(19)
(11) EP 2 816 335 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
07.08.2019 Bulletin 2019/32

(21) Application number: 14171624.1

(22) Date of filing: 06.06.2014
(51) International Patent Classification (IPC): 
H01L 41/04(2006.01)
G01L 19/14(2006.01)
H01L 41/22(2013.01)

(54)

Integrated soi pressure sensor having silicon stress isolation member

Integrierter SOI-Drucksensor mit Siliziumbelastungsisolierungselement

Capteur de pression silicium sur isolant intégré ayant un élément d'isolation de contraintes de silicium


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 19.06.2013 US 201313921568

(43) Date of publication of application:
24.12.2014 Bulletin 2014/52

(73) Proprietor: Honeywell International Inc.
Morris Plains, NJ 07950 (US)

(72) Inventors:
  • Brown, Gregory C.
    Morristown, NJ 07962-2245 (US)
  • Rahn, Curtis
    Morristown, NJ 07962-2245 (US)

(74) Representative: Houghton, Mark Phillip 
Patent Outsourcing Limited 1 King Street
Bakewell, Derbyshire DE45 1DZ
Bakewell, Derbyshire DE45 1DZ (GB)


(56) References cited: : 
GB-A- 1 248 087
US-A- 6 050 145
US-A- 4 085 620
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Silicon pressure sensors offer multiple benefits that include small size, good quality, and stable performance. Further, since multiple identical sensors can be fabricated simultaneously on a single wafer, silicon pressure sensors are also cost effective to manufacture. In at least one example of a pressure sensor, piezo-resistors are fabricated on a silicon diaphragm such that the piezo-resistors sense the strain in the diaphragm as the diaphragm reacts to pressure applied by the pressure media. Even when the pressure media is clean dry air, the silicon sensing die requires some form of isolation from the environment. For absolute sensors this is provided by the normal SiO2 layer that is formed. The clean dry air is contained to only contact the side of the diaphragm that does not contain metal traces and pads. That surface is exposed only to a reference vacuum. For precision applications where the pressure media is limited to air, the silicon diaphragm can be mounted on a stress isolation member. A similar pressure electric transducer is disclosed in the patent application US 4 085 620.

    [0002] In one example, the stress isolation member is a Pyrex tube. The Pyrex tube surface is hygroscopic in nature and absorbs H2O from the pressure media over time. This change in water content alters the tube geometry slightly, which cause the sensing element to drift. In addition to long term drift due to differences in the coefficient of expansion of silicon and Pyrex, and due to stresses produced during assembly processes, the pressure sensors need extensive conditioning to remove early drift components. Finally, unwanted leakage currents between the piezo-resistors and the housing of the sensor or external electrical connection can occur. The thin coating of silicon oxide that naturally forms is often relied on to provide electrical isolation. This film also can absorb water, which also may produce sensor drift.

    SUMMARY



    [0003] The present invention is defined by the appended claims.

    [0004] In one embodiment a pressure sensor according to claim 1 is provided. The pressure sensor includes a housing comprising an input port configured to allow a media to enter the interior of the housing when the housing is placed in an environment containing the media. A support is mounted within the housing, the support defining a first aperture extending therethrough. A stress isolation member is mounted within the first aperture of the support, the stress isolation member defining a second aperture extending therethrough, wherein the stress isolation member is composed of silicon. The sensor die includes a silicon substrate having an insulator layer on a first side of the silicon substrate; and sensing circuitry disposed in the insulator layer on the first side, wherein a second side of the silicon substrate is exposed to the second aperture of the stress isolation member and the second side is reverse of the first side.

    DRAWINGS



    [0005] Understanding that the drawings depict only exemplary embodiments and are not therefore to be considered limiting in scope, the exemplary embodiments will be described with additional specificity and detail through the use of the accompanying drawings, in which:

    Figure 1 is a diagram illustrating a cross-sectional view of a pressure sensing device having a integrated silicon-on-insulator (SOI) sensor and a silicon stress isolation member according to an embodiment described in the present disclosure;

    Figure 2 is a diagram illustrating an exploded perspective view of a sensor die, stress isolation member, and support of the pressure sensing device of Figure 1 according to an embodiment described in the present disclosure; and

    Figure 3 is a flow diagram illustrating a method for fabricating the pressure sensing device of Figure 1 according to an embodiment described in the present disclosure.



    [0006] In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the exemplary embodiments.

    DETAILED DESCRIPTION



    [0007] In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific illustrative embodiments.

    [0008] In at least one embodiment, a sensor die functioning as a diaphragm may be mounted on the stress isolation member (pedestal) that defines a first aperture extending through a stress isolation member so that a pressure media can pass through the aperture and exert pressure on the diaphragm. The sensor die can be composed of a silicon on insulator substrate and a stress isolation member can be composed of silicon such that the sensor die and the stress isolation member can have substantially equal coefficients of thermal expansion. This can also enable the sensor die and the stress isolation member to be fabricated at the wafer level.

    [0009] In further embodiments, the sensor die and the stress isolation member can be mounted within a second aperture of a support, where the second aperture extends through the support. The support can be mounted to a housing of the pressure sensor and can provide electrical connection and a pressure port for the sensor die.

    [0010] In still further embodiments, moisture absorption, due to hygroscopic materials of the pressure sensor device, is avoided by coating surfaces of such materials that are exposed to the pressure media with a protective layer through atomic layer deposition. To prevent the surfaces of the support, stress isolation member, and the sensor die from absorbing moisture in a pressure media, some or all of these surfaces that are exposed to the pressure media can be coated with a protective layer through an atomic layer deposition process.

    [0011] An example pressure sensing device 100 is now described with respect to Figures 1 and 2. Figure 1 is a cross-section view of a pressure sensing device 100 and Figure 2 is an exploded perspective view of a portion of the pressure sensing device 100. The pressure sensing device 100 is capable of measuring the pressure in certain media. For example, the pressure media sensed by the pressure sensing device 100 may include air or a liquid. To sense the pressure of the pressure media, the pressure sensing device 100 includes an input port 102, wherein the input port 102 allows the pressure media to enter a housing 104. The housing 104 protects the pressure sensing device 100 from environmental influences that can damage the pressure sensing device 100 or affect the performance of the pressure sensing device 100.

    [0012] To sense the pressure of the pressure media inside the housing 104, the pressure sensing device 100 includes a sensor die 106. In at least one implementation, the sensor die 106 is a piezo-resistive silicon pressure sensing die, where piezo-resistors formed on a first side 105 of the sensor die 106, respond to strain in the sensor die 106. The sensor die 106 includes a silicon diaphragm with sensor circuitry, such as the piezo-resistors, formed on the diaphragm. The piezo-resistors change resistance in accordance with movement of the diaphragm.

    [0013] In an embodiment, the sensor die 106 comprises a silicon-on-insulator (SOI) substrate having the sensing circuitry fabricated thereon. In particular, the sensor die 106 is composed of a silicon substrate having an insulator layer on the first side 105 thereof. The insulator layer can be formed on the silicon substrate in any suitable manner such as by epitaxial growth. The sensing circuitry is fabricated in the insulator layer on the first side 105 of the silicon substrate. Accordingly, the insulator layer has a thickness sufficient to enable fabrication of piezo-resistors therein. The sensor die 106 also has a second side 107 that is reverse of the first side 105. After fabrication of the sensor die 106, the second side 107 may naturally form a thin silicon oxide layer upon exposure to air or other media.

    [0014] Stress to the housing 104 may affect the components of the pressure sensing device 100 that are located within the housing 104. While some of the components within the housing are minimally affected by stress, strain on the piezo-resistor located on the sensor die 106, caused by stress on the housing 104, can negatively affect the accuracy of pressure measurements made by the pressure sensing device 100. For example, strain on the housing 104 may strain the sensor die 106 in a way that is similar to the strain applied to the diaphragm of the sensor die 106 by a pressure media, which leads to bias in pressure measurements derived from the sensor die 106. In certain implementations, to isolate the sensor die 106 from stress on the housing 104 or other components in the sensing device 100, the sensor die 106 is mounted on a stress isolation member 110. The stress isolation member 110 isolates the sensor die 106 from strain applied on the housing 104 or caused by other components within the housing 104.

    [0015] In certain embodiments, the stress isolation member 110 is composed of silicon. In particular, the stress isolation member 110 can be composed of a silicon substrate having an aperture 108 defined therein. The aperture 108 extends all the way through the silicon substrate. The stress isolation member 110 is mounted to the second side 107 of the sensor die 106 such that the aperture 108 extends from and is open to the second side 107 of the sensor die 106 on one end and is open to pressure media on the other end. The stress isolation member 110 is also referred to as a pedestal. The stress isolation member 110 extends away from the second side 107 of the sensor die 106. In an example, the sensor die 106 is mounted to a first end of the stress isolation member 110 and the support 122 is mounted proximate a second end 114 of the stress isolation member 110, wherein the second end 114 is reverse of the first end.

    [0016] In at least one embodiment, to expose the sensor die 106 to the pressure media, the pressure media enters the housing 104 through the input port 102 and then passes through the aperture 108 in the stress isolation member 110. The pressure media within the aperture 108 applies a force against the sensor die 106, which force causes the piezo-resistors to strain as a diaphragm in the sensor die 106 moves in accordance with the pressure applied by the pressure media. The strain on the piezo-resistor changes the resistance of piezo-resistors in the piezo-resistor. As a known current passes through the piezo-resistor, the voltage drop due to the resistance of the piezo-resistors may be used to determine the pressure of the pressure media against the diaphragm of the sensor die 106. In at least one embodiment, the piezo-resistors include both pressure sensing elements and temperature sensing elements.

    [0017] As also shown in Figure 2, in some embodiments, the sensor die 106 and the stress isolation member 110 have substantially the same cross-sectional dimensions when viewed with the sensor die 106 proximate the viewer and the stress isolation member 110 extending away from the viewer. In such embodiments, the cross-sectional size of the sensor die 106 and the stress isolation member 110 is limited by the sensor die 106 and not the stress isolation member 110. Accordingly, the overall cross-section can be maintained small. In an example, both the sensor die 106 and the stress isolation member 110 have rectangular (e.g., square) cross-sections.

    [0018] Advantageously, with the stress isolation member 110 composed of the same material (silicon) as the sensor die 106, the stress isolation member 110 and the sensor die 106 can achieve substantially the same coefficient of thermal expansion. Thus, when the stress isolation member 110 and/or sensor die 106 experience thermal expansion, the stress isolation member 110 and the sensor die 106 expand at the same rate to reduce the stress applied to the piezo-resistors formed on the sensor die 106 due to thermal expansion. In an example, the crystalline orientation of the stress isolation member 110 and of the sensor die 106 are aligned in order to further match the coefficients of thermal expansion.

    [0019] The sensor die 106 is bonded to the stress isolation member 110 using a low temperature diffusion process. In such a process, surface activation of the silicon surface allows the low temperature silicon to silicon, surface to surface bonding. Such low temperature bonding can be at or below 600 degress Celsius and, in a particular example is around 400-450 degrees Celsius.

    [0020] In an example, the stress isolation member 110 has a generally rectangular cuboid shape with the aperture 108 extending therethrough. In an implementation of such an example, the aperture 108 extends longitudinally through the long dimension of the rectangular cuboid shape. In an example, the long dimension of the rectangular cuboid shape is around 0.156 inches in length, which is substantially longer than the thickness of the sensor die 106.

    [0021] In certain embodiments, the second side 107 of the sensor die 106 is exposed to the pressure media in the aperture 108 and an opposite side of the sensor die 106 is exposed to a reference chamber 121. The reference chamber 121 is a sealed environment having a known pressure. In an example, the reference chamber 121 is maintained as a vacuum. The housing 104 can be sealed to maintain the pressure in the reference chamber 121. The sensing circuitry on the first side 105 of the sensor die 106 can be electrically coupled to components and/or connections on the housing 104 or other electronics associated with the housing 104. Accordingly, the signals from the piezo-resistors on the sensor die 106 are sent through wires that are bonded to the first surface 105 of the sensor die 106 within the reference chamber 121, where the wires extend directly from the sensor die 106 to the further electronics such as front end circuitry. The front end circuitry includes electronics that, in part, function to control the input to the electrical elements on the sensor die 106. For example, the front end circuitry includes analog to digital converters, digital to analog converters, multi chip modules and the like. In at least one implementation, the front end circuitry performs functionalities such as pressure output characterization, output signal conditioning, and the like.

    [0022] In certain embodiments, the front end circuitry is electrically connected to an electrical connector that is welded to the housing 104 with a hermetic weld. The electrical connector extends from the housing 104 and connects to an external system. The electrical connector can be threaded to aid in the integration of the pressure sensing device 100 in a larger system. Thus, through the electrical connector, an external system is able to acquire pressure measurements from the piezo-resistors on the sensor die 106.

    [0023] In an example, a getter may be placed within the reference chamber 121. The getter can be activated according to methods known to those having skill in the art. The getter can absorb any remnant gaseous molecules present in the reference chamber 121 after bonding and absorbs molecules that are out gassed from elements in the reference chamber 121 after bonding.

    [0024] In at least one implementation, when the sensor die 106 is mounted on the stress isolation member 110, the stress isolation member 110 is mounted to a support 122. In certain exemplary implementations, the support 122 is composed of a ceramic, such as an alumina blank, or other brazeable material having a coefficient of thermal expansion similar to silicon. The stress isolation member 110 can be mounted to the support 122 using a braze 116. The support 122 includes an aperture 112 into which the stress isolation member 110 is mounted. The aperture 112 has a cross-section and size that corresponds to an outer cross-section of the stress isolation member 110, such that the stress isolation member 110 can be inserted therein. In the example shown in Figures 1 and 2, the aperture 112 and the outer cross-section of the stress isolation member 110 are rectangular. Accordingly, the outer surface of the stress isolation member 110 is attached to the inner surface of the support 122, for example, with a braze 116. The support 122 is attached to the housing 104 to provide the mechanical coupling between the sensor die 106 and stress isolation member 110 assembly and the housing 104. Portions of the outer surface of the support 122 can be mounted to the housing 104. In an example, the support 122 is bonded to the housing 104 through a braze 118. Alternatively, the stress isolation member 110 and the substrate 122 are bonded to the housing through a solder joint.

    [0025] When a stress isolation member 110 is manufactured from silicon, and when the silicon material interacts with air in the pressure media, a layer of hygroscopic silicon dioxide forms. The silicon dioxide can absorb moisture out the air and causes the stress isolation member 210 to change shape. The stress isolation member 110 may expand in such a way that the piezo-resistors on the sensor die 106 become strained, thus causing a bias in the measurements produced by the piezo-resistors. In certain embodiments, the stress isolation member 110 is protected from moisture by an atomic layer deposition (ALD) coating 126 that prevents the moisture in the pressure media from contacting the stress isolation member 110. For example, the ALD coating 126 includes a coating of metal oxide that is deposited on the surfaces of the stress isolation member 110 and the substrate 122 that are exposed to the pressure media. In at least one embodiment, the coating 226 is a metal oxide such as alumina or titanium oxide. In particular, these surfaces include the interior surfaces of the aperture 108. Other surfaces can also be included such as an end face 114 of the stress isolation member 110. In one exemplary implementation, the ALD coating 126 is applied before the stress isolation member 110 and the substrate 122 are mounted within the housing 104. Alternatively, the ALD coating 126 is applied after the stress isolation member 110 and the substrate 122 are mounted within the housing 104. In some examples, the ALD coating 126 can be placed on the portion of the second surface 107 of the sensor die 106 that is exposed within the aperture 108 of the stress isolation member 110. Moreover, in the some examples, the ALD coating is placed on surfaces of the support 122 that are exposed to pressure media.

    [0026] Advantageously, the SOI geometry of the sensor die 106 can provide a secondary isolation for any leakage paths through the ALD coating. The SOI geometry can also allow the pressure sensor to be operated at temperatures above 125 degrees Celcius, where reverse bias diode leakage currents can become problematic.

    [0027] Figure 3 is a flow diagram of one exemplary embodiment of a method 300 for fabricating the pressure sensor 100. Advantageously, since the sensor die 106 and the stress isolation member 110 are composed of silicon, the sensor die 106 and the stress isolation member 110 can be fabricated and bonded together at the wafer level, where multiple sensor dies 106 and stress isolation members 110 are fabricated simultaneously.

    [0028] Sensor dies 106 can be formed by fabricating multiple sets of piezo-resistors are fabricated in an insulator layer of a silicon-on-insulator (SOI) wafer (302). The SOI wafer corresponds to the substrate of multiple sensor dies 106, and the insulator layer corresponds to the first side 105 of the sensor die 106. The insulator layer of the SOI wafer can be formed in any suitable manner such as by epitaxial growth of on a silicon substrate. In such an example, the insulator layer is grown thick enough to be used for forming piezo-resistors. Each set of piezo-resistors corresponds to the piezo-resistors for sensing circuitry of a single sensor die 106. The sets of piezo-resistors can be positioned on the SOI wafer using any suitable wafer level plan. To fabricate the piezo-resistors, the insulator layer is appropriately doped and etched to form the piezo-resistor structures. An etch is also performed to form a cavity for each sensing circuitry, the cavity for use by a diaphragm. Once the piezo-resistors and cavities are formed, the diffusion surface of the SOI wafer is polished flat. In an example, metalized paths and pads are not applied at this time.

    [0029] A plurality of through holes (apertures 108) can be etched in a second silicon wafer to form a plurality of stress isolation members 110 (304). Each aperture 108 can extend all the way through the silicon wafer and can correspond to the aperture 108 extending through a stress isolation member 110. The apertures 108 can be positioned on the silicon wafer in a manner that corresponds to the positioning of the sets of piezo-resistors on the SOI wafer, and in a particular example to the position of the cavity for the diaphragm of each sensing circuitry, such that each aperture 108 matches up with a set of piezo-resistors and, in particular, a diaphragm. The silicon wafer can be selected as a wafer having the same crystalline orientation as the SOI wafer.

    [0030] Once the piezo-resistors are fabricated in the SOI wafer and the through holes are etched in the silicon wafer, the SOI wafer and the silicon wafer can be bonded together (306). The silicon wafer is bonded to the side of the SOI wafer reverse of the insulator layer; the side that is reverse of the insulator layer corresponds to the second side 107 of the sensor die 106. Bonding the SOI wafer to the silicon wafer includes aligning the apertures 108 in the silicon wafer with the sets of piezo-resistors and/or cavities for diaphragms. For example, each aperture 108 can be aligned with a cavity for a diaphragm and/or aligned with a set of piezo-resistors. Since the silicon wafer is bonded to the side of the SOI wafer that is reverse of the insulator layer, the apertures 108 are aligned piezo-resistors and/or cavities while being disposed proximate this second side 107. The silicon wafer is then bonded to the SOI wafer in this alignment. That is, the apertures 108 are aligned with the reverse side of the piezo-resistors and/or cavities. In an example, the silicon wafer is also bonded to the SOI wafer such that the crystalline orientation of the silicon wafer is aligned with the crystalline orientation of the SOI wafer, as mentioned above. The silicon wafer and the SOI wafer can be bonded together using a low temperature using a low temperature diffusion process. In such a process, surface activation of the side of the SOI wafer that is reverse of the insulator layer and surface activation of a surface of the silicon wafer allows the low temperature silicon to silicon, surface to surface bonding. Such low temperature bonding can be at or below 600 degress Celsius and, in a particular example is around 400 or 450 degrees Celsius.

    [0031] Metal traces and wire bonding pads are then fabricated on the insulator layer of the combined SOI wafer and silicon wafer (308). The metal traces can effectuate appropriate connections in each set of piezo-resistors to one another and to the wire bonding pads.

    [0032] The combined SOI wafer and silicon wafer are then singulated (e.g., sawed) to form multiple discrete pressure sensor primitives (310), each pressure sensor primitive including a sensor die 106 (a singulated portion of the SOI wafer) bonded to a stress isolation member 110 (a corresponding singulated portion of the silicon wafer).

    [0033] A pressure sensor primitive is then mounted to a support 122 having an aperture 112 therein (312). In an example, the pressure sensor primitive is mounted to a support 122 by brazing the external surface of the stress isolation member 110 to an internal surface of the aperture 112 of the support 122. This braze 116 is vacuum tight. In an example, the sensor die 106 is mounted to a first end of the stress isolation member 110 and the support 122 is mounted proximate a second end 114 of the stress isolation member 110, wherein the second end 114 reverse of the first end.

    [0034] The pressure sensor primitive mounted to the support 122 is then mounted within the housing 104 (314). For example, the pressure sensor primitive and support 122 are placed within a housing 104 having an input port 102 such that pressure media entering the input port 102 is able to enter the opening of the aperture 108 on the stress isolation member 110. In at least one exemplary embodiment, the pressures sensor primitive with the support 122 can be mounted into the housing 104 by attaching the support 122 to the housing 104 using a braze 118. This braze 118 is vacuum tight.

    [0035] The sensing circuitry on the sensor die 106 can be electrically connected to components on the housing 104, such as front end circuitry (316). For example, pads on the sensor die 106 can be wire bonded to the components to electrically connect the sensing circuitry on the sensor die 106 to the wire bonds.

    [0036] The area around the reference chamber 121 in the housing 104 is then sealed to form the reference chamber 121 (318). Finally, the pressure sensor is conditioned to remove the tendency for the sensor measurement to drift over time (320).


    Claims

    1. A pressure sensor (100) comprising:

    a housing (104) comprising an input port (102) configured to allow a media to enter the interior of the housing (104) when the housing (104) is placed in an environment containing the media;

    a support (122) mounted within the housing (104), the support (122) defining a first aperture (112) having a uniform cross section extending through the support, and wherein the support is composed of an insulating material having a coefficient of thermal expansion similar to silicon;

    a stress isolation member (110) mounted within the first aperture (112) of the support (122), the stress isolation member (110) having a rectangular cuboid shape and defining a second aperture (108) extending longitudinally through the rectangular cuboid shape, wherein the stress isolation member (110) is composed of silicon, and wherein the cross-section of the first aperture matches an outer cross section of the stress isolation member; and

    a sensor die (106) bonded to the stress isolation member (110), the sensor die (106) including:

    a silicon substrate having an insulator layer on a first side (105) of the silicon substrate; and

    sensing circuitry disposed in the insulator layer on the first side (105), wherein a second side (107) of the silicon substrate is exposed to the second aperture (108) of the stress isolation member (110) and the second side (107) is reverse of the first side (105); and wherein the second side of the silicon substrate is bonded to a first surface of the stress isolation member to form a silicon to silicon bond between the sensor die and the stress isolation member,

    wherein the stress isolation member (110) extends away from the second side (107) of the silicon substrate, the sensor die (106) being mounted to a first end of the stress isolation member (110), wherein the support (122) is mounted proximate a second end (114) of the stress isolation member (110), wherein the second end (114) is reverse of the first end.


     
    2. The pressure sensor (100) of claim 1, wherein the support (122) is fabricated from a ceramic
     
    3. The pressure sensor (100) of claim 1 or 2, further comprising an atomic layer deposition coating (126) that covers an interior surface of the stress isolation member (110) and the second side (107) of the silicon substrate which are exposed to the media.
     
    4. The pressure sensor (100) of claim 3, wherein the atomic layer deposition coating (126) covers a portion of the support (122).
     
    5. The pressure sensor (100) of any of claims 1 to 4, wherein the support (122) and the stress isolation member (110) are mounted together using a braze (116).
     
    6. The pressure sensor (110) of any of claims 1 to 5, wherein a crystalline orientation of the stress isolation member (110) is aligned with a crystalline orientation of the sensor die (106).
     
    7. A method (300) for fabricating a pressure sensor, the method comprising:

    fabricating multiple sets of piezo-resistors (302) in an insulator layer of a first silicon wafer, wherein each set of piezo-resistors corresponds to sensing circuitry for a sensor die;

    etching a plurality of through holes (304) in a second silicon wafer, wherein each through hole corresponds to a first aperture for a stress isolation member;

    bonding the second silicon wafer (306) to a side of the first silicon wafer reverse of the insulator layer using a low temperature silicon-to-silicon, surface-to-surface, diffusion process, wherein bonding includes aligning the second silicon wafer with the first silicon wafer such that each through hole is reverse of a set of piezo -resistors;

    dicing the bonded first and second silicon wafers (310) to form a plurality of discrete pressure sensor primitives, each pressure sensor primitive including:

    a sensor die bonded to a stress isolation member, the sensor die composed of a portion of the first silicon wafer including a set of piezo-resistors; and

    the stress isolation member composed of a portion of the second silicon wafer, the stress isolation member having a rectangular cuboid shape and defining the first aperture (108) extending longitudinally through the rectangular cuboid shape;

    providing a plurality of supports, each support defining a second aperture having a uniform cross-section extending through the support, and wherein the cross-section of the second aperture that matches an outer cross section of the stress isolation member;

    mounting each pressure sensor primitive to a support (312) such that a portion of the outer surface of each stress isolation member is attached to the inner surface of the second aperture of a corresponding support, wherein mounting each pressure sensor primitive to a support includes brazing the pressure sensor device to the support, wherein each pressure sensor primitive is mounted such that the support is brazed to the stress isolation member proximate an end of the stress isolation member that is reverse of an end in which the sensor die is mounted;

    mounting the stress isolation member of a pressure sensor primitive to a housing (314);

    coating surfaces of the stress isolation member and the sensor die that will be exposed to media with an atomic layer deposition of a metal oxide; and

    sealing the housing (318) such that the side of the sensor die having the sensing circuitry is within an environment having a known pressure and is hermetically isolated from the second aperture of the stress isolation member.


     
    8. The method of claim 7, comprising:
    after bonding the second silicon wafer to the first silicon wafer, fabricating metal traces and wire bonding pads (308) on a side of the first silicon wafer having the insulator layer to form sensing circuitry.
     
    9. The method of any of claims 7 or 8, wherein bonding includes bonding at lower than 600 degrees Celcius.
     
    10. The pressure sensor (100) of any of claims 1 to 6, wherein the stress isolation member (110) has the same cross-sectional dimensions as the sensor die (106).
     


    Ansprüche

    1. Drucksensor (100), umfassend:

    ein Gehäuse (104), das einen Eingangsanschluss (102) umfasst, der konfiguriert ist, um einem Medium zu erlauben, in den Innenraum des Gehäuses (104) einzutreten, wenn das Gehäuse (104) in einer Umgebung angebracht wird, die das Medium enthält;

    einen Träger (122), der in dem Gehäuse (104) montiert ist, wobei der Träger (122) eine erste Öffnung (112) definiert, die einen gleichförmigen Querschnitt aufweist und die sich durch den Träger erstreckt; und wobei der Träger aus einem isolierenden Material besteht, das einen Wärmeausdehnungskoeffizienten aufweist, der ähnlich wie der von Silizium ist;

    ein Belastungsisolierungselement (110), das in die erste Öffnung (112) des Trägers (122) montiert ist, wobei das Belastungsisolierungselement (110) eine rechteckige Quaderform aufweist und eine zweite Öffnung (108) definiert, die sich in Längsrichtung durch die rechteckige Quaderform erstreckt, wobei das Belastungsisolierungselement (110) aus Silizium besteht, und wobei der Querschnitt der ersten Öffnung mit einem Außenquerschnitt des Belastungsisolierungselements übereinstimmt; und

    einen Sensorchip (106), der an das Belastungsisolierungselement (110) gebondet ist, wobei der Sensorchip (106) aufweist:

    ein Siliziumsubstrat, das eine Isolatorschicht auf einer ersten Seite (105) des Siliziumsubstrats aufweist; und

    eine Sensorschaltung, die in der Isolatorschicht auf der ersten Seite (105) angebracht ist, wobei eine zweite Seite (107) des Siliziumsubstrats zur zweiten Öffnung (108) des Belastungsisolierungselements (110) freigelegt ist, und wobei sich die zweite Seite (107) entgegengesetzt zur ersten Seite (105) befindet; und

    wobei die zweite Seite des Siliziumsubstrats an eine erste Oberfläche des Belastungsisolierungselement gebondet wird, um einen Silizium-auf-Silizium-Bond zwischen dem Sensorchip und dem Belastungsisolierungselement zu bilden,

    wobei sich das Belastungsisolierungselement (110) von der zweiten Seite (107) des Siliziumsubstrats weg erstreckt, wobei der Sensorchip (106) an das erste Ende des Belastungsisolierungselements (110) montiert ist, wobei der Träger (122) in der Nähe eines zweiten Endes (114) des Belastungsisolierungselements (110) montiert ist, wobei sich das zweite Ende (114) entgegengesetzt zum ersten Ende befindet.


     
    2. Drucksensor (100) nach Anspruch 1, wobei der Träger (122) aus einem Keramikmaterial hergestellt ist.
     
    3. Drucksensor (100) nach Anspruch 1 oder 2, der außerdem eine Beschichtung aus einer Atomlagenabscheidung (126) umfasst, die eine Innenfläche des Belastungsisolierungselements (110) und die zweite Seite (107) des Siliziumsubstrats bedeckt, die dem Medium ausgesetzt sind.
     
    4. Drucksensor (100) nach Anspruch 3, wobei die Beschichtung der Atomlagenabscheidung (126) einen Teil des Trägers (122) bedeckt.
     
    5. Drucksensor (100) nach einem der Ansprüche 1 bis 4, wobei der Träger (122) und das Belastungsisolierungselement (110) mithilfe einer Hartlötung (116) aneinander montiert sind.
     
    6. Drucksensor (110) nach einem der Ansprüche 1 bis 5, wobei eine Kristallorientierung des Belastungsisolierungselements (110) auf eine Kristallorientierung des Sensorchips (106) ausgerichtet ist.
     
    7. Verfahren (300) zum Herstellen eines Drucksensors, wobei das Verfahren umfasst:

    Herstellen von mehreren Gruppen von Piezowiderständen (302) in einer Isolatorschicht eines ersten Siliziumwafers, wobei jede Gruppe von Piezowiderständen einer Sensorschaltung für einen Sensorchip entspricht;

    Ätzen einer Vielzahl von Durchgangsöffnungen (304) in einen zweiten Siliziumwafer, wobei jede Durchgangsöffnung einer ersten Öffnung für ein Belastungsisolierungselement entspricht;

    Bonden des zweiten Siliziumwafers (306) auf eine Seite des ersten Siliziumwafers entgegensetzt zur Isolatorschicht mithilfe eines Niedrigtemperatur-Diffusionsprozesses von Silizium-auf-Silizium und Oberfläche-auf-Oberfläche, wobei das Bonden ein Ausrichten des zweiten Siliziumwafers auf den ersten Siliziumwafer umfasst, sodass sich jede Durchgangsöffnung entgegengesetzt zu einer Gruppe von Piezowiderständen befindet;

    Vereinzeln der gebondeten ersten und zweiten Siliziumwafer (310), um eine Vielzahl von diskreten Drucksensorrohlingen zu bilden, wobei jeder Drucksensorrohling aufweist:

    einen Sensorchip, der an ein Belastungsisolierungselement gebondet ist, wobei der Sensorchip aus einem Teil des ersten Siliziumwafers besteht, der eine Gruppe von Piezowiderständen aufweist; und

    das Belastungsisolierungselement, das aus einem Teil des zweiten Siliziumwafers besteht, wobei das Belastungsisolierungselement eine rechteckige Quaderform aufweist und die erste Öffnung (108) definiert, die sich in Längsrichtung durch die rechteckige Quaderform erstreckt;

    Bereitstellen einer Vielzahl von Trägern, wobei jeder Träger eine zweite Öffnung definiert, die einen gleichförmigen Querschnitt aufweist und die sich durch dem Träger erstreckt, und wobei der Querschnitt der zweiten Öffnung mit einem Außenquerschnitt des Belastungsisolierungselements übereinstimmt;

    Montieren jedes Drucksensorrohlings an einen Träger (312), sodass ein Teil der Außenfläche von jedem Belastungsisolierungselement an der Innenfläche der zweiten Öffnung eines entsprechenden Trägers befestigt wird, wobei das Montieren von jedem Drucksensorrohling an einen Träger ein Hartlöten der Drucksensorvorrichtung an den Träger umfasst, wobei jeder Drucksensorrohling so montiert wird, dass der Träger in der Nähe eines Endes des Belastungsisolierungselements, das sich entgegengesetzt zu einem Ende befindet, in das der Sensorchip montiert ist, an das Belastungsisolierungselement hartgelötet wird;

    Montieren des Belastungsisolierungselements eines Drucksensorrohlings an ein Gehäuse (314);

    Beschichten von Oberflächen des Belastungsisolierungselements und des Sensorchips, die den Medien ausgesetzt werden, mit einer Atomlagenabscheidung eines Metalloxids; und

    Abdichten des Gehäuses (318), sodass die Seite des Sensorchips, welche die Sensorschaltung aufweist, in einer Umgebung liegt, die einen bekannten Druck aufweist und hermetisch von der zweiten Öffnung des Belastungsisolierungselements abgedichtet ist.


     
    8. Verfahren nach Anspruch 7, das umfasst:
    nach dem Bonden des zweiten Siliziumwafers an den ersten Siliziumwafer, Herstellen von Metallleiterbahnen und Drahtbondflächen (308) auf einer Seite des ersten Siliziumwafers, der die Isolatorschicht aufweist, um die Sensorschaltung zu bilden.
     
    9. Verfahren nach einem der Ansprüche 7 oder 8, wobei das Bonden ein Bonden bei weniger als 600 Grad Celsius umfasst.
     
    10. Drucksensor (100) nach einem der Ansprüche 1 bis 6, wobei das Belastungsisolierungselement (110) die gleichen Querschnittsabmessungen wie der Sensorchip (106) aufweist.
     


    Revendications

    1. Capteur (100) de pression comportant :

    un boîtier (104) comportant un orifice (102) d'entrée configuré pour permettre à un milieu de pénétrer à l'intérieur du boîtier (104) lorsque le boîtier (104) est placé dans un environnement contenant le milieu ;

    un support (122) monté à l'intérieur du boîtier (104), le support (122) définissant une première ouverture (112) présentant une section droite uniforme s'étendant à travers le support, et le support étant composé d'un matériau isolant présentant un coefficient de dilatation thermique similaire à celui du silicium ;

    un élément (110) d'isolation de contraintes monté à l'intérieur de la première ouverture (112) du support (122), l'élément (110) d'isolation de contraintes présentant une forme de parallélépipède rectangle et définissant une deuxième ouverture (108) s'étendant longitudinalement à travers la forme de parallélépipède rectangle, l'élément (110) d'isolation de contraintes étant composé de silicium, et la section droite de la première ouverture correspondant à une section droite extérieure de l'élément d'isolation de contraintes ; et

    une pastille (106) de capteur collée à l'élément (110) d'isolation de contraintes, la pastille (106) de capteur comprenant :

    un substrat en silicium doté d'une couche d'isolant sur un premier côté (105) du substrat en silicium ; et

    une circuiterie de détection disposée dans la couche d'isolant sur le premier côté (105), un deuxième côté (107) du substrat en silicium étant exposé à la deuxième ouverture (108) de l'élément (110) d'isolation de contraintes et le deuxième côté (107) étant à l'opposé du premier côté (105) ; et le deuxième côté du substrat en silicium étant collé à une première surface de l'élément d'isolation de contraintes pour former un liaison silicium-silicium entre la pastille de capteur et l'élément d'isolation de contraintes,

    l'élément (110) d'isolation de contraintes s'éloignant du deuxième côté (107) du substrat en silicium, la pastille (106) de capteur étant montée sur une première extrémité de l'élément (110) d'isolation de contraintes, le support (122) étant monté à proximité d'une deuxième extrémité (114) de l'élément (110) d'isolation de contraintes, la deuxième extrémité (114) étant à l'opposé de la première extrémité.


     
    2. Capteur (100) de pression selon la revendication 1, le support (122) étant réalisé à partir d'une céramique.
     
    3. Capteur (100) de pression selon la revendication 1 ou 2, comportant en outre un revêtement (126) par dépôt en couche atomique qui recouvre une surface intérieure de l'élément (110) d'isolation de contraintes et du deuxième côté (107) du substrat en silicium qui sont exposés au milieu.
     
    4. Capteur (100) de pression selon la revendication 3, le revêtement (126) par dépôt en couche atomique recouvrant une partie du support (122).
     
    5. Capteur (100) de pression selon l'une quelconque des revendications 1 à 4, le support (122) et l'élément (110) d'isolation de contraintes étant assemblés à l'aide d'une brasure (116).
     
    6. Capteur (100) de pression selon l'une quelconque des revendications 1 à 5, une orientation cristalline de l'élément (110) d'isolation de contraintes étant alignée avec une orientation cristalline de la pastille (106) de capteur.
     
    7. Procédé (300) de réalisation d'un capteur de pression, le procédé comportant les étapes consistant à :

    réaliser des ensembles multiples de piézo-résistances (302) dans une couche d'isolant d'une première tranche de silicium, chaque ensemble de piézo-résistances correspondant à une circuiterie de détection pour une pastille de capteur ;

    graver une pluralité de trous débouchants (304) dans une deuxième tranche de silicium, chaque trou débouchant correspondant à une première ouverture pour un élément d'isolation de contraintes ;

    coller la deuxième tranche de silicium (306) à un côté de la première tranche de silicium opposé à la couche d'isolant en utilisant un processus de diffusion silicium-silicium, de surface à surface, à basse température, le collage comprenant l'alignement de la deuxième tranche de silicium avec la première tranche de silicium de telle façon que chaque trou débouchant soit à l'opposé d'un ensemble de piézo-résistances ;

    découper en dés les première et deuxième tranches (310) de silicium collées pour former une pluralité de primitives discrètes de capteur de pression, chaque primitive de capteur de pression comprenant :

    une pastille de capteur collée à un élément d'isolation de contraintes, la pastille de capteur étant composée d'une partie de la première tranche de silicium comprenant un ensemble de piézo-résistances ; et

    l'élément d'isolation de contraintes composé d'une partie de la deuxième tranche de silicium, l'élément d'isolation de contraintes présentant une forme de parallélépipède rectangle et définissant la première ouverture (108) s'étendant longitudinalement à travers la forme de parallélépipède rectangle ;

    mettre en place une pluralité de supports, chaque support définissant une deuxième ouverture présentant une section droite uniforme s'étendant à travers le support, et la section droite de la deuxième ouverture correspondant à une section droite extérieure de l'élément d'isolation de contraintes ;

    monter chaque primitive de capteur de pression sur un support (312) de telle façon qu'une partie de la surface extérieure de chaque élément d'isolation de contraintes soit fixée à la surface intérieure de la deuxième ouverture d'un support correspondant, le montage de chaque primitive de capteur de pression sur un support comprenant le brasage du dispositif de capteur de pression sur le support, chaque primitive de capteur de pression étant montée de telle façon que le support soit brasé sur l'élément d'isolation de contraintes à proximité d'une extrémité de l'élément d'isolation de contraintes qui est à l'opposé d'une extrémité dans laquelle est montée la pastille de capteur ;

    monter l'élément d'isolation de contraintes d'une primitive de capteur de pression sur un boîtier (314) ;

    revêtir les surfaces de l'élément d'isolation de contraintes et de la pastille de capteur appelées à être exposées à un milieu par un dépôt en couche atomique d'un oxyde métallique ; et

    étanchéifier le boîtier (318) de telle façon que le côté de la pastille de capteur doté de la circuiterie de détection soit à l'intérieur d'un environnement présentant une pression connue et soit hermétiquement isolé de la deuxième ouverture de l'élément d'isolation de contraintes.


     
    8. Procédé selon la revendication 7, comportant les étapes consistant :
    après avoir collé la deuxième tranche de silicium à la première tranche de silicium, à réaliser des tracés métalliques et des plages (308) de connexion de fils sur un côté de la première tranche de silicium doté de la couche d'isolant pour former une circuiterie de détection.
     
    9. Procédé selon l'une quelconque des revendications 7 et 8, le collage comprenant un collage à moins de 600 degrés Celsius.
     
    10. Capteur (100) de pression selon l'une quelconque des revendications 1 à 6, l'élément (110) d'isolation de contraintes présentant les mêmes dimensions en section droite que la pastille (106) de capteur.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description