TECHNICAL FIELD
[0001] The present invention relates to a flash memory device that uses dummy memory cells
as source line pull down circuits.
BACKGROUND OF THE INVENTION
[0002] Non-volatile memory cells are well known in the art. A first type of prior art non-volatile
memory cell 110 is shown in Figure 1. The memory cell 110 comprises a semiconductor
substrate 112 of a first conductivity type, such as P type. The substrate 112 has
a surface on which there is formed a first region 114 (also known as the source line
SL) of a second conductivity type, such as N type. A second region 116 (also known
as the drain line) also of N type is formed on the surface of the substrate 112. Between
the first region 114 and the second region 116 is a channel region 118. A bit line
BL 120 is connected to the second region 116. A word line WL 122 is positioned above
a first portion of the channel region 118 and is insulated therefrom. The word line
122 has little or no overlap with the second region 116. A floating gate FG 124 is
over another portion of the channel region 118. The floating gate 124 is insulated
therefrom, and is adjacent to the word line 122. The floating gate 124 is also adjacent
to the first region 114. The floating gate 124 may overlap the first region 114 significantly
to provide strong coupling from the region 114 into the floating gate 124.
[0003] One exemplary operation for erase and program of prior art non-volatile memory cell
110 is as follows. The cell 110 is erased, through a Fowler-Nordheim tunneling mechanism,
by applying a high voltage on the word line 122 and zero volts to the bit line and
source line. Electrons tunnel from the floating gate 124 into the word line 122 causing
the floating gate 124 to be positively charged, turning on the cell 110 in a read
condition. The resulting cell erased state is known as '1' state. The cell 110 is
programmed, through a source side hot electron programming mechanism, by applying
a high voltage on the source line 114, a small voltage on the word line 122, and a
programming current on the bit line 120. A portion of electrons flowing across the
gap between the word line 122 and the floating gate 124 acquire enough energy to inject
into the floating gate 124 causing the floating gate 124 to be negatively charged,
turning off the cell 110 in read condition. The resulting cell programmed state is
known as '0' state.
[0004] Exemplary voltages that can be used for the read, program, erase, and standby operations
in memory cell 110 is shown below in Table 1:
|
|
TABLE 1 |
|
Operation |
WL |
WL-unsel |
BL |
BL-unsel |
SL |
SL-unsel |
Read |
Vwlrd |
0V |
Vblrd |
0V |
0V |
0V |
Program |
Vwlp |
0V |
Iprog |
Vinh |
Vslp |
0-1V-FLT |
Erase |
Vwler |
0V |
0V |
0V |
0V |
0V |
Standby |
0V |
0V |
0V |
0V |
0V |
0V |
|
|
|
Vwlrd ∼2-3V |
|
Vblrd ∼0.8-2V |
Vwlp ∼1-2V |
Vwler ∼11-13V |
Vslp ∼9-10V |
|
|
|
FLT = float |
|
Iprog ∼1-3ua |
Vinh ∼2V |
[0005] A second type of prior art non-volatile memory cell 210 is shown in Figure 2. The
memory cell 210 comprises a semiconductor substrate 212 of a first conductivity type,
such as P type. The substrate 212 has a surface on which there is formed a first region
214 (also known as the source line SL) of a second conductivity type, such as N type.
A second region 216 (also known as the drain line) also of N type is formed on the
surface of the substrate 212. Between the first region 214 and the second region 216
is a channel region 218. A bit line BL 220 is connected to the second region 216.
A word line WL 222 is positioned above a first portion of the channel region 218 and
is insulated therefrom. The word line 222 has little or no overlap with the second
region 216. A floating gate FG 224 is over another portion of the channel region 218.
The floating gate 224 is insulated therefrom, and is adjacent to the word line 222.
The floating gate 224 is also adjacent to the first region 214. The floating gate
224 may overlap the first region 214 to provide coupling from the region 214 into
the floating gate 224. A coupling gate CG (also known as control gate) 226 is over
the floating gate 224 and is insulated therefrom.
[0006] One exemplary operation for erase and program of prior art non-volatile memory cell
210 is as follows. The cell 210 is erased, through a Fowler-Nordheim tunneling mechanism,
by applying a high voltage on the word line 222 with other terminals equal to zero
volt. Electrons tunnel from the floating gate 224 into the word line 222 to be positively
charged, turning on the cell 210 in a read condition. The resulting cell erased state
is known as '1' state. The cell 210 is programmed, through a source side hot electron
programming mechanism, by applying a high voltage on the coupling gate 226, a high
voltage on the source line 214, and a programming current on the bit line 220. A portion
of electrons flowing across the gap between the word line 222 and the floating gate
224 acquire enough energy to inject into the floating gate 224 causing the floating
gate 224 to be negatively charged, turning off the cell 210 in read condition. The
resulting cell programmed state is known as '0' state.
[0007] Exemplary voltages that can be used for the read, program, erase, and standby operations
in memory cell 210 is shown below in Table 2:
TABLE 2 |
Operation |
WL |
WL-unselect |
BL |
BL-unselect |
CG |
CG-unselect same sector |
CG-unselect |
SL |
SL-unselect |
Read |
1.0-3V |
0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
11-10V |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
Program |
1V |
0V |
1uA |
Vinh |
8-11V |
0-2.6V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0008] Another set of exemplary voltages (when a negative voltage is available for read
and program operations) that can be used for the read, program, and erase operations
in memory cell 210 is shown below in Table 3:
TABLE 3 |
Operation |
WL |
WL-unselect |
BL |
BL-unselect |
CG |
CG-unselect same sector |
CG-unselect |
SL |
SL-unselect |
Read |
1.0-2V |
-0.5V/0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
11-10V |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
Program |
1V |
-0.5V/0V |
1uA |
Vinh |
8-11V |
0-2.6V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0009] Another set of exemplary voltages (when a negative voltage is available for read,
program, and erase operations) that can be used for the read, program, and erase operations
in memory cell 210 is shown below in Table 4:
TABLE 4 |
Operation |
WL |
WL-unselect |
BL |
BL-unselect |
CG |
CG-unselect same sector |
CG-unselect |
SL |
SL-unselect |
Read |
1.0-2V |
-0.5V/0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
9-6V |
-0.5V/0V |
0V |
0V |
-(5-9)V |
0V |
0V |
0V |
0V |
Program |
1V |
-0.5V/0V |
1uA |
Vinh |
8-9V |
0-2.6V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0010] A third type of non-volatile memory cell 310 is shown in Figure 3. The memory cell
310 comprises a semiconductor substrate 312 of a first conductivity type, such as
P type. The substrate 312 has a surface on which there is formed a first region 314
(also known as the source line SL) of a second conductivity type, such as N type.
A second region 316 (also known as the drain line) also of N type is formed on the
surface of the substrate 312. Between the first region 314 and the second region 316
is a channel region 318. A bit line BL 320 is connected to the second region 316.
A word line WL 322 is positioned above a first portion of the channel region 318 and
is insulated therefrom. The word line 322 has little or no overlap with the second
region 316. A floating gate FG 324 is over another portion of the channel region 318.
The floating gate 324 is insulated therefrom, and is adjacent to the word line 322.
The floating gate 324 is also adjacent to the first region 314. The floating gate
324 may overlap the first region 314 to provide coupling from the region 314 into
the floating gate 324. A coupling gate CG (also known as control gate) 326 is over
the floating gate 324 and is insulated therefrom. An erase gate EG 328 is over the
first region 314 and is adjacent to the floating gate 324 and the coupling gate 326
and is insulated therefrom. The top corner of the floating gate 324 may point toward
the inside corner of the T-shaped erase gate 328 to enhance erase efficiency. The
erase gate 328 is also insulated from the first region 314. The cell 310 is more particularly
described in USP
7,868,375.
[0011] One exemplary operation for erase and program of prior art non-volatile memory cell
310 is as follows. The cell 310 is erased, through a Fowler-Nordheim tunneling mechanism,
by applying a high voltage on the erase gate 328 with other terminals equal to zero
volt. Electrons tunnel from the floating gate 324 into the erase gate 328 causing
the floating gate 324 to be positively charged, turning on the cell 310 in a read
condition. The resulting cell erased state is known as '1' state. The cell 310 is
programmed, through a source side hot electron programming mechanism, by applying
a high voltage on the coupling gate 326, a high voltage on the source line 314, a
medium voltage on the erase gate 328, and a programming current on the bit line 320.
A portion of electrons flowing across the gap between the word line 322 and the floating
gate 324 acquire enough energy to inject into the floating gate 324 causing the floating
gate 324 to be negatively charged, turning off the cell 310 in read condition. The
resulting cell programmed state is known as '0' state.
[0012] Exemplary voltages that can be used for the read, program, and erase operations in
memory cell 310 is shown below in Table 5:
TABLE 5 |
Operation |
WL |
WL-unsel |
BL |
BL-unsel |
CG |
CG-unsel same sector |
CG-unsel |
EG |
EG-unsel |
SL |
SL-unsel |
Read |
1.0-2V |
0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
11.5-12V |
0-2.6V |
0V |
0V |
Program |
1V |
0V |
1uA |
Vinh |
10-11V |
0-5V |
0-2.6V |
4.5-8V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0013] For programming operation, the EG voltage can be applied much higher, e.g. 8V, than
the SL voltage, e.g., 5V, to enhance the programming operation. In this case, the
unselected CG program voltage is applied at a higher voltage (CG inhibit voltage),
e.g. 6V, to reduce unwanted erase effect of the adjacent memory cells sharing the
same EG gate of the selected memory cells.
[0014] Another set of exemplary voltages (when a negative voltage is available for read
and program operations) that can be used for the read, program, and erase operations
in memory cell 310 is shown below in Table 6:
TABLE 6 |
Operation |
WL |
WL-unsel |
BL |
BL-unsel |
CG |
CG-unsel same sector |
CG-unsel |
EG |
EG-unsel |
SL |
SL-unsel |
Read |
1.0-2V |
-0.5V/0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
0V |
0V |
0V |
0V |
0V |
0V |
0V |
11.5-12V |
0-2.6V |
0V |
0V |
Program |
1V |
-0.5V/0V |
1uA |
Vinh |
10-11V |
0-2.6V |
0-2.6V |
4.5-5V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0015] Another set of exemplary voltages (when a negative voltage is available for read,
program, and erase operations) that can be used for the read, program, and erase operations
in memory cell 310 is shown below in Table 7:
TABLE 7 |
Operation |
WL |
WL-unsel |
BL |
BL-unsel |
CG |
CG-unsel same sector |
CG-unsel |
EG |
EG-unsel |
SL |
SL-unsel |
Read |
1.0-2V |
-0.5V/0V |
0.6-2V |
0V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0-2.6V |
0V |
0V |
Erase |
0V |
-0.5V/0V |
0V |
0V |
-(5-9)V |
0V |
0V |
9-8V |
0-2.6V |
0V |
0V |
Program |
1V |
-0.5V/0V |
1uA |
Vinh |
8-9V |
0-5V |
0-2.6V |
8-9V |
0-2.6V |
4.5-5V |
0-1V-FLT |
[0016] For programming operation, the EG voltage is applied much higher, e.g. 8-9V, than
the SL voltage, e.g., 5V, to enhance the programming operation. In this case, the
unselected CG program voltage is applied at a higher voltage (CG inhibit voltage),
e.g. 5V, to reduce unwanted erase effects of the adjacent memory cells sharing the
same EG gate of the selected memory cells.
[0017] Memory cells of the types shown in Figures 1-3 typically are arranged into rows and
columns to form an array. Erase operations are performed on entire rows or pairs of
rows at one time, since word lines control entire rows of memory cells and erase gates
(of the type shown in Figure 3), when present, are shared by pairs of rows of memory
cells.
[0018] For each of the prior art memory cells of Figures 1-3, and as can be seen in the
above Tables, it often is necessary to pull the source line down to ground. Figure
4 depicts a typical prior art technique for doing this. Memory system 400 comprises
memory cell 410, word line 422, control gate 426, erase gate 428, bit line 420, and
source line 414. Memory cell 410 can be any of the types shown in Figures 1-3, namely,
memory cell 110, memory cell 210, memory cell 310, or another type of memory cell.
Source line 414 is coupled to pull down transistor 430, which here comprises a single
NMOS transistor. When the gate of pull down transistor 430 is activated, the source
line is pulled down to ground. In a flash memory system, numerous pull down circuits
of will be required, and each source line may require more than one pull down circuit.
These pull down transistors require operating voltages of around 0-1.2 V for low voltage
operations and 4-5-11.5 V for high voltage operations. This means that high voltage
transistor type (e.g., 11.5v transistor) or IO transistor type (e.g., 2.5V or 3v transistor)
is required for the pull down transistors, which takes up die space and increases
the overall cost and complexity of the system. In addition, the pull down transistors
can incur over stress and break down during program mode.
[0020] US 2006/0083064 A1 discloses a semiconductor memory device including a memory cell array, first bit
lines, second bit lines, a first precharge circuit, a sense amplifier, and a read
control circuit. The memory cell array has a first cell array including first memory
cells arranged in a matrix and a second cell array including second memory cells.
The first bit line electrically connects the first memory cells in a same column.
The second bit line electrically connects the second memory cells in a same column.
The first precharge circuit precharges the first bit lines in a read operation. The
sense amplifier amplifies the data read from the first memory cells in a read operation.
The read control circuit precharges and discharges the second bit lines in a read
operation and, on the basis of the time required to precharge and discharge the second
bit lines, controls the first precharge circuit and the sense amplifier.
[0021] US 2010/0226181 A1 discloses a non-volatile memory device comprising an array of non-volatile memory
cells arranged in a plurality of rows and columns. Each memory cell has a bit terminal
for connection to a bit line, a high voltage terminal for connection to a high voltage
source, and a low voltage terminal for connection to a low voltage source. The array
has a first side adjacent to a first column of memory cells, and a second side opposite
the first side, a third side adjacent to a first row of memory cells, and a fourth
side opposite the third side. The memory device further comprises a plurality of columns
of reference memory cells embedded in the memory array, with a plurality of reference
cells in each row of the array of non-volatile memory cells, substantially evenly
spaced apart from one another. Each of the reference memory cells is substantially
the same as the non-volatile memory cells, and has a bit terminal for connection to
a bit line, a high voltage terminal for connection to a high voltage source and a
low voltage terminal for connection to a low voltage source. A high voltage decoder
is positioned on the first side, and has a plurality of high voltage lines, with each
high voltage line connected to the high voltage terminal of the memory cells and reference
cells in the same row. A low voltage row decoder is positioned on the second side,
and has a plurality of low voltage lines, with each low voltage line connected to
the low voltage terminal of the memory cells and reference cells in the same row.
A plurality of sense amplifiers are positioned on the third side, with each sense
amplifier connected to the bit terminal of one column of non-volatile memory cells
and to the bit terminal of a column of reference memory cells. This invention also
includes N-of-M selective reference scheme, distributed source line pull down, source
line resistance strap compensation, replica-data-pattern current consumption, data
current compensation, and bit line voltage error compensation.
[0022] US 2015/0228345 A1 discloses that in a method of programming a non-volatile memory device, a first voltage
is applied to a selected memory cell for programming, and a second voltage is applied
to a non-selected memory cell. Before the second voltage rises to a predetermined
voltage level, which is less than a program voltage level, the first voltage is greater
than the second voltage or the second voltage is maintained at greater than a ground
voltage level. Related non-volatile memory devices and memory systems are also discussed.
[0023] What is needed is a new technique for pulling source lines to ground in a flash memory
system that can use the same operating voltage range as the memory cells themselves
and that are more robust to over stress and break down.
SUMMARY OF THE INVENTION
SUMMARY OF THE INVENTION
[0024] In the embodiments described below, flash memory devices utilize dummy memory cells
as source line pull down circuits. The present invention is defined by independent
claim 1. Further preferred embodiments are defined by the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025]
Figure 1 is a cross-sectional view of a non-volatile memory cell of the prior art
to which the method of the present invention can be applied.
Figure 2 is a cross-sectional view of a non-volatile memory cell of the prior art
to which the method of the present invention can be applied.
Figure 3 is a cross-sectional view of a non-volatile memory cell of the prior art
to which the method of the present invention can be applied.
Figure 4 depicts a prior art memory cell with a pull down transistor coupled to the
source line.
Figure 5 depicts an embodiment where a dummy memory cell is used as a pull down circuit
for a source line.
Figure 6 depicts an embodiment where a plurality of dummy memory cells are used as
a pull down circuit for a source line.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0026] An embodiment is shown in Figure 5. Flash memory system 500 comprises exemplary memory
cell 410 and exemplary dummy memory cell 510. Dummy memory cell 510 is of the same
construction as memory cell 410 except that dummy memory cell 510 is not used to store
data. Source line 414 of memory cell 410 is coupled to source line 514 of dummy memory
cell 510. In the example shown, memory cell 410 and dummy memory cell 510 follow the
design of memory cell 310 in Figure 3. It will be understood that memory cell 410
and dummy memory cell 510 also can follow the design of memory cell 210 in Figure
2 (in which case erase gates 428 and 528 will not be present) or memory cell 110 in
Figure 1 (in which case erase gates 428 and 529 and control gate 426 and 526 will
not be present).
[0027] When memory cell 410 is in read mode or erase mode, source line 514 is coupled to
ground through the memory cell 510 to dummy bitline 520 which is coupled to ground.
The dummy memory cells 150 are required to be erased before read operation. This will
pull source line 414 and source line 514 to ground.
[0028] When the memory cell 410 is in program mode, the bitline line 520 is coupled to an
inhibit voltage such as VDD. This will place the dummy memory cell 510 in a program
inhibit mode which maintain the dummy memory cells in erased state.. There is a plurality
of the dummy cells 520 to strengthen the pull down of the source line 414 to ground.
[0029] Another embodiment is shown in Figure 6. Flash memory system 600 comprises exemplary
memory cells 620 and exemplary dummy memory cell circuit 610. Dummy memory cell 610
comprises a plurality of dummy memory cells coupled to one another. In this example,
source line 630 (also labeled SL0) and source line 640 (also labeled SL1) from memory
cells 620 are coupled to source line of dummy memory cell circuit 610. In this embodiment
source line 630 SL0 and source line 640 SL1 are connected together.
[0030] Thus, the source lines for an entire sector or sectors of memory cells can be coupled
together to a source line of dummy memory cell circuit comprising dummy memory cells
from the same rows of cells that are part of the sector or sectors.
[0031] When memory cell 620 are in read mode or erase mode, dummy memory cell circuit 620
will be coupled to ground through the dummy bitlines. The dummy memory cells are required
to be erased before read operation. This will pull source lines 630 and 640 to ground.
[0032] When memory cell 620 are in program mode, the dummy bitlines of memory cell circuit
620 will be coupled to an inhibit voltage such as VDD. This will place dummy memory
cells in a program inhibit mode which maintain the dummy memory cells in erased state..
[0033] Optionally, word line 650 (also labeled WL_rdcellpdwn, which is separate from wordlines
of the memory cell 620) and control gate 660 (also labeled CG_rdcellpdwn, which is
separate from control gates for the memory cell 620) are biased at a different voltage
than that of the memory cell 620 such as VDD or higher during read or standby modes
to minimize the current drop across the dummy memory cells.
[0034] The embodiments of Figures 5 and 6 have numerous benefits over the prior art. First,
the source line pull down current is distributed among many dummy memory cells and
metal paths, which results in lower electromagnetic interference and less decoding
interconnection. Second, there is less current drop across the dummy memory cells
compared to the pull down high voltage transistors of the prior art. Third, the embodiments
require less die space versus the high voltage transistor pull down solution. Fourth,
bias and logic control of the embodiments are simpler than that of the pull down transistors
of the prior art. This results in less overstress and break down during programming
modes.
1. A flash memory system (500, 600) comprising:
a first plurality of flash memory cells (410) arranged in a row, each of the first
plurality of flash memory cells comprising a drain and a source, wherein the source
of each of the first plurality of flash memory cells is directly connected to a common
source line (630 or 640, or 414);
a plurality of dummy flash memory cells (510, 610) directly connected to the common
source line (414, 514) and to a dummy bit line (520), wherein the common source line
is coupled to ground (GND) through the dummy bit line when the first plurality of
flash memory cells are in a read mode or an erase mode and the dummy bit line is coupled
to a voltage source (VDD) when the first plurality of flash memory cells is in a program
mode.
wherein each of the first plurality of flash memory cells and each of the plurality
of dummy flash memory cells comprise a channel region (118, 218, 318) between the
source (114. 214, 314) of the cell and the drain (116, 216, 316) of the cell, a word
line terminal (122, 222, 322) positioned above a first portion of the channel region,
and a floating gate (124, 224, 324) adjacent to the word line terminal and positioned
above a second portion of the channel region.
2. The system of claim 1, wherein each of the first plurality of flash memory cells comprises
a control gate terminal (226, 326) and each of the plurality of dummy flash memory
cells comprises a control gate terminal (226, 326).
3. The system of claim 1, wherein the word line terminal of each of the first plurality
of flash memory cells is coupled to a word line and the word line terminal of each
of the plurality of dummy flash memory cells is coupled to a dummy word line.
4. The system of claim 2, wherein the control gate terminal of each of the plurality
of dummy memory cells is biased at a different voltage than the control gate terminal
of each of the first plurality of the flash memory cells when the first plurality
of flash memory cells are in a read mode.
5. The system of claim 3, wherein the dummy word line is biased at a different voltage
than the word line when the first plurality of flash memory cells are in a read mode.
6. The system of claim 2, wherein each of the first plurality of flash memory cells comprises
an erase gate terminal (328) and each of the plurality of dummy flash memory cells
comprises an erase gate terminal (328).
7. The system of claim 1, wherein the first plurality of flash memory cells form a sector
of flash memory cells that can be erased as a unit.
8. The system of claim 1, further comprising a second plurality of flash memory cells,
each of the second plurality of flash memory cells comprising a drain and a source,
wherein the source of each of the second plurality of flash memory cells is coupled
to a second common source line (640 or 630), wherein the second common source line
is coupled to the common source line when the first plurality of flash memory cells
are in a read mode or an erase mode.
9. The system of claim 8, wherein the first plurality of flash memory cells form a sector
of flash memory cells that can be erased as a unit.
10. The system of claim 9, wherein the second plurality of flash memory cells form a sector
of flash memory cells that can be erased as a unit.
11. The system of claim 8, wherein the first plurality of flash memory cells and the second
plurality of flash memory cells form a sector of flash memory cells that can be erased
as a unit.
1. Flash-Speichersystem (500, 600), umfassend:
eine erste Mehrzahl von Flash-Speicherzellen (410), die in einer Reihe angeordnet
sind, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen Drain und eine
Quelle umfasst, wobei die Quelle jeder der ersten Mehrzahl von Flash-Speicherzellen
direkt mit einer gemeinsamen Quellleitung (630 oder 640 oder 414) verbunden ist;
eine Mehrzahl von Schein-Flash-Speicherzellen (510, 610), die direkt mit der gemeinsamen
Quellleitung (414, 514) und mit einer Schein-Bitleitung (520) verbunden sind, wobei
die gemeinsame Quellleitung mit Masse (GND) über die Schein-Bitleitung verbunden ist,
wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus oder einem
Löschmodus befindet, und die Schein-Bitleitung mit einer Spannungsquelle (VDD) verbunden
ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Programmmodus
befindet;
wobei jeder der ersten Mehrzahl von Flash-Speicherzellen und jeder der Mehrzahl von
Schein-Flash-Speicherzellen einen Kanalbereich (118, 218, 318) zwischen der Quelle
(114, 214, 314) der Zelle und dem Drain (116, 216, 316) der Zelle, einen Wortleitungsanschluss
(122, 222, 322), der über einem ersten Abschnitt des Kanalbereichs positioniert ist,
und ein Floating-Gate (124, 224, 324), das angrenzend an den Wortleitungsanschluss
und über einem zweiten Abschnitt des Kanalbereichs positioniert ist, umfasst.
2. System nach Anspruch 1, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen
Steuergate-Anschluss (226, 326) umfasst und jede der Mehrzahl von Schein-Flash-Speicherzellen
einen Steuergate-Anschluss (226, 326) umfasst.
3. System nach Anspruch 1, wobei der Wortleitungsanschluss jeder der ersten Mehrzahl
von Flash-Speicherzellen mit einer Wortleitung gekoppelt ist und der Wortleitungsanschluss
jeder der Mehrzahl von Schein-Flash-Speicherzellen mit einer Schein-Wortleitung gekoppelt
ist.
4. System nach Anspruch 2, wobei der Steuergate-Anschluss jeder der Mehrzahl von Schein-Flash-Speicherzellen
mit einer anderen Spannung vorgespannt ist als der Steuergate-Anschluss jeder der
ersten Mehrzahl von Flash-Speicherzellen, wenn sich die erste Mehrzahl von Flash-Speicherzellen
in einem Lesemodus befindet.
5. System nach Anspruch 3, wobei die Schein-Wortleitung mit einer anderen Spannung als
die Wortleitung vorgespannt ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen
in einem Lesemodus befindet.
6. System nach Anspruch 2, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen
Löschgate-Anschluss (328) umfasst und jede der Mehrzahl von Schein-Flash-Speicherzellen
einen Löschgate-Anschluss (328) umfasst.
7. System nach Anspruch 1, wobei die erste Mehrzahl von Flash-Speicherzellen einen Sektor
von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
8. System nach Anspruch 1, ferner umfassend eine zweite Mehrzahl von Flash-Speicherzellen,
wobei jede der zweiten Mehrzahl von Flash-Speicherzellen einen Drain und eine Quelle
umfasst, wobei die Quelle jeder der zweiten Mehrzahl von Flash-Speicherzellen mit
einer zweiten gemeinsamen Quellleitung (640 oder 630) gekoppelt ist, wobei die zweite
gemeinsame Quellleitung mit der gemeinsamen Quellleitung gekoppelt ist, wenn sich
die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus oder einem Löschmodus
befindet.
9. System nach Anspruch 8, wobei die erste Mehrzahl von Flash-Speicherzellen einen Sektor
von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
10. System nach Anspruch 9, wobei die zweite Mehrzahl von Flash-Speicherzellen einen Sektor
von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
11. System nach Anspruch 8, wobei die erste Mehrzahl von Flash-Speicherzellen und die
zweite Mehrzahl von Flash-Speicherzellen einen Sektor von Flash-Speicherzellen bilden,
der als eine Einheit gelöscht werden kann.
1. Système de mémoire flash (500, 600) comprenant :
une première pluralité de cellules de mémoire flash (410) agencées en une rangée,
chacune de la première pluralité de cellules de mémoire flash comprenant un drain
et une source, dans lequel la source de chacune de la première pluralité de cellules
de mémoire flash est directement reliée à une ligne source commune (630 ou 640, ou
414) ;
une pluralité de cellules de mémoire flash factices (510, 610) directement reliées
à la ligne source commune (414, 514) et à une ligne de bit factice (520), où la ligne
source commune est couplée à la masse (GND) à travers la ligne de bit factice lorsque
la première pluralité de cellules de mémoire flash sont en mode lecture ou en mode
effacement et la ligne de bit factice est couplée à une source de tension (VDD) lorsque
la première pluralité de cellules de mémoire flash sont en mode programme,
dans lequel chacune de la première pluralité de cellules de mémoire flash et chacune
de la pluralité de cellules de mémoire flash factices comprend une région de canal
(118, 218, 318) entre la source (114, 214, 314) de la cellule et le drain (116, 216,
316) de la cellule, une borne de ligne de mot (122, 222, 322) positionnée au-dessus
d'une première partie de la région de canal, et une grille flottante (124, 224, 324)
adjacente à la borne de ligne de mot et positionnée au-dessus d'une deuxième partie
de la région de canal.
2. Système selon la revendication 1, dans lequel chacune de la première pluralité de
cellules de mémoire flash comprend une borne de grille de commande (226, 326) et chacune
de la pluralité de cellules de mémoire flash factices comprend une borne de grille
de commande (226, 326).
3. Système selon la revendication 1, dans lequel la borne de ligne de mot de chacune
de la première pluralité de cellules de mémoire flash est couplée à une ligne de mot,
et la borne de ligne de mot de chacune de la pluralité de cellules de mémoire flash
factices est couplée à une ligne de mot factice.
4. Système selon la revendication 2, dans lequel la borne de grille de commande de chacune
de la pluralité de cellules de mémoire factices est polarisée à une tension différente
de celle de la borne de grille de commande de chacune de la première pluralité de
cellules de mémoire flash lorsque la première pluralité de cellules de mémoire flash
sont en mode lecture.
5. Système selon la revendication 3, dans lequel la ligne de mot factice est polarisée
à une tension différente de celle de la ligne de mot lorsque la première pluralité
de cellules de mémoire flash sont en mode lecture.
6. Système selon la revendication 2, dans lequel chacune de la première pluralité de
cellules de mémoire flash comprend un terminal de grille d'effacement (328) et chacune
de la pluralité de cellules de mémoire flash factices comprend un terminal de grille
d'effacement (328).
7. Système selon la revendication 1, dans lequel la première pluralité de cellules de
mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées
en tant qu'unité.
8. Système selon la revendication 1, comprenant en outre une deuxième pluralité de cellules
de mémoire flash, chacune de la deuxième pluralité de cellules de mémoire flash comprenant
un drain et une source, dans lequel la source de chacune de la deuxième pluralité
de cellules de mémoire flash est couplée à une deuxième ligne source commune (640
ou 630), où la deuxième ligne source commune est couplée à la ligne source commune
lorsque la première pluralité de cellules de mémoire flash sont en mode lecture ou
en mode effacement.
9. Système selon la revendication 8, dans lequel la première pluralité de cellules de
mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées
en tant qu'unité.
10. Système selon la revendication 9, dans lequel la deuxième pluralité de cellules de
mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées
en tant qu'unité.
11. Système selon la revendication 8, dans lequel la première pluralité de cellules de
mémoire flash et la deuxième pluralité de cellules de mémoire flash forment un secteur
de cellules de mémoire flash qui peuvent être effacées en tant qu'unité.