thermal damage to said thermocouple module (212); and
wherein said fan blades (220) are constructed and arranged to cause a portion of said
second air flow to be drawn past said first heat transfer surface (226) to effect
a cooling heat transfer effect upon said first heat transfer member (228),
characterized in that said motor (218) is located on said first transfer member (228) adjacent a side of
said thermocouple module (212) and remote from said second transfer member, whereby
said motor (218) does not hinder said second air flow, and wherein said thermocouple
module (212) provides more power delivered to said motor (218) to provide enhanced
rotational speed of said fan (200) in order to avoid having said fan motor (218) being
thermally damaged by said first heat transfer member (228) or said heat source (225).
2. A fan (200) as claimed in claim 1 wherein said first heat transfer member (228) defines
a motor- receiving cavity (229), which receives said motor (218).
3. A fan (200) as claimed in claim 2 wherein said cavity (229) is an aperture.
4. A fan (200) as claimed in claim 2 wherein said cavity (229) is a recess.
5. A self-powered fan (200) as claimed in claim 1, wherein:
said first heat transfer member (228) comprises a base portion (224) with a surface
(226) constructed and arranged to contact the heated surface of the heat source (225),
and
a heat transfer portion (228) extending from said base (224), wherein said heat transfer
portion (228) has first and second ends, said first end being coupled to said base
(224),
said thermocouple module (212) comprises a thermoelectric module having first and
second end surfaces, said first end surface being mounted on said second end of said
heat transfer portion (228) of said first heat transfer member (228) such that said
heat transfer portion (228) conducts heat to said thermoelectric module,
said second heat transfer member (232) comprises a heat exchange structure mounted
on said second end surface of said thermoelectric module so as to control an amount
of heat conducted at the top of said thermoelectric module,
an electric motor (218) electrically coupled to said thermoelectric module, and fan
blades (220) coupled to said electric motor (218),
wherein said heat transfer portion (228) of said first heat transfer member (228)
provides a temperature gradient between said thermoelectric module and said heat source
(225) and allows heat transfer from said heat transfer portion (228) to said thermoelectric
module (212) in order to provide power to said motor (218) to effect rotation of said
blades (220), without causing thermal damage to said thermoelectric module, said fan
blades (220) being constructed and arranged relative to said base portion (224) and
heat transfer portion (228) to cause a portion of ambient air flow to be drawn past
said base portion (224) and heat transfer portion (228) effecting cooling of said
base portion (224);
wherein said motor (218) is located at said second end of said heat transfer portion
(228) of said first heat transfer member (228) adjacent said first end surface of
said thermoelectric module (212).
6. A self-powered fan (200) as claimed in claim 5, wherein said heat transfer portion
(228) is constructed and arranged to limit heat transfer from said base portion (224)
to said thermoelectric module (212) such that when said heated surface is at a temperature
of 500°C or less, the temperature of said module will not exceed the operating temperature
of the module or the motor (218).
7. A fan (200) as claimed in claim 5 wherein said heat transfer portion (228) adjacent
said second end defines a motor-receiving cavity (229), which receives said motor
(218).
8. A fan (200) as claimed in claim 7, wherein said cavity (229) is an aperture.
9. A fan (200) as claimed in claim 7, wherein said cavity (229) is a recess.
1. Gebläse mit Eigenantrieb (200) zum Umwälzen von Luft in Kombination mit einer Wärmequelle
(225), wobei das genannte Gebläse Folgendes aufweist:
ein erstes Wärmeübertragungselement (228), das eine erste Wärmeübertragungsfläche
(226) hat, die auf oder neben der genannten Wärmequelle (225) ruht,
einen Elektromotor (218) mit Gebläseflügeln (220), die funktionell einen ersten oder
warmen Luftstrom und einen zweiten oder kühleren Luftstrom erzeugen,
ein zweites Wärmeübertragungselement (232), das eine zweite Wärmeübertragungsfläche
(234) hat,
ein Thermoelementmodul (212), das zwischen dem genannten ersten Wärmeübertragungselement
(228) und dem genannten zweiten Wärmeübertragungselement (232) liegt, wobei das genannte
Thermoelementmodul (212) zum Zusammenwirken mit dem genannten Motor (218), dem genannten
ersten Wärmeübertragungselement (228) und dem genannten zweiten Wärmeübertragungselement
(232) gebracht werden kann, um durch einen thermoelektrischen Seebeck-Effekt elektrische
Energie zu erzeugen und dem genannten Motor (218) zuzuführen,
wobei das genannte erste Wärmeübertragungselement (228) eine Größe, Masse und Form
hat, um ein Temperaturgefälle zwischen dem genannten Thermoelementmodul (212) und
der genannten Wärmequelle (225) bereitzustellen und dadurch die Wärmeübertragung von
dem genannten ersten Wärmeübertragungselement (228) zu dem genannten Thermoelementmodul
(212) zuzulassen, um elektrische Energie für den genannten Motor (218) zu erzeugen,
um die Drehung der genannten Gebläseflügel (220) bewirken zu können, während eine
thermische Beschädigung des genannten Thermoelementmoduls (212) vermieden wird; und
wobei die genannten Gebläseflügel (220) konstruiert und angeordnet sind, um zu veranlassen,
dass ein Teil des genannten zweiten Luftstroms an der genannten ersten Wärmeübertragungsfläche
(226) vorbeigezogen wird, um eine kühlende Wärmeübertragungswirkung auf das genannte
erste Wärmeübertragungselement (228) zu bewirken,
dadurch gekennzeichnet, dass der genannte Motor (218) sich auf dem genannten ersten Übertragungselement (228)
neben einer Seite des genannten Thermoelementmoduls (212) und von dem genannten zweiten
Übertragungselement entfernt befindet, so dass der genannte Motor (218) den genannten
zweiten Luftstrom nicht hindert und wobei das genannte Thermoelementmodul (212) mehr
Energie bereitstellt, die zu dem genannten Motor (218) geliefert wird, um eine erhöhte
Drehzahl des genannten Gebläses (200) bereitzustellen, um zu vermeiden, dass der genannte
Gebläsemotor (218) durch das genannte erste Wärmeübertragungselement (228) oder die
genannte Wärmequelle (225) thermisch beschädigt wird.
2. Gebläse (200) nach Anspruch 1, wobei das genannte erste Wärmeübertragungselement (228)
einen Motoraufnahmehohlraum (229) definiert, der den genannten Motor (218) aufnimmt.
3. Gebläse (200) nach Anspruch 2, wobei der genannte Hohlraum (229) eine Öffnung ist.
4. Gebläse (200) nach Anspruch 2, wobei der genannte Hohlraum (229) eine Aussparung ist.
5. Gebläse mit Eigenantrieb (200) nach Anspruch 1, wobei:
das genannte erste Wärmeübertragungselement (228) einen Basisteil (224) mit einer
Oberfläche (226) aufweist, die konstruiert und angeordnet ist, um mit der beheizten
Oberfläche der Wärmequelle (225) in Kontakt zu sein, und
ein Wärmeübertragungsteil (228) sich von der genannten Basis (224) erstreckt, wobei
der genannte Wärmeübertragungsteil (228) ein erstes und ein zweites Ende hat, wobei
das genannte erste Ende mit der genannten Basis (224) gekoppelt ist,
das genannte Thermoelementmodul (212) ein thermoelektrisches Modul aufweist, das eine
erste und eine zweite Endfläche hat, wobei die genannte erste Endfläche an dem genannten
zweiten Ende des genannten Wärmeübertragungsteils (228) des genannten ersten Wärmeübertragungselements
(228) montiert ist, so dass der genannte Wärmeübertragungsteil (228) Wärme zu dem
genannten thermoelektrischen Modul leitet,
das genannte zweite Wärmeübertragungselement (232) eine Wärmeaustauschkonstruktion
aufweist, die an der genannten zweiten Endfläche des genannten thermoelektrischen
Moduls montiert ist, um eine an der Oberseite des genannten thermoelektrischen Moduls
geleitete Wärmemenge zu regeln,
ein elektrischer Motor (218) elektrisch mit dem genannten thermoelektrischen Modul
gekoppelt ist und die genannten Gebläseflügel (220) mit dem genannten Elektromotor
(218) gekoppelt sind,
wobei der genannte Wärmeübertragungsteil (228) des genannten ersten Wärmübertragungselements
(228) ein Temperaturgefälle zwischen dem genannten thermoelektrischen Modul und der
genannten Wärmequelle (225) bereitstellt und die Wärmeübertragung von dem genannten
Wärmeübertragungsteil (228) auf das genannte thermoelektrische Modul (212) zulässt,
um den genannten Motor (218) mit Energie zu versorgen, um die Drehung der genannten
Flügel (220) zu bewirken, ohne an dem genannten thermoelektrischen Modul eine thermische
Beschädigung zu verursachen, wobei die genannten Gebläseflügel (220) relativ zu dem
genannten Basisteil (234) und Wärmeübertragungsteil (228) konstruiert und angeordnet
sind, um zu veranlassen, dass ein Teil des Umgebungsluftstroms an dem genannten Basisteil
(224) und Wärmeübertragungsteil (228) vorbeigezogen wird, was die Kühlung des genannten
Basisteils (224) bewirkt;
wobei der genannte Motor (218) sich an dem genannten zweiten Ende des genannten Wärmeübertragungsteils
(228) des genannten ersten Wärmeübertragungselements (228) neben der genannten ersten
Endfläche des genannten thermoelektrischen Moduls (212) befindet.
6. Gebläse mit Eigenantrieb (200) nach Anspruch 5, wobei der genannte Wärmeübertragungsteil
(228) konstruiert und angeordnet ist, um die Wärmeübertragung von dem genannten Basisteil
(224) auf das genannte thermoelektrische Modul (212) zu begrenzen, so dass, wenn die
genannte beheizte Oberfläche auf einer Temperatur von 500°C oder weniger ist, die
Temperatur des genannten Moduls die Betriebstemperatur des Moduls oder des Motors
(218) nicht übersteigt.
7. Gebläse (200) nach Anspruch 5, wobei der genannte Wärmübertragungsteil (228) neben
dem genannten zweiten Ende einen Motoraufnahmehohlraum (229) definiert, der den genannten
Motor (218) aufnimmt.
8. Gebläse (200) nach Anspruch 7, wobei der genannte Hohlraum (229) eine Öffnung ist.
9. Gebläse (200) nach Anspruch 7, wobei der genannte Hohlraum (229) eine Aussparung ist.
1. Ventilateur autonome (200) pour faire circuler l'air en combinaison avec une source
de chaleur (225), ledit ventilateur comprenant :
un premier élément de transfert de chaleur (228) ayant une première surface de transfert
de chaleur (226) qui s'appuie sur, ou est adjacente à ladite source de chaleur (225),
un moteur électrique (218), avec des pales de ventilateur (220) qui créent de manière
opérationnelle un premier flux d'air, ou chaud, et un deuxième flux d'air, ou plus
frais,
un deuxième élément de transfert de chaleur (232) ayant une deuxième surface de transfert
de chaleur (234),
un module à thermocouple (212) localisé entre ledit premier élément de transfert de
chaleur (228) et ledit deuxième élément de transfert de chaleur (232), ledit module
à thermocouple (212) étant apte à fonctionner conjointement avec ledit moteur (218),
ledit premier élément de transfert de chaleur (228) et ledit deuxième élément de transfert
de chaleur (232), de sorte à générer et à fournir de l'énergie électrique audit moteur
(218) en vertu d'un effet de thermocouple Seebeck,
dans lequel ledit premier élément de transfert de chaleur (228) a une taille, une
masse et une forme de sorte à fournir un gradient de température entre ledit module
à thermocouple (212) et ladite source de chaleur (225) et à permettre par conséquent
un transfert de chaleur à partir dudit premier élément de transfert de chaleur (228)
vers ledit module à thermocouple (212) dans le but de générer de l'énergie électrique
pour ledit moteur (218) pour qu'il soit apte à effectuer la rotation desdites pales
de ventilateur (220), tout en évitant un endommagement thermique sur ledit module
à thermocouple (212) ; et
dans lequel lesdites pales de ventilateur (220) sont construites et agencées de façon
à obliger une portion dudit deuxième flux d'air à être aspirée par devant ladite première
surface de transfert de chaleur (226) afin d'effectuer un effet de transfert de chaleur
refroidissant sur ledit premier élément de transfert de chaleur (228),
caractérisé en ce que ledit moteur (218) est localisé sur ledit premier élément de transfert de chaleur
(228) en position adjacente à un côté dudit module à thermocouple (212) et éloigné
dudit deuxième élément de transfert, en vertu de quoi ledit moteur (218) n'entrave
pas ledit deuxième flux d'air, et dans lequel ledit module à thermocouple (212) fournit
davantage d'énergie délivrée audit moteur (218) pour procurer une vitesse de rotation
améliorée dudit ventilateur (200) afin d'éviter que ledit moteur de ventilateur (218)
ne soit endommagé thermiquement par ledit premier élément de transfert de chaleur
(228) ou ladite source de chaleur (225).
2. Ventilateur (200) tel que revendiqué dans la revendication 1, dans lequel ledit premier
élément de transfert de chaleur (228) définit une cavité réceptrice de moteur (229)
qui reçoit ledit moteur (218).
3. Ventilateur (200) tel que revendiqué dans la revendication 2, dans lequel ladite cavité
(229) est une ouverture.
4. Ventilateur (200) tel que revendiqué dans la revendication 2, dans lequel ladite cavité
(229) est un évidement.
5. Ventilateur autonome (200) tel que revendiqué dans la revendication 1, dans lequel
:
ledit premier élément de transfert de chaleur (228) comprend une portion base (224)
avec une surface (226) construite et agencée de façon à se mettre au contact de la
surface chauffée de la source de chaleur (225), et
une portion transfert de chaleur (228) qui s'étend à partir de ladite base (224),
ladite portion transfert de chaleur (228) ayant des première et deuxième extrémités,
ladite première extrémité étant couplée à ladite base (224),
ledit module à thermocouple (212) comprend un module thermo-électrique ayant des première
et deuxième surfaces d'extrémité, ladite première surface d'extrémité étant montée
sur ladite deuxième extrémité de ladite portion transfert de chaleur (228) dudit premier
élément de transfert de chaleur (228) de telle sorte que ladite portion transfert
de chaleur (228) conduise la chaleur vers ledit module thermo-électrique,
ledit deuxième élément de transfert de chaleur (232) comprend une structure d'échange
de chaleur montée sur ladite deuxième surface d'extrémité dudit module thermo-électrique
de sorte à contrôler une quantité de chaleur conduite à la partie supérieure dudit
module thermo-électrique,
un moteur électrique (218) couplé électriquement audit module thermo-électrique, et
des pales de ventilateur (220) couplées audit moteur électrique (218),
dans lequel ladite portion transfert de chaleur (228) dudit premier élément de transfert
de chaleur (228) fournit un gradient de température entre ledit module thermo-électrique
et ladite source de chaleur (225) et permet un transfert de chaleur à partir de ladite
portion transfert de chaleur (228) vers ledit module thermo-électrique (212) dans
le but de fournir de l'énergie audit moteur (218) pour effectuer la rotation desdites
pales (220) sans causer un endommagement thermique sur ledit module thermo-électrique,
lesdites pales de ventilateur (220) étant construites et agencées relativement à ladite
portion base (224) et la portion transfert de chaleur (228) de façon à obliger une
portion du flux d'air ambiant à être aspirée par devant ladite portion base (224)
et la portion transfert de chaleur (228) effectuant un refroidissement de ladite portion
base (224) ;
dans lequel ledit moteur (218) est localisé au niveau de ladite deuxième extrémité
de ladite portion transfert de chaleur (228) dudit premier élément de transfert de
chaleur (228) adjacente à ladite première surface d'extrémité dudit module thermo-électrique
(212).
6. Ventilateur autonome (200) tel que revendiqué dans la revendication 5, dans lequel
ladite portion transfert de chaleur (228) est construite et agencée de façon à limiter
le transfert de chaleur à partir de ladite portion base (224) jusqu'audit module thermo-électrique
(212) de telle sorte que, lorsque ladite surface chauffée se trouve à une température
de 500° C ou moins, la température dudit module ne dépassera pas la température d'exploitation
du module ou du moteur (218).
7. Ventilateur (200) tel que revendiqué dans la revendication 5, dans lequel ladite portion
transfert de chaleur (228) adjacente à ladite deuxième extrémité définit une cavité
réceptrice de moteur (229) qui reçoit ledit moteur (218).
8. Ventilateur (200) tel que revendiqué dans la revendication 7, dans lequel ladite cavité
(229) est une ouverture.
9. Ventilateur (200) tel que revendiqué dans la revendication 7, dans lequel ladite cavité
(229) est un évidement.