FIELD OF THE INVENTION
[0001] The present invention relates to a construction structure or system with strengthening
anchoring device in a construction for strengthening same, actually in the industry
of strengthening existent structures.
BACKGROUND OF THE INVENTION
[0002] At first, existing old structures, like bridges, buildings, silos, need strengthening
in order to sustain the increasing demand loads or new design codes. In addition,
some of the existing structures are deteriorated due to their age or environmental
conditions resulting in that they need strengthening as well.
[0003] Many so-called R/C Reinforced Concrete structures need strengthening because they
were built according to old seismic codes, thereby not meeting the requirements of
new codes. The reason may also be that they are damaged after a strong earthquake
sequence. One of the basic parameters of strengthening using so-called FRP -fiber
reinforced polymer- layers externally, is the efficient anchorage of these polymer
sheets to the concrete parts for the desired transfer of the tensile forces that develope
on these layers. Thus the satisfactory behaviour of the anchorage scheme becomes very
important since said FRP layers can withstand by themselves a high level of tensile
forces. An effective anchorage of the FRP layers can be used to exploit the strengthening
potential of such FRP layers and to prevent the neutralization of the FRP layers strengthening
contribution that would result from the premature failure of their anchoring.
[0004] Besides, structural members such as walls, beams or columns, in buildings or bridges,
or other structural systems are often required to resist uplifting tensile forces
and bending moments resulting from overturning actions caused by loads imposed on
the structure due to its occupancy or external environmental actions, especially from
the lateral loads of strong wind and earthquakes. There is a large inventory of old
infrastructures that require repair or strengthening, rehabilitation or retrofit to
restore or enhance their load carrying capacities to a required performance level,
in order to ensure their safe use and operation.
[0005] A practical and promising means to increase the tensile load or bending moment capacity
of a structural member consists in adding external surfaced bonded reinforcing materials
thereto. Thin steel plates or sheets were used for this purpose in the past. More
recently since the 1990s, FRP sheets have been proved to be an attractive alternative
to steel plates. The FRP alternatives are typically of the types of carbon (CFRP),
glass (GFRP) or aramid (AFRP) fiber reinforced polymers. Even more recently, steel
reinforced polymers (SRP) have been introduced as a further alternative material type.
All material types above have the advantages of high strength, light weight and excellent
corrosion resistance compared to conventional reinforcing steel.
[0006] The strengthening of a structure by means of a FRP reinforcing device may consist
in bonding FRP sheets to the surface of the structural member by applying epoxy or
other adhesives. At the boundaries of the structural member to its supporting member
or foundation, the load carried by the FRP sheets must be transferred safely to said
supporting member or foundation. Consequently, an anchoring device is incorporated
in order to transfer this load suitably for insuring the effectiveness of the strengthening
system.
PRIOR ART
[0008] In the past, anchoring devices were yet introduced for the aforementioned purpose.
A well known anchoring device consists of an L-shaped angle anchor, wherein the first
leg is parallel to the FRP reinforced structural member and the other leg is parallel
to the surface of the supporting element. The FRP sheet is wrapped around the outer
surfaces of both legs. Reference is made here to
Hall et al. III "Ductile Anchorage for Connecting FRP Strengthening of Under-Reinforced
Masonry Buildings" in Journal of Composites of Construction, ASCE, February 2002,
3-10. The main disadvantage of this anchoring device is focused on the eccentricity between
the loading direction and the hold down of the L-shaped angle. Indeed, it generates
a large out-of-plane distortion of the FRP sheet from its loading plane, which finally
leads to a reduced load carrying capacity of the strengthening scheme, especially
under cyclic load loadings.
[0011] There is thus a need for incorporating an improved anchoring device or system providing
safety and trust in the load transfer mechanism which improves the strengthening of
existing structures.
[0012] GB 2 163 473 A of CEE PAPWORTH LIMITED teaches the provision of an anchoring device and a respective
strap, for strengthening a structure. However it is neither disclosed that the reinforcing
sheet is bonded on the supported structure nor that the anchor extends over the whole
width of said reinforcing sheet.
[0013] DE 299 24 305 U1 of BILFINGER BERGER AG yet discloses an anchoring system for reinforcing sheets,
however said reinforcing sheet is for reinforcing a slab and to anchor said reinforcing
sheet to an outer wall.
US2005/252142A1 discloses an anchoring device for transmitting tensional forces with the help of
a sheet.
OBJECT OF THE INVENTION
[0014] The present invention aims at remedying the drawbacks set out above, thereby further
improving the resistance of a structure by providing an anchoring device for a surface
bonded sheet, in particular a construction system for strengthening an existing structure
with tension sheets made of FRP provided in the direction of extension of said existing
structure and a respective anchoring device.
SUMMARY OF THE INVENTION
[0015] For this purpose, it is proposed according to the present invention a constructive
arrangement consisting of a construction structure as defined in main claim 1, thereby
comprising at least one structural member, resp. support element connectively cooperating
with each other, further comprising at least one anchoring device, wherein said structural
member is supported on said support element by its bottom surface, its adjoining lateral
surfaces extending therefrom along a longitudinal axis thereof. Said construction
structure is remarkable in that it further comprises sheet means for connectively
securing said mutual connectively cooperation between said structural member and said
support element, which is delimitated by a bottom, top and a pair of lateral sides.
At said top side, it has bonding means for bonding said sheet means at its top side
onto said active lateral surface of said structural member so that said sheet is connected
with said structural element. Said sheet means is connected at its opposite bottom
side to said structural element by actively cooperating therewith, by means of said
anchoring device. The latter consists of a holder means extending at least over the
whole bottom side of said sheet and of fastening means for anchoring said holder means
to said support element, in order to improve its resistance by resisting additional
forces.
[0016] Said sheet means is thus connectively cooperating with said structural support element
in order to transfer the additional forces onto said structural support element. Said
additional forces are essentially tensile forces that are all directed in one single
direction which is oriented longitudinally defined as the length direction of said
sheet, wherein said holder means is located substantially in a tangent plane of the
sheet bottom edge.
[0017] There is thus provided thanks to the invention an anchoring device, wherein firstly
said sheet is bonded onto the structural member of said constructive arrangement in
order to improve its resistance by resisting additional forces, and secondly anchored
to a structural support element thereof in order to transfer the additional forces
onto said structural support element. The developed forces are transferred from the
bonded sheet to the supporting member, such as a foundation, in a safe and easily
predictable manner. Remarkably, said shaft means of the anchoring device extends substantially
in a plane of the sheet, which allows improving the resistance of the construction
structure which thus gets reinforced thanks to the invention. The anchoring device
is thus used for strengthening applications, like transferring new forces due to the
strengthening scheme.
[0018] Said additional forces being essentially tensile forces all in one single direction
being defined as the length of said sheet, said system proposed according to the invention
is remarkable in that said anchoring device consists in a
shaft extending at least over the whole width of said sheet and a fastening means aimed
to lock said
shaft to said structural element, and in that the
shaft is substantially in the plane of the sheet.
[0019] According to an advantageous embodiment of the construction structure according to
the invention, said anchoring device is arranged in an elastically and plastically
deformable bonding assembly with said sheets so that said device has an elastic-plastic
behaviour. This results in that the stress distribution in said device and in said
sheet in the working situation is significantly better than the stress distribution
in said device and in said sheet immediately after its installation on said construction
structure. Thanks to this embodiment, the stress is distributed over the whole device
and sheet, so that the stress differences are smaller, and thus the maximal values
of stress are smaller as well.
[0020] The anchoring device included in a construction system according to the invention
thus allows combining the two characteristics to secure anchoring of the strengthening
scheme and of its elastic-plastic behaviour, thus defining a so-called Hybrid Anchoring
Device abridged hereinafter as "H.A.D."
[0021] According to a particular embodiment of the arrangement of the invention, said holder
means of the anchoring device consists of a shaft, preferably a cylinder, thus allowing
said sheet means to be wrapped around said holder means smoothly and fairly uniformly.
[0022] According to an advantageous embodiment of the invention, said sheet is wrapped around
said shaft with a solid section or consisting of a tube with a circular outer surface,
in particular arranged horizontally, i.e. extending substantially in parallel to said
support element, and having its said fastening means provided along the longitudinal
axis thereof, for providing a smooth contact with the reinforcing sheet passing around
it, in particular wherein said sheet is wrapped around said rod.
[0023] According to a further particular embodiment of the invention, said fastening means
consist in lock-down fixation means provided at each end of said holder means, more
particularly a vertical anchor bolt or cylinder
shaft e.g. of steel, mounted through the centre thereof, which is held securely by said
lock-down means which, in turn, is embedded or anchored in the structural support
member.
[0024] According to a still further particular embodiment of the invention, said bonding
means consist of a bonding strip, in particular extending in parallel to said holder
means.
[0025] According to a preferred embodiment of the invention, said sheet means is a reinforcement
sheet, in particular made of a fiber reinforced polymer.
[0026] According to a further preferred embodiment of the invention, said fibers are carbon,
glass or aramid fibers.
[0027] According to an alternative embodiment of the invention, said fibers are steel fibers.
[0028] According to a further alternative embodiment of the invention, said reinforcing
sheet is made of steel.
[0029] According to a still further embodiment of the invention, said sheet is a plate or
a shell.
[0030] According to an additional embodiment of the invention, it further comprises a steel
plate for pressing the reinforcing sheet on said support element or on said structural
member. It may exist a metallic or non metallic plate which pushes the reinforcing
sheet onto the structural element's surface.
[0031] Said composite or steel or other metallic or non-metallic material, reinforcing sheet,
plate or shell is bonded to the surface of the structural member, and optionally,
to the supporting member, and it passes underneath the outer circular surface of the
tube or shaft by wrapping it or just bonding it.
[0032] According to a specific embodiment of the construction structure according to the
invention, its constructive members may have an overall block shape, with the top
one being elongated and extending substantially upright along said longitudinal axis.
The bottom one may have a flattened profile, both in a mutually aligned arrangement.
[0033] According to a further specific embodiment of the invention, it is substantially
symmetrical, particularly respective a central plane of symmetry extending substantially
upright so as to include said longitudinal axis, thereby defining at least two symmetrical
parts, each including one said anchoring device actively connecting elastically said
constructive members within each said symmetrical part.
[0034] To summarize, thanks to the anchoring device according to the invention, two features
are remarkably combined: the secure anchoring of the strengthening scheme and the
elastic-plastic behaviour of the anchoring device, wherein this behaviour could be
achieved by the yieldingness of the metallic or non-metallic materials which are the
horizontal shaft and basically the lock-down means. Due to this behaviour, the stress
distribution on the composite or steel or other metallic or non-metallic material,
reinforcing sheet, plate or shell is becoming more distributed, which results in a
better use of the composite material. Finally, by using the so-called Hybrid Anchoring
Device, an elastic strengthening method is becoming inelastic, more ductile.
[0035] In addition to providing a self-centering anchoring device which eliminates the eccentricity
problem, the invention thus allows the composite, metallic or non-metallic materials
to fully utilize their high strength without premature failure. As a consequence,
the present invention allows solving the problem of anchoring externally bonded composite,
steel or other materials, metallic or non metallic, to structural support elements
in concrete or steel. It enables the developed forces to be transported on said latter
materials, composite or steel or other metallic or non metallic materials, to healthy
concrete or steel blocks.
[0036] The present invention thus combines the use of a reinforcement sheet with an anchoring
device with an inelastic behaviour due to the yielding either of said holder means
or of said fastening means.
[0037] Thanks to the invention, there is thus provided an anchoring device allowing an easy
installation, without the need to employ new or advanced technology to manufacture
or use.
[0038] A further notable advantage of the invention consists in its fairly universal profile
enabling the application of the anchoring mechanism to a wide variety of structures,
which may be made of quite different materials and shapes, such as reinforced concrete,
steel or masonry structures, structural members with a flat surface, such as straight
walls and square columns, and structural members with a curved surface, such as curved
walls and circular columns.
[0039] According to a useful embodiment of the invention, said structure is an existing
structure, and said sheet a reinforcement sheet.
[0040] The present invention also relates to an anchoring method for a surface bonded sheet
for improving the resistance of a structure, wherein said sheet is bonded onto the
surface of a structural member of said structure in order to improve its resistance
by resisting additional forces, and anchored to a structural element of said structure
in order to transfer the additional forces onto said structural element, wherein said
additional forces are essentially tensile forces all in one single direction being
defined as the length of said sheet. Said method is remarkable in that a
shaft extending at least over the whole width of said sheet is locked to said structural
element by a fastening means, and in that the
shaft is substantially in the plane of the sheet.
[0041] According to a preferred embodiment of the method according to the invention, the
rod, the fastening means and the sheet once assembled are elastically and plastically
deformed in such a way that the stress distribution in said rod, fastening means and
sheet in the working situation is significantly better than the stress distribution
in said rod, fastening means and sheet immediately after its installation on said
structure.
[0042] In this respect, and according to a yet preferred embodiment of the method of the
invention, said stress distribution is first measured in said working situation of
said device and afterwards immediately after its installation on said structure, both
being compared.
[0043] Further features and properties of the device and the anchoring method will emerge
from the following description in detail of some embodiments of the invention, which
are illustrated with the aid of the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0044]
Fig. 1 is a perspective view of a construction system with an anchoring device of
the invention with a sheet bonded to a vertical structural member thereof.
Fig. 3 is a cross sectional view of an embodiment as shown in the latter Fig. 2 in
a connective relationship, taken along a vertical longitudinal plane thereof.
Fig. 4 is a similar side view of said embodiment of the invention as in both previous
figures showing sections of the sheet.
Fig. 5 is a further enlarged perspective view of the embodiment as shown in Fig. 2,
under a different observation angle.
Fig. 6 is an experimental setup of the overall arrangement according to the invention
as shown in Fig. 1.
Fig. 7 shows results as displayed on an experimental graph with 100% capacity increase
thereof.
Fig. 8 and 9 show the Hybrid Anchoring Device (H.A.D.) according to the invention
with a different orientation.
Fig. 10 shows another application of said Hybrid Anchoring Device according to the
invention for shear strengthening of structural members.
DESCRIPTION OF THE INVENTION
[0045] The present invention generally relates to a construction system comprising an anchoring
device for strengthening structures, wherein conventional structural reinforcing materials
are used. The surface reinforcing agent is e.g. a surface reinforcing sheet 3. It
could be a plate or a shell as well. Its composition may be of non-metal or metal.
The structural reinforcing material is preferably made of composite materials known
as FRP.
[0046] Fig. 1 shows a preferred embodiment of said construction system incorporating said
anchoring device 4 wherein the developed load is transferred from the FRP sheet 3
to a supporting member or foundation 6, through the anchoring device 4. The main advantage
thereof is that said anchoring device 4 offers a confident prediction and a safe transfer
of the forces.
[0047] Said sheet 3 is bonded to the surface of the strengthening structural member 5 shown
vertical in Fig. 1 e.g. by epoxy or any other conventional bonding materials. The
anchoring device 4 is thus attached to the supporting member 6.
[0048] Fig. 2 shows an enlarged detailed view of said anchoring device 4 for providing structural
reinforcement with said composite FRP sheet 3. Said sheet 3 is wrapped around the
outer surface of a horizontal holder means 1 consisting of a shaft, preferably circular,
thus transferring the load carried by said sheet 3 to the anchoring device 4 and further
through its fastening means 2. The latter consist of bolts engaged vertically in corresponding
holes 8, e.g. metallic bolts. Said load is thus transferred to the supporting member
6 or foundation. Said holder means 1 may also consist of a tube, e.g. cylindrical.
[0049] Typically, the structural member 5 is a concrete or steel structural element, while
the supporting member 6 is a foundation, also composed of concrete or steel. Upon
applying tensile load to the sheet 3, the resultant action of the applied FRP load
and the interface shear force provided by the epoxy bond 7 of the sheet 3 to the structural
member 5 and supporting member 6 is parallel to said horizontal holder 1, resulting
in a complete utilization of the sheet's mechanical properties.
[0050] In other words, the sheet 3 is transferring the forces to the horizontal circular
holder 1, which in turn is transferring those forces to said fastening means 2 of
the anchoring device 4. Said fastening means 2 may also consist of a pair of rods
2 arranged vertically through the shaft 3 and acting as vertical anchors 2 for said
device 4, which may be made of non metal as well. Finally, those vertical anchors
2 are transferring those forces to the supporting structural element or foundation
6 as shown in Fig. 1.
[0051] As a consequence, there is a tendency of pull out of the vertical bolts or rod 2
acting as anchors. This tendency is avoided by the safe and proper embedment of said
anchors 2 in the concrete or steel blocks 6 as shown in Fig. 3. The appropriate depth,
resp. diameter of the receiving holes 8 opened in the top face of the supporting structural
element or foundation 6 for anchoring said fastening means 2, is determined by the
analysis and the design of the strengthening scheme. The vertical anchors 2 can be
either steel or other metallic bolts, or even regular structural reinforcing bars.
The anchoring can be established with the use of an epoxy material which is placed
between the vertical anchors 2 and the foundation 6. Alternatively, it may also be
achieved with mechanical means like welding or screwing and the like.
[0052] Also referring to Fig. 4, the developed forces may thus be considered as acting parallel
to said composite sheet 3 as well as to the Hybrid Anchoring Device 4 abridged as
HAD, which results in a both safe and easy prediction. Also this arrangement of the
forces results in the safe and easy fabrication of the strengthening scheme.
[0053] The anchoring device 4 is illustrated with the following strengthening example of
a vertical structural member 5.
[0054] The design load of the anchoring device 4 is the load that the CFRP sheet 3 applies
thereto 4 in a vertical structural element 5 loaded at the top by a lateral force.
The dimensions of the anchoring device 4 are selected so that the maximum stress therein
4 under the design load does not exceed the yield stress of the material thereof 4.
[0055] The anchoring device 4 also shown under a different observation angle in Fig. 5 is
designed by using Mechanics of Material simple laws. As a result, a 40 mm diameter
steel horizontal solid shaft 1 is chosen with 18 mm diameter vertical steel bolts
2. The thickness of the CFRP sheet 3 is equal to 0,34 mm. The design of the strengthening
scheme is done in a way that the CFRP will fail. In this way, the maximum capacity
of the CFRP will be utilized. The diameter of the steel horizontal shaft 1 may vary
between 10 mm and 200 mm according to overall capacity that is demanded by the design
of the strengthening scheme. This diameter range may be bigger or smaller in accordance
with the needs as well as for the vertical steel bolts 2 and the CFRP 3.
[0056] The properties of the vertical concrete structural element 5 are not mentioned. It
is the mean of testing the behaviour of the anchoring device 4.
[0057] Fig. 6 shows an example of the experimental setup thereof. It consists in a baseplate
6 about 1 m in square and 300 mm thick on which a structural member 5 is fixed, about
1400 mm long, and with a 500 mm square section. Hydraulic pistons 11 are installed
on top and on a side face near the top of said structural member 5, in order to allow
applying vertical resp. horizontal forces on it. Load cells 12 are installed near
the application point of said pistons 11 in order to measure the applied forces. Displacement
sensors 13 (LVDT) measure the horizontal displacement of the upper end of the structural
member 5, and the vertical uplift of the reinforcement sheet and/or the said member.
[0058] Fig. 7 shows the use of the present invention as a means of a strengthening system
results to an increase of the structural's member capacity equal to 100%. More specifically,
the Virgin Pier, which is the Pier without the Hybrid Anchoring Device 4 resulted
to a maximum horizontal load equal to 37 kN, whereas the 24 mm-Pier resulted to a
maximum horizontal load equal to 75 kN. The 24 mm-Pier corresponds to a Pier which
was imposed to a maximum horizontal displacement equal to 24 mm with HAD 4 attached
on it. The use of the present anchoring device 4 resulted in an increase of the ultimate
horizontal displacement as well. It was increased from 15 mm to 29 mm, due to the
plasticity of the device. The present anchoring device 4 is qualified as "Hybrid"
due to the fact that it combines the secure anchoring of the strengthening scheme,
offering at the same time to a structure an increase of the ductility due to its plasticisation.
[0059] Fig. 8 and 9 show said Hybrid Anchoring Device with a different orientation, not
claimed by the application. The reinforcing sheet 3 is wrapped around the anchoring
holder 1 but at this case the fastening means 2 are carrying the anchoring holder
1 through the steel plate 9.
[0060] Finally, Fig. 10 indicates another application of said Hybrid Anchoring Device not
claimed by the application, for shear strengthening of structural members. The reinforcing
sheet 3 is attached on the concrete surface of the structural member 5. The reinforcing
sheet is also wrapped around the anchoring holder 1. The fastening means 2 are being
placed vertically to the reinforcing sheet 3 and a steel plate 9 is finally placed
for applying vertical pressure on the sheet 3 and holding at the same time the anchoring
holder 1.
[0061] It is to be understood that the description above is given only by way of example
to illustrate the present invention.
[0062] Indeed, the application of the anchoring device of the present invention is not limited
to anchoring application of bonded FRP sheet. The structural and/or supporting surfaces
can be reinforced with bonded or unbonded reinforcing plate or shell made of FRP or
steel or other metallic or non-metallic materials.
[0063] Said anchoring device is not limited to retrofitting or repairing of existing structures,
such as seismic upgrade of structural and supporting walls. Any new building structures
may incorporate the present invention, so as to provide for improved structural reinforcements.
1. A construction structure comprising at least one structural member (5) and a support
element (6), both connectively cooperating with each other, said construction structure
further comprising at least one anchoring device (4), wherein said structural member
(5) is supported on said support element (6) with its bottom surface (A), its adjoining
lateral surfaces extending therefrom (B, C) along a longitudinal axis (ℓ) thereof
(A), said construction structure further comprising:
- reinforcement surface means (3) for connectively securing said mutual cooperation
between said structural member (5) and said support element (6), said reinforcement
surface means (3) being delimitated by a bottom (b) and opposite top sides (a) respectively
and having at said top side (a):
- bonding means (7) for bonding said reinforcement surface means (3) at its top side
(a) onto said active lateral surface (B, C) of said structural member (5), wherein
said anchoring device (4) consists of:
- a holder means (1) extending continuously and at least over the whole bottom side
(b) of said reinforcement surface means (3) for holding same in a remote connective
relationship with said support element (6), said holder means (1) being a shaft comprising
fastening means (2) for anchoring said holder means (1) to said support element (6),
wherein said reinforcement surface means (3) is actively cooperating at its opposite
bottom side (b) with said support element (6), by means of said anchoring device (4),
wherein at least tensile forces transferred to the support element (6) are transmitted
through the anchoring device (4) to the structural element (5), said reinforcement
surface means (3) being a sheet (3) wrapped around the holder means (1) at its said
bottom side (b) with two parts surrounding the holder means (1),
characterized in that one part of these two parts being reversed in substantially the same direction as
the other part.
2. A construction structure according to the preceding claim, characterized in that said anchoring device (4) is arranged in an elastically and plastically deformable
bonding assembly with said reinforcement surface means (3).
3. A construction structure according to one of both preceding claims, characterized in that the shaft (1) is a cylinder, preferably with a circular section, said reinforced
surface means (3) being made of a fibre reinforced polymer FRP, more particularly
a composite FRP material, more particularly wherein said fibres are carbon, glass
or aramid fibres.
4. A construction structure according to one of the claims 1 to 3, characterized in that said reinforcement surface means (3) is made of metal, in particular steel.
5. A construction structure according to one of the preceding claims, characterised in that said bonding means consist of a bonding strip (7), more particularly extending in
parallel to said holder means (1).
6. A construction structure according to one of the preceding claims, characterized in that said structural members (5) has an elongated shape extending substantially upright
along said longitudinal axis (ℓ), in a mutually aligned arrangement with said support
element (6).
7. A construction structure according to one of the preceding claims, characterized in that said construction structure (10) is substantially symmetrical, particularly respective
a central plane of symmetry (a) extending substantially upright so as to include said
longitudinal axis (ℓ), thereby defining two symmetrical parts (18, resp. 19), each
one including one said anchoring device (4) connecting elastically said constructive
members (5, 6) within each said symmetrical part (18, 19).
8. A construction structure according to one of the preceding claims, characterized in that said anchoring device (4) is for a reinforced surface means (3) improving the resistance
of said structure (5, 6), wherein said reinforced surface means (3) is anchored to
said structural element (6) of said structure (10) for transferring the additional
forces onto said structural element, said additional forces being essentially tensile
forces all in one single direction being defined as the length of said reinforced
surface means (3), and in that said anchoring device (4) consists of said shaft (1) extending at least over the
whole width of said reinforced surface means (3) and of said fastening means (2) aimed
to lock said shaft to said structural element (6), and in that said shaft (1) is substantially in the plane of the reinforced surface means (3).
9. A construction structure according to one of the preceding claims, characterised in that said fastening means (2) consist in fixation means provided at each end of said shaft
(1), in particular wherein said fixation means are bolts or steel cylinder rods.
10. A construction structure according to one of the preceding claims, characterized in that it further comprises a steel plate (9) for pressing the reinforced surface means
(3) on the said support element (6) or said structural member (5), particularly wherein
said plate (9) is a prismatic shape part which applies pressure on the reinforcing
sheet (3) for pushing the reinforced surface means (3) onto the structural element's
surface (6).
11. An anchoring method for a reinforcement surface means, notably a surface bonded reinforced
surface means (3) provided for improving the resistance of a construction structure,
comprising at least one structural member (5) and a support element (6), said construction
structure being according to one of the preceding claims, characterized in that said reinforced surface means (3) is bonded onto the surface of a structural member
(5) of said structure in order to improve its resistance by resisting against tensile
forces, and anchored to a structural element (6) of said structure in order to transfer
the tensile forces onto said structural element (5), said tensile forces being essentially
all in one single direction being defined as the length of said reinforced surface
means (3), wherein said holder means (1) extending at least over the whole width of
said sheet (3) is locked to said structural element (6) by a fastening means (2),
and in that said holder means (1) is substantially in the plane of the reinforced surface means
(3), wherein said tensile forces are transmitted to the structural element (6) and
the structural member (5) through the anchoring device 4.
12. An anchoring method according to the preceding claim, characterized in that the shaft (1), the fastening means (2) and the reinforced surface means (3) are assembled
as a device (4) after which they are elastically and plastically deformed so as to
improve the stress distribution in said device (4) consisting of said shaft (1) and
fastening means (2) and reinforced surface means (3).
13. An anchoring method according to one of both preceding claims 11 or 12 when depending
on one of the claims 3 to 10,
characterized in that the transfer of said forces from said reinforced surface means particularly FRP strips
(3) to the concrete volume is a two-step process, wherein
- in the first step, the sheet, resp. FRP forces are first transferred to the anchoring
device (4) and
- in the subsequent second step, the forces are transferred from the anchoring device
(4) to the concrete volume in a specific way wherein said sheets particularly the
FRP strips (3) are wrapped around the anchoring device (4).
14. An anchoring method according to the preceding claim,
characterized in that the anchoring device (4) still functions beyond, even if the debonding of the FRP
strip (3) from the concrete volume occurs, in which case the anchoring device (4)
takes over the force transfer function by withstanding considerably higher force levels
than those mobilized by the bond mechanism and suitably transfer these force levels
to the concrete volume by itself, wherein the limit states for the anchoring device
(4) are defined by the following:
- various ductile modes of limit-state for the anchoring device itself (4) that can
occur by the yielding and eventually the fracture of its various steel parts;
- the fracture of the FRP strip (3), which, if it finally occurs, means that one has
capitalized on all the FRP material strength.
1. Konstruktionsstruktur, umfassend mindestens ein strukturelles Bauteil (5) und ein
Trägerelement (6), die beide miteinander verbindend zusammenwirken, wobei die Konstruktionsstruktur
ferner mindestens eine Verankerungsvorrichtung (4) umfasst, wobei das strukturelle
Bauteil (5) mit seiner unteren Oberfläche (A) auf dem Trägerelement (6) getragen wird,
wobei sich seine angrenzenden seitlichen Oberflächen davon (B, C) entlang einer Längsachse
(1) davon (A) erstrecken, wobei die Konstruktionsstruktur ferner umfasst:
- ein Verstärkungsflächenmittel (3) zum verbindenden Sichern der gemeinsamen Zusammenwirkung
zwischen dem strukturellen Bauteil (5) und dem Trägerelement (6), wobei das Verstärkungsflächenmittel
(3) jeweils von einer Boden- (b) und einer gegenüberliegenden Oberseite (a) begrenzt
wird und an der Oberseite (a) Folgendes aufweist:
- ein Verbindungsmittel (7) zum Verbinden des Verstärkungsflächenmittels (3) an dessen
Oberseite (a) mit der aktiven seitlichen Oberfläche (B, C) des strukturellen Bauteils
(5), wobei die Verankerungsvorrichtung (4) aus Folgendem besteht:
- einem Halterungsmittel (1), das sich kontinuierlich und mindestens über die ganze
Unterseite (b) des Verstärkungsflächenmittels (3) erstreckt, um dieses in einer engen
Verbindungsbeziehung mit dem Trägerelement (6) zu halten, wobei das Halterungsmittel
(1) ein Schaft ist, der Befestigungsmittel (2) zum Verankern des Halterungsmittels
(1) an dem Trägerelement (6) umfasst,
wobei das Verstärkungsflächenmittel (3) an seiner gegenüberliegenden Unterseite (b)
aktiv mit dem Trägerelement (6) mittels der Verankerungsvorrichtung (4) zusammenwirkt,
wobei mindestens Zugkräfte, die auf die Trägerelement (6) übertragen werden, durch
die Verankerungsvorrichtung (4) an das strukturelle Element (5) übertragen werden,
wobei das Verstärkungsflächenmittel (3) ein Blech (3) ist, das um das Halterungsmittel
(1) an dessen Unterseite (b) gewickelt ist, wobei zwei Teile das Halterungsmittel
(1) umgeben,
dadurch gekennzeichnet, dass ein Teil dieser zwei Teile im Wesentlichen in der gleichen Richtung wie das andere
Teil umgedreht ist.
2. Konstruktionsstruktur nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Verankerungsvorrichtung (4) in einer elastisch und plastisch verformbaren Verbindungsanordnung
mit dem Verstärkungsflächenmittel (3) angeordnet ist.
3. Konstruktionsstruktur nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schaft (1) ein Zylinder ist, vorzugsweise mit einem kreisförmigen Querschnitt,
wobei das Verstärkungsflächenmittel (3) aus einem faserverstärkten Polymer, FRP, insbesondere
einem FRP-Verbundmaterial, hergestellt wird, wobei insbesondere die Fasern Kohlenstoff,
Glas oder Aramidfasern sind.
4. Konstruktionsstruktur nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verstärkungsflächenmittel (3) aus Metall, insbesondere Stahl, hergestellt wird.
5. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verbindungsmittel aus einem Verbindungsstreifen (7) besteht, der sich insbesondere
parallel zum Halterungsmittel (1) erstreckt.
6. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das strukturelle Bauteil (5) eine längliche Form aufweist, die sich im Wesentlichen
aufrecht entlang der Längsachse (1) in einer gemeinsam ausgerichteten Anordnung mit
dem Trägerelement (6) erstreckt.
7. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konstruktionsstruktur (10) im Wesentlichen symmetrisch ist, insbesondere bezüglich
einer zentralen Symmetrieebene (α), die sich im Wesentlich derart aufrecht erstreckt,
dass die Längsachse (1) enthalten ist, wodurch zwei symmetrische Teile (18 bzw. 19)
definiert werden, wovon jeder die Verankerungsvorrichtung (4) enthält, die die Konstruktionsbauteile
(5, 6) elastisch mit jedem symmetrischen Teil (18, 19) verbindet.
8. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verankerungsvorrichtung (4) für ein Verstärkungsflächenmittel (3) den Widerstand
der Struktur (5, 6) verbessert, wobei das Verstärkungsflächenmittel (3) an dem strukturellen
Element (6) der Struktur (10) verankert ist, um die zusätzlichen Kräfte auf das strukturelle
Element zu übertragen, wobei die zusätzlichen Kräfte im Wesentlichen Zugkräfte in
einer einzigen Richtung sind, die als die Länge des Verstärkungsflächenmittels (3)
definiert ist, und dadurch, dass die Verankerungsvorrichtung (4) aus dem Schaft (1)
besteht, der sich mindestens über die gesamte Breite des Verstärkungsflächenmittels
(3) und der Befestigungsmittel (2), die dafür vorgesehen sind, den Schaft mit dem
strukturellen Element (6) zu verriegeln, erstreckt, und dadurch, dass der Schaft (1)
im Wesentlichen auf der Ebene des Verstärkungsflächenmittels (3) liegt.
9. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Befestigungsmittel (2) aus Fixierungsmitteln bestehen, die an jedem Ende des
Schafts (1) vorgesehen sind, wobei insbesondere die Fixierungsmittel Bolzen oder Stahlzylinderstäbe
sind.
10. Konstruktionsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie ferner eine Stahlplatte (9) umfasst, um das Verstärkungsflächenmittel (3) an
das Trägerelement (6) oder das strukturelle Bauteil (5) zu drücken, wobei insbesondere
die Platte (9) ein prismenförmiges Teil ist, das Druck auf das Verstärkungsblech (3)
aufbringt, um das Verstärkungsflächenmittel (3) auf die Fläche des strukturellen Elements
(6) zu drücken.
11. Verankerungsverfahren für ein Verstärkungsflächenmittel, insbesondere ein oberflächengebundenes
Verstärkungsflächenmittel (3), das vorgesehen ist, um den Widerstand einer Konstruktionsstruktur
zu verbessern, umfassend mindestens ein strukturelles Bauteil (5) und ein Trägerelement
(6), wobei die Konstruktionsstruktur nach einem der vorhergehenden Ansprüche ist,
dadurch gekennzeichnet, dass das Verstärkungsflächenmittel (3) an die Oberfläche eines strukturellen Bauteils
(5) der Struktur gebunden ist, um seinen Widerstand zu verbessern, indem es Zugkräfte
standhält, und an ein strukturelles Element (6) der Struktur verankert ist, um die
Zugkräfte auf das strukturelle Element (5) zu übertragen, wobei die Zugkräfte im Wesentlichen
in einer einzigen Richtung sind, die als die Länge des Verstärkungsflächenmittels
(3) definiert ist, wobei das Halterungsmittel (1), das sich mindestens über die gesamte
Breite des Blechs (3) erstreckt, mit dem strukturellen Element (6) mittels eines Befestigungsmittels
(2) verriegelt ist, und dadurch, dass das Halterungsmittel (1) im Wesentlichen auf
der Ebene des Verstärkungsflächenmittels (3) liegt,
wobei die Zugkräfte durch die Verankerungsvorrichtung (4) auf das strukturelle Element
(6) und das strukturelle Bauteil (5) übertragen werden.
12. Verankerungsverfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Schaft (1), das Befestigungsmittel (2) und das Verstärkungsflächenmittel (3)
als eine Vorrichtung (4) angeordnet sind, nach der sie elastisch und plastisch verformbar
sind, um die Spannungsverteilung in der Vorrichtung (4), die aus dem Schaft (1) und
dem Befestigungsmittel (2) und dem Verstärkungsflächenmittel (3) besteht, zu verbessern.
13. Verankerungsverfahren nach einem der beiden vorhergehenden Ansprüche 11 oder 12, wenn
abhängig von einem der Ansprüche 3 bis 10,
dadurch gekennzeichnet, dass die Übertragung der Kräfte von dem Verstärkungsflächenmittel, insbesondere den FRP-Streifen
(3) auf das Betonvolumen, ein Vorgang aus zwei Schritten ist, wobei
- beim ersten Schritt die Kräfte des Blechs bzw. des FRP-Materials zuerst auf die
Verankerungsvorrichtung (4) übertragen werden, und
- beim anschließenden zweiten Schritt die Kräfte von der Verankerungsvorrichtung (4)
auf das Betonvolumen in einer besonderen Weise übertragen werden, wobei die Bleche,
insbesondere die FRP-Streifen (3), um die Verankerungsvorrichtung (4) gewickelt sind.
14. Verankerungsverfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass die Verankerungsvorrichtung (4) immer noch darüber hinaus fungiert, selbst wenn die
Trennung des FRP-Streifens (3) von dem Betonvolumen auftritt, in welchem Fall die
Verankerungsvorrichtung (4) die Funktion der Kraftübertragung übernimmt, indem sie
beträchtlich höheren Kraftniveaus standhält als denen, die durch den Verbindungsmechanismus
mobilisiert werden, und auf geeignete Weise alleine diese Kraftniveaus auf das Betonvolumen
überträgt, wobei die Beschränkungszustände für die Verankerungsvorrichtung (4) durch
das Folgende definiert werden:
- verschiedene duktile Modi des Beschränkungszustands für die Verankerungsvorrichtung
selbst (4), die durch die Nachgiebigkeit und schließlich den Bruch ihrer verschiedenen
Stahlteile auftreten können;
- den Bruch des FRP-Streifens (3), der, wenn er schließlich auftritt, bedeutet, dass
die gesamte FRP-Materialstärke ausgenutzt wurde.
1. Structure de construction comprenant au moins un élément structure! (5), et un élément
de support (6), !es deux coopérant chacun en liaison avec l'autre, ladite structure
de construction, comprenant en outre au moins un dispositif d'ancrage (4), ledit élément
structurel (5) étant supporté sur ledit élément de support (6) par sa surface inférieure
(A), ses surfaces latérales adjacentes (B, C) s'étendant à partir de celle-ci le long
d'un axe longitudinal (ℓ) de celle-ci (A), ladite structure de construction comprenant
en outre :
- un moyen de surface de renforcement (3) pour assurer par solidarisation ladite coopération
mutuelle entre ledit élément structurel (5) et ledit élément de support (6), ledit
moyen de surface de renforcement (3) étant délimité par un côté inférieur (b) et un
côté supérieur opposé (a) respectivement et présentant sur ledit côté supérieur (a)
:
- des moyens de liaison (7) pour relier ledit moyen de surface de renforcement (3)
à hauteur de son côté supérieur (a) à ladite surface latérale active (B, C) dudit
élément structurel (5), dans lequel ledit dispositif d'ancrage (4) est constitué de
:
- un moyen de retenue (1) s'étendant de manière continue et au moins sur tout le côté
inférieur (b) dudit moyen de surface de renforcement (3) pour le maintenir dans une
relation solidaire à distance avec ledit élément de support (6), ledit moyen de retenue
(1) étant une tige comprenant
- des moyens de fixation (2) pour ancrer ledit moyen de retenue (1) audit élément
de support (6),
ledit moyen de surface de renforcement (3) coopérant activement à hauteur de son côté
inférieur opposé (b) avec ledit élément de support (6), au moyen dudit dispositif
d'ancrage (4), dans lequel au moins des forces de traction, qui sont transférées à
l'élément de support (6), sont transmises par l'intermédiaire du dispositif d'ancrage
(4) à l'élément structurel (5), ledit moyen de surface de renforcement (3) étant une
feuille (3), qui est enroulée autour du moyen de retenue (1) à hauteur de son côté
inférieur (b), deux parties entourant le moyen de retenue (1),
caractérisé en ce qu'une de ces deux parties est retournée sensiblement dans le même sens que l'autre partie.
2. Structure de construction selon la revendication précédente, caractérisé en ce que ledit dispositif d'ancrage (4) est agencé dans un ensemble de liaison déformable
de manière élastique et plastique avec ledit moyen de surface de renforcement (3).
3. Structure de construction selon l'une des deux revendications précédentes, caractérisée en ce que le tige (1) est un cylindre, de préférence à section circulaire, ledit moyen de surface
de renforcement (3) étant constitué d'un polymère FRP renforcé par des fibres, plus
particulièrement d'un matériau composite FRP, plus particulièrement dans lequel lesdites
fibres sont des fibres de carbone, de verre ou d'aramide.
4. Structure de construction selon l'une des revendications 1 à 3, caractérisée en ce que ledit moyen de surface de renforcement (3) est constitué de métal, en particulier
en acier.
5. Structure de constructions selon l'une des revendications précédentes, caractérisée en ce que lesdits moyens de liaison sont constitués par une bande de liaison (7), s'étendant
plus particulièrement parallèlement audit moyen de retenue (1).
6. Structure de construction selon l'une des revendications précédentes, caractérisée en ce que lesdits éléments structurels (5) ont une forme allongée s'étendant sensiblement verticalement
le long dudit axe longitudinal (ℓ), suivant une disposition mutuellement alignée avec
ledit élément de support (6).
7. Structure de construction selon l'une des revendications précédentes, caractérisé en ce que ladite structure de construction (10) est sensiblement symétrique, en particulier
par rapport à un plan de symétrie centra! (a) s'étendant sensiblement verticalement
de manière à inclure ledit axe longitudinal (ℓ), définissant ainsi deux parties symétriques
(18, 19), chacune comprenant un dispositif d'ancrage précité (4) reliant élastiquement
lesdits éléments constructifs (5, 6) au sein de chacune desdites parties symétriques
(18, 19).
8. Structure de construction selon l'une des revendications précédentes, caractérisée en ce que ledit dispositif d'ancrage (4) est destiné à un moyen de renforcement de surface
améliorant la résistance de ladite structure (5, 6), ledit moyen (3) étant ancré audit
élément de structure (6) de ladite structure (10) pour transférer les forces supplémentaires
audit élément de structure, lesdites forces supplémentaires étant essentiellement
des forces de traction toutes dans une seule direction étant définie comme la longueur
dudit moyen de renforcement de surface (3), et en ce que ledit dispositif d'ancrage (4) est constitué de ladite tige (1) s'étendant au moins
sur toute la largeur dudit moyen de renforcement de surface (3) et dudit moyen de
fixation (2) destiné à verrouiller ladite tige audit élément structurel (6), et en ce que ladite tige (1) est située sensiblement dans le plan dudit moyen de renforcement
de surface (3).
9. Structure de construction selon l'une des revendications précédentes, caractérisée en ce que lesdits moyens de fixation (2) sont constitués par des moyens de fixation prévus
à chaque extrémité desdites tiges (1), en particulier dans lequel lesdits moyens de
fixation sont des boulons ou des tiges de vérins en acier.
10. Structure de construction selon l'une des revendications précédentes, caractérisé en ce qu'elle comprend en outre une plaque d'acier (9) pour presser le moyen de renforcement
de surface (3) sur ledit élément de support (6) ou ledit élément structurel (5), en
particulier dans lequel ladite plaque (9) est une pièce de forme prismatique qui applique
une pression sur la feuille de renforcement (3) afin de presser le moyen de renforcement
de surface (3) sur la surface (6) de l'élément structurel.
11. Procédé d'ancrage pour un moyen de surface de renforcement, notamment un moyen de
renforcement de surface (3) lié en surface prévu pour améliorer la résistance d'une
structure de construction comprenant au moins un élément structurel (5) et un élément
de support (6), ladite structure de construction étant selon l'une des revendications
précédentes, caractérisé en ce que ledit moyen de renforcement de surface (3) est relié à la surface d'un élément structurel
(5) de ladite structure afin d'améliorer sa résistance en résistant aux forces de
traction, et ancré à un élément structurel (6) de ladite structure afin de transférer
les forces de traction sur ledit élément structurel (5), les forces de traction étant
essentiellement toutes dans une direction unique étant définie comme étant la longueur
de ladite feuille dudit moyen de renforcement de surface (3), dans lequel ledit moyen
de retenue (1) s'étendant au moins sur toute la largeur de ladite feuille (3) est
verrouillé audit élément structurel (6) par un moyen de fixation (2), et en ce que ledit moyen de retenue (1) est situé sensiblement dans le plan du moyen de renforcement
de surface (3), dans lequel lesdites forces de traction sont transmises à l'élément
structurel (6) et l'élément structurel (5) par l'intermédiaire du dispositif d'ancrage
(4).
12. Procédé d'ancrage selon la revendication précédente, caractérisé en ce que l'arbre (1), le moyen de fixation (2) et le moyen de renforcement de surface (3)
sont assemblés en tant que dispositif (4) après quoi ils sont déformés de manière
élastique et plastique de manière à améliorer la répartition des contraintes dans
ledit dispositif (4) constitué par ladite tige (1) et les moyens de fixation (2) et
les moyens de renforcement de surface (3).
13. Procédé d'ancrage selon l'une des deux revendications précédentes 11 ou 12 lorsqu'elles
dépendent de l'une des revendications 3 à 10,
caractérisé en ce que le transfert desdites forces desdits moyens de surface renforcée, en particulier
des bandes de PRF (3), au volume de béton, est un processus en deux étapes, dans lesquelles
- dans la première étape, la feuille, resp. les forces FRP sont d'abord transférées
au dispositif d'ancrage (4) et
- dans la deuxième étape suivante, les forces sont transférées du dispositif d'ancrage
(4) au volume de béton d'une manière spécifique, dans laquelle lesdites feuilles,
en particulier les bandes PRF (3) sont enroulées autour du dispositif d'ancrage (4).
14. Procédé d'ancrage selon la revendication précédente,
caractérisé en ce que le dispositif d'ancrage (4) fonctionne toujours au-delà, même si le décollement de
la bande de PRF (3) du volume de béton se produit, auquel cas le dispositif d'ancrage
(4) reprend la fonction de transfert de forces en résistant à des niveaux de force
considérablement plus élevés que ceux mobilisés par le mécanisme de décollement et
transfère de manière appropriée ces niveaux de force au volume de béton par lui-même,
les états limites du dispositif d'ancrage (4) étant définis par :
- divers modes ductiles d'états limites pour le dispositif d'ancrage lui-même (4)
pouvant se produire par la déformation et éventuellement !a rupture de ses différentes
pièces en acier ;
- la rupture de la bande en PRF (3), ce qui, si elle se produit enfin, signifie que
l'on a capitalisé sur toute la résistance du matériau PRF.