(19)
(11) EP 3 347 899 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
07.08.2019 Bulletin 2019/32

(21) Application number: 16758011.7

(22) Date of filing: 12.08.2016
(51) International Patent Classification (IPC): 
G11C 16/08(2006.01)
G11C 16/14(2006.01)
G11C 16/30(2006.01)
G11C 16/04(2006.01)
G11C 16/28(2006.01)
G11C 7/14(2006.01)
(86) International application number:
PCT/US2016/046925
(87) International publication number:
WO 2017/044251 (16.03.2017 Gazette 2017/11)

(54)

FLASH MEMORY SYSTEM USING DUMMY MEMORY CELL AS SOURCE LINE PULL DOWN CIRCUIT

FLASH-SPEICHERSYSTEM MIT DUMMYSPEICHERZELLE ALS PULLDOWN-SCHALTUNG FÜR SOURCELEITUNG

SYSTÈME DE MÉMOIRE FLASH UTILISANT UNE CELLULE DE MÉMOIRE FICTIVE EN TANT QUE CIRCUIT D'EXCURSION BASSE DE LIGNE SOURCE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 11.09.2015 CN 201510647190
21.10.2015 US 201514919005

(43) Date of publication of application:
18.07.2018 Bulletin 2018/29

(73) Proprietor: Silicon Storage Technology Inc.
San Jose, CA 95134 (US)

(72) Inventors:
  • BAI, Ning
    Shanghai (CN)
  • TRAN, Hieu, Van
    San Jose, CA 95135 (US)
  • RAO, Qing
    Shanghai (CN)
  • GHAZAVI, Parviz
    San Jose, CA 95135 (US)
  • YUE, Kai, Man
    Pudong Shanghai 200120 (CN)

(74) Representative: Betten & Resch 
Patent- und Rechtsanwälte PartGmbB Maximiliansplatz 14
80333 München
80333 München (DE)


(56) References cited: : 
US-A1- 2006 083 064
US-A1- 2009 279 356
US-A1- 2011 085 385
US-A1- 2013 148 423
US-A1- 2007 070 703
US-A1- 2010 226 181
US-A1- 2011 211 392
US-A1- 2015 228 345
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a flash memory device that uses dummy memory cells as source line pull down circuits.

    BACKGROUND OF THE INVENTION



    [0002] Non-volatile memory cells are well known in the art. A first type of prior art non-volatile memory cell 110 is shown in Figure 1. The memory cell 110 comprises a semiconductor substrate 112 of a first conductivity type, such as P type. The substrate 112 has a surface on which there is formed a first region 114 (also known as the source line SL) of a second conductivity type, such as N type. A second region 116 (also known as the drain line) also of N type is formed on the surface of the substrate 112. Between the first region 114 and the second region 116 is a channel region 118. A bit line BL 120 is connected to the second region 116. A word line WL 122 is positioned above a first portion of the channel region 118 and is insulated therefrom. The word line 122 has little or no overlap with the second region 116. A floating gate FG 124 is over another portion of the channel region 118. The floating gate 124 is insulated therefrom, and is adjacent to the word line 122. The floating gate 124 is also adjacent to the first region 114. The floating gate 124 may overlap the first region 114 significantly to provide strong coupling from the region 114 into the floating gate 124.

    [0003] One exemplary operation for erase and program of prior art non-volatile memory cell 110 is as follows. The cell 110 is erased, through a Fowler-Nordheim tunneling mechanism, by applying a high voltage on the word line 122 and zero volts to the bit line and source line. Electrons tunnel from the floating gate 124 into the word line 122 causing the floating gate 124 to be positively charged, turning on the cell 110 in a read condition. The resulting cell erased state is known as '1' state. The cell 110 is programmed, through a source side hot electron programming mechanism, by applying a high voltage on the source line 114, a small voltage on the word line 122, and a programming current on the bit line 120. A portion of electrons flowing across the gap between the word line 122 and the floating gate 124 acquire enough energy to inject into the floating gate 124 causing the floating gate 124 to be negatively charged, turning off the cell 110 in read condition. The resulting cell programmed state is known as '0' state.

    [0004] Exemplary voltages that can be used for the read, program, erase, and standby operations in memory cell 110 is shown below in Table 1:
        TABLE 1  
    Operation WL WL-unsel BL BL-unsel SL SL-unsel
    Read Vwlrd 0V Vblrd 0V 0V 0V
    Program Vwlp 0V Iprog Vinh Vslp 0-1V-FLT
    Erase Vwler 0V 0V 0V 0V 0V
    Standby 0V 0V 0V 0V 0V 0V
          Vwlrd ∼2-3V  
    Vblrd ∼0.8-2V
    Vwlp ∼1-2V
    Vwler ∼11-13V
    Vslp ∼9-10V
          FLT = float  
    Iprog ∼1-3ua
    Vinh ∼2V


    [0005] A second type of prior art non-volatile memory cell 210 is shown in Figure 2. The memory cell 210 comprises a semiconductor substrate 212 of a first conductivity type, such as P type. The substrate 212 has a surface on which there is formed a first region 214 (also known as the source line SL) of a second conductivity type, such as N type. A second region 216 (also known as the drain line) also of N type is formed on the surface of the substrate 212. Between the first region 214 and the second region 216 is a channel region 218. A bit line BL 220 is connected to the second region 216. A word line WL 222 is positioned above a first portion of the channel region 218 and is insulated therefrom. The word line 222 has little or no overlap with the second region 216. A floating gate FG 224 is over another portion of the channel region 218. The floating gate 224 is insulated therefrom, and is adjacent to the word line 222. The floating gate 224 is also adjacent to the first region 214. The floating gate 224 may overlap the first region 214 to provide coupling from the region 214 into the floating gate 224. A coupling gate CG (also known as control gate) 226 is over the floating gate 224 and is insulated therefrom.

    [0006] One exemplary operation for erase and program of prior art non-volatile memory cell 210 is as follows. The cell 210 is erased, through a Fowler-Nordheim tunneling mechanism, by applying a high voltage on the word line 222 with other terminals equal to zero volt. Electrons tunnel from the floating gate 224 into the word line 222 to be positively charged, turning on the cell 210 in a read condition. The resulting cell erased state is known as '1' state. The cell 210 is programmed, through a source side hot electron programming mechanism, by applying a high voltage on the coupling gate 226, a high voltage on the source line 214, and a programming current on the bit line 220. A portion of electrons flowing across the gap between the word line 222 and the floating gate 224 acquire enough energy to inject into the floating gate 224 causing the floating gate 224 to be negatively charged, turning off the cell 210 in read condition. The resulting cell programmed state is known as '0' state.

    [0007] Exemplary voltages that can be used for the read, program, erase, and standby operations in memory cell 210 is shown below in Table 2:
    TABLE 2
    Operation WL WL-unselect BL BL-unselect CG CG-unselect same sector CG-unselect SL SL-unselect
    Read 1.0-3V 0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 11-10V 0V 0V 0V 0V 0V 0V 0V 0V
    Program 1V 0V 1uA Vinh 8-11V 0-2.6V 0-2.6V 4.5-5V 0-1V-FLT


    [0008] Another set of exemplary voltages (when a negative voltage is available for read and program operations) that can be used for the read, program, and erase operations in memory cell 210 is shown below in Table 3:
    TABLE 3
    Operation WL WL-unselect BL BL-unselect CG CG-unselect same sector CG-unselect SL SL-unselect
    Read 1.0-2V -0.5V/0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 11-10V 0V 0V 0V 0V 0V 0V 0V 0V
    Program 1V -0.5V/0V 1uA Vinh 8-11V 0-2.6V 0-2.6V 4.5-5V 0-1V-FLT


    [0009] Another set of exemplary voltages (when a negative voltage is available for read, program, and erase operations) that can be used for the read, program, and erase operations in memory cell 210 is shown below in Table 4:
    TABLE 4
    Operation WL WL-unselect BL BL-unselect CG CG-unselect same sector CG-unselect SL SL-unselect
    Read 1.0-2V -0.5V/0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 9-6V -0.5V/0V 0V 0V -(5-9)V 0V 0V 0V 0V
    Program 1V -0.5V/0V 1uA Vinh 8-9V 0-2.6V 0-2.6V 4.5-5V 0-1V-FLT


    [0010] A third type of non-volatile memory cell 310 is shown in Figure 3. The memory cell 310 comprises a semiconductor substrate 312 of a first conductivity type, such as P type. The substrate 312 has a surface on which there is formed a first region 314 (also known as the source line SL) of a second conductivity type, such as N type. A second region 316 (also known as the drain line) also of N type is formed on the surface of the substrate 312. Between the first region 314 and the second region 316 is a channel region 318. A bit line BL 320 is connected to the second region 316. A word line WL 322 is positioned above a first portion of the channel region 318 and is insulated therefrom. The word line 322 has little or no overlap with the second region 316. A floating gate FG 324 is over another portion of the channel region 318. The floating gate 324 is insulated therefrom, and is adjacent to the word line 322. The floating gate 324 is also adjacent to the first region 314. The floating gate 324 may overlap the first region 314 to provide coupling from the region 314 into the floating gate 324. A coupling gate CG (also known as control gate) 326 is over the floating gate 324 and is insulated therefrom. An erase gate EG 328 is over the first region 314 and is adjacent to the floating gate 324 and the coupling gate 326 and is insulated therefrom. The top corner of the floating gate 324 may point toward the inside corner of the T-shaped erase gate 328 to enhance erase efficiency. The erase gate 328 is also insulated from the first region 314. The cell 310 is more particularly described in USP 7,868,375.

    [0011] One exemplary operation for erase and program of prior art non-volatile memory cell 310 is as follows. The cell 310 is erased, through a Fowler-Nordheim tunneling mechanism, by applying a high voltage on the erase gate 328 with other terminals equal to zero volt. Electrons tunnel from the floating gate 324 into the erase gate 328 causing the floating gate 324 to be positively charged, turning on the cell 310 in a read condition. The resulting cell erased state is known as '1' state. The cell 310 is programmed, through a source side hot electron programming mechanism, by applying a high voltage on the coupling gate 326, a high voltage on the source line 314, a medium voltage on the erase gate 328, and a programming current on the bit line 320. A portion of electrons flowing across the gap between the word line 322 and the floating gate 324 acquire enough energy to inject into the floating gate 324 causing the floating gate 324 to be negatively charged, turning off the cell 310 in read condition. The resulting cell programmed state is known as '0' state.

    [0012] Exemplary voltages that can be used for the read, program, and erase operations in memory cell 310 is shown below in Table 5:
    TABLE 5
    Operation WL WL-unsel BL BL-unsel CG CG-unsel same sector CG-unsel EG EG-unsel SL SL-unsel
    Read 1.0-2V 0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 0V 0V 0V 0V 0V 0V 0V 11.5-12V 0-2.6V 0V 0V
    Program 1V 0V 1uA Vinh 10-11V 0-5V 0-2.6V 4.5-8V 0-2.6V 4.5-5V 0-1V-FLT


    [0013] For programming operation, the EG voltage can be applied much higher, e.g. 8V, than the SL voltage, e.g., 5V, to enhance the programming operation. In this case, the unselected CG program voltage is applied at a higher voltage (CG inhibit voltage), e.g. 6V, to reduce unwanted erase effect of the adjacent memory cells sharing the same EG gate of the selected memory cells.

    [0014] Another set of exemplary voltages (when a negative voltage is available for read and program operations) that can be used for the read, program, and erase operations in memory cell 310 is shown below in Table 6:
    TABLE 6
    Operation WL WL-unsel BL BL-unsel CG CG-unsel same sector CG-unsel EG EG-unsel SL SL-unsel
    Read 1.0-2V -0.5V/0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 0V 0V 0V 0V 0V 0V 0V 11.5-12V 0-2.6V 0V 0V
    Program 1V -0.5V/0V 1uA Vinh 10-11V 0-2.6V 0-2.6V 4.5-5V 0-2.6V 4.5-5V 0-1V-FLT


    [0015] Another set of exemplary voltages (when a negative voltage is available for read, program, and erase operations) that can be used for the read, program, and erase operations in memory cell 310 is shown below in Table 7:
    TABLE 7
    Operation WL WL-unsel BL BL-unsel CG CG-unsel same sector CG-unsel EG EG-unsel SL SL-unsel
    Read 1.0-2V -0.5V/0V 0.6-2V 0V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0-2.6V 0V 0V
    Erase 0V -0.5V/0V 0V 0V -(5-9)V 0V 0V 9-8V 0-2.6V 0V 0V
    Program 1V -0.5V/0V 1uA Vinh 8-9V 0-5V 0-2.6V 8-9V 0-2.6V 4.5-5V 0-1V-FLT


    [0016] For programming operation, the EG voltage is applied much higher, e.g. 8-9V, than the SL voltage, e.g., 5V, to enhance the programming operation. In this case, the unselected CG program voltage is applied at a higher voltage (CG inhibit voltage), e.g. 5V, to reduce unwanted erase effects of the adjacent memory cells sharing the same EG gate of the selected memory cells.

    [0017] Memory cells of the types shown in Figures 1-3 typically are arranged into rows and columns to form an array. Erase operations are performed on entire rows or pairs of rows at one time, since word lines control entire rows of memory cells and erase gates (of the type shown in Figure 3), when present, are shared by pairs of rows of memory cells.

    [0018] For each of the prior art memory cells of Figures 1-3, and as can be seen in the above Tables, it often is necessary to pull the source line down to ground. Figure 4 depicts a typical prior art technique for doing this. Memory system 400 comprises memory cell 410, word line 422, control gate 426, erase gate 428, bit line 420, and source line 414. Memory cell 410 can be any of the types shown in Figures 1-3, namely, memory cell 110, memory cell 210, memory cell 310, or another type of memory cell. Source line 414 is coupled to pull down transistor 430, which here comprises a single NMOS transistor. When the gate of pull down transistor 430 is activated, the source line is pulled down to ground. In a flash memory system, numerous pull down circuits of will be required, and each source line may require more than one pull down circuit. These pull down transistors require operating voltages of around 0-1.2 V for low voltage operations and 4-5-11.5 V for high voltage operations. This means that high voltage transistor type (e.g., 11.5v transistor) or IO transistor type (e.g., 2.5V or 3v transistor) is required for the pull down transistors, which takes up die space and increases the overall cost and complexity of the system. In addition, the pull down transistors can incur over stress and break down during program mode.

    [0019] Examples of prior art systems are found in U.S. Patent Application Publication Nos. 2006/0083064, 2010/0226181, and 2015/0228345. These systems do not disclose a satisfactory mechanism for pulling the source line to ground or for applying a bias voltage to the source line.

    [0020] US 2006/0083064 A1 discloses a semiconductor memory device including a memory cell array, first bit lines, second bit lines, a first precharge circuit, a sense amplifier, and a read control circuit. The memory cell array has a first cell array including first memory cells arranged in a matrix and a second cell array including second memory cells. The first bit line electrically connects the first memory cells in a same column. The second bit line electrically connects the second memory cells in a same column. The first precharge circuit precharges the first bit lines in a read operation. The sense amplifier amplifies the data read from the first memory cells in a read operation. The read control circuit precharges and discharges the second bit lines in a read operation and, on the basis of the time required to precharge and discharge the second bit lines, controls the first precharge circuit and the sense amplifier.

    [0021] US 2010/0226181 A1 discloses a non-volatile memory device comprising an array of non-volatile memory cells arranged in a plurality of rows and columns. Each memory cell has a bit terminal for connection to a bit line, a high voltage terminal for connection to a high voltage source, and a low voltage terminal for connection to a low voltage source. The array has a first side adjacent to a first column of memory cells, and a second side opposite the first side, a third side adjacent to a first row of memory cells, and a fourth side opposite the third side. The memory device further comprises a plurality of columns of reference memory cells embedded in the memory array, with a plurality of reference cells in each row of the array of non-volatile memory cells, substantially evenly spaced apart from one another. Each of the reference memory cells is substantially the same as the non-volatile memory cells, and has a bit terminal for connection to a bit line, a high voltage terminal for connection to a high voltage source and a low voltage terminal for connection to a low voltage source. A high voltage decoder is positioned on the first side, and has a plurality of high voltage lines, with each high voltage line connected to the high voltage terminal of the memory cells and reference cells in the same row. A low voltage row decoder is positioned on the second side, and has a plurality of low voltage lines, with each low voltage line connected to the low voltage terminal of the memory cells and reference cells in the same row. A plurality of sense amplifiers are positioned on the third side, with each sense amplifier connected to the bit terminal of one column of non-volatile memory cells and to the bit terminal of a column of reference memory cells. This invention also includes N-of-M selective reference scheme, distributed source line pull down, source line resistance strap compensation, replica-data-pattern current consumption, data current compensation, and bit line voltage error compensation.

    [0022] US 2015/0228345 A1 discloses that in a method of programming a non-volatile memory device, a first voltage is applied to a selected memory cell for programming, and a second voltage is applied to a non-selected memory cell. Before the second voltage rises to a predetermined voltage level, which is less than a program voltage level, the first voltage is greater than the second voltage or the second voltage is maintained at greater than a ground voltage level. Related non-volatile memory devices and memory systems are also discussed.

    [0023] What is needed is a new technique for pulling source lines to ground in a flash memory system that can use the same operating voltage range as the memory cells themselves and that are more robust to over stress and break down.

    SUMMARY OF THE INVENTION


    SUMMARY OF THE INVENTION



    [0024] In the embodiments described below, flash memory devices utilize dummy memory cells as source line pull down circuits. The present invention is defined by independent claim 1. Further preferred embodiments are defined by the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0025] 

    Figure 1 is a cross-sectional view of a non-volatile memory cell of the prior art to which the method of the present invention can be applied.

    Figure 2 is a cross-sectional view of a non-volatile memory cell of the prior art to which the method of the present invention can be applied.

    Figure 3 is a cross-sectional view of a non-volatile memory cell of the prior art to which the method of the present invention can be applied.

    Figure 4 depicts a prior art memory cell with a pull down transistor coupled to the source line.

    Figure 5 depicts an embodiment where a dummy memory cell is used as a pull down circuit for a source line.

    Figure 6 depicts an embodiment where a plurality of dummy memory cells are used as a pull down circuit for a source line.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0026] An embodiment is shown in Figure 5. Flash memory system 500 comprises exemplary memory cell 410 and exemplary dummy memory cell 510. Dummy memory cell 510 is of the same construction as memory cell 410 except that dummy memory cell 510 is not used to store data. Source line 414 of memory cell 410 is coupled to source line 514 of dummy memory cell 510. In the example shown, memory cell 410 and dummy memory cell 510 follow the design of memory cell 310 in Figure 3. It will be understood that memory cell 410 and dummy memory cell 510 also can follow the design of memory cell 210 in Figure 2 (in which case erase gates 428 and 528 will not be present) or memory cell 110 in Figure 1 (in which case erase gates 428 and 529 and control gate 426 and 526 will not be present).

    [0027] When memory cell 410 is in read mode or erase mode, source line 514 is coupled to ground through the memory cell 510 to dummy bitline 520 which is coupled to ground. The dummy memory cells 150 are required to be erased before read operation. This will pull source line 414 and source line 514 to ground.

    [0028] When the memory cell 410 is in program mode, the bitline line 520 is coupled to an inhibit voltage such as VDD. This will place the dummy memory cell 510 in a program inhibit mode which maintain the dummy memory cells in erased state.. There is a plurality of the dummy cells 520 to strengthen the pull down of the source line 414 to ground.

    [0029] Another embodiment is shown in Figure 6. Flash memory system 600 comprises exemplary memory cells 620 and exemplary dummy memory cell circuit 610. Dummy memory cell 610 comprises a plurality of dummy memory cells coupled to one another. In this example, source line 630 (also labeled SL0) and source line 640 (also labeled SL1) from memory cells 620 are coupled to source line of dummy memory cell circuit 610. In this embodiment source line 630 SL0 and source line 640 SL1 are connected together.

    [0030] Thus, the source lines for an entire sector or sectors of memory cells can be coupled together to a source line of dummy memory cell circuit comprising dummy memory cells from the same rows of cells that are part of the sector or sectors.

    [0031] When memory cell 620 are in read mode or erase mode, dummy memory cell circuit 620 will be coupled to ground through the dummy bitlines. The dummy memory cells are required to be erased before read operation. This will pull source lines 630 and 640 to ground.

    [0032] When memory cell 620 are in program mode, the dummy bitlines of memory cell circuit 620 will be coupled to an inhibit voltage such as VDD. This will place dummy memory cells in a program inhibit mode which maintain the dummy memory cells in erased state..

    [0033] Optionally, word line 650 (also labeled WL_rdcellpdwn, which is separate from wordlines of the memory cell 620) and control gate 660 (also labeled CG_rdcellpdwn, which is separate from control gates for the memory cell 620) are biased at a different voltage than that of the memory cell 620 such as VDD or higher during read or standby modes to minimize the current drop across the dummy memory cells.

    [0034] The embodiments of Figures 5 and 6 have numerous benefits over the prior art. First, the source line pull down current is distributed among many dummy memory cells and metal paths, which results in lower electromagnetic interference and less decoding interconnection. Second, there is less current drop across the dummy memory cells compared to the pull down high voltage transistors of the prior art. Third, the embodiments require less die space versus the high voltage transistor pull down solution. Fourth, bias and logic control of the embodiments are simpler than that of the pull down transistors of the prior art. This results in less overstress and break down during programming modes.


    Claims

    1. A flash memory system (500, 600) comprising:

    a first plurality of flash memory cells (410) arranged in a row, each of the first plurality of flash memory cells comprising a drain and a source, wherein the source of each of the first plurality of flash memory cells is directly connected to a common source line (630 or 640, or 414);

    a plurality of dummy flash memory cells (510, 610) directly connected to the common source line (414, 514) and to a dummy bit line (520), wherein the common source line is coupled to ground (GND) through the dummy bit line when the first plurality of flash memory cells are in a read mode or an erase mode and the dummy bit line is coupled to a voltage source (VDD) when the first plurality of flash memory cells is in a program mode.

    wherein each of the first plurality of flash memory cells and each of the plurality of dummy flash memory cells comprise a channel region (118, 218, 318) between the source (114. 214, 314) of the cell and the drain (116, 216, 316) of the cell, a word line terminal (122, 222, 322) positioned above a first portion of the channel region, and a floating gate (124, 224, 324) adjacent to the word line terminal and positioned above a second portion of the channel region.


     
    2. The system of claim 1, wherein each of the first plurality of flash memory cells comprises a control gate terminal (226, 326) and each of the plurality of dummy flash memory cells comprises a control gate terminal (226, 326).
     
    3. The system of claim 1, wherein the word line terminal of each of the first plurality of flash memory cells is coupled to a word line and the word line terminal of each of the plurality of dummy flash memory cells is coupled to a dummy word line.
     
    4. The system of claim 2, wherein the control gate terminal of each of the plurality of dummy memory cells is biased at a different voltage than the control gate terminal of each of the first plurality of the flash memory cells when the first plurality of flash memory cells are in a read mode.
     
    5. The system of claim 3, wherein the dummy word line is biased at a different voltage than the word line when the first plurality of flash memory cells are in a read mode.
     
    6. The system of claim 2, wherein each of the first plurality of flash memory cells comprises an erase gate terminal (328) and each of the plurality of dummy flash memory cells comprises an erase gate terminal (328).
     
    7. The system of claim 1, wherein the first plurality of flash memory cells form a sector of flash memory cells that can be erased as a unit.
     
    8. The system of claim 1, further comprising a second plurality of flash memory cells, each of the second plurality of flash memory cells comprising a drain and a source, wherein the source of each of the second plurality of flash memory cells is coupled to a second common source line (640 or 630), wherein the second common source line is coupled to the common source line when the first plurality of flash memory cells are in a read mode or an erase mode.
     
    9. The system of claim 8, wherein the first plurality of flash memory cells form a sector of flash memory cells that can be erased as a unit.
     
    10. The system of claim 9, wherein the second plurality of flash memory cells form a sector of flash memory cells that can be erased as a unit.
     
    11. The system of claim 8, wherein the first plurality of flash memory cells and the second plurality of flash memory cells form a sector of flash memory cells that can be erased as a unit.
     


    Ansprüche

    1. Flash-Speichersystem (500, 600), umfassend:

    eine erste Mehrzahl von Flash-Speicherzellen (410), die in einer Reihe angeordnet sind, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen Drain und eine Quelle umfasst, wobei die Quelle jeder der ersten Mehrzahl von Flash-Speicherzellen direkt mit einer gemeinsamen Quellleitung (630 oder 640 oder 414) verbunden ist;

    eine Mehrzahl von Schein-Flash-Speicherzellen (510, 610), die direkt mit der gemeinsamen Quellleitung (414, 514) und mit einer Schein-Bitleitung (520) verbunden sind, wobei die gemeinsame Quellleitung mit Masse (GND) über die Schein-Bitleitung verbunden ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus oder einem Löschmodus befindet, und die Schein-Bitleitung mit einer Spannungsquelle (VDD) verbunden ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Programmmodus befindet;

    wobei jeder der ersten Mehrzahl von Flash-Speicherzellen und jeder der Mehrzahl von Schein-Flash-Speicherzellen einen Kanalbereich (118, 218, 318) zwischen der Quelle (114, 214, 314) der Zelle und dem Drain (116, 216, 316) der Zelle, einen Wortleitungsanschluss (122, 222, 322), der über einem ersten Abschnitt des Kanalbereichs positioniert ist, und ein Floating-Gate (124, 224, 324), das angrenzend an den Wortleitungsanschluss und über einem zweiten Abschnitt des Kanalbereichs positioniert ist, umfasst.


     
    2. System nach Anspruch 1, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen Steuergate-Anschluss (226, 326) umfasst und jede der Mehrzahl von Schein-Flash-Speicherzellen einen Steuergate-Anschluss (226, 326) umfasst.
     
    3. System nach Anspruch 1, wobei der Wortleitungsanschluss jeder der ersten Mehrzahl von Flash-Speicherzellen mit einer Wortleitung gekoppelt ist und der Wortleitungsanschluss jeder der Mehrzahl von Schein-Flash-Speicherzellen mit einer Schein-Wortleitung gekoppelt ist.
     
    4. System nach Anspruch 2, wobei der Steuergate-Anschluss jeder der Mehrzahl von Schein-Flash-Speicherzellen mit einer anderen Spannung vorgespannt ist als der Steuergate-Anschluss jeder der ersten Mehrzahl von Flash-Speicherzellen, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus befindet.
     
    5. System nach Anspruch 3, wobei die Schein-Wortleitung mit einer anderen Spannung als die Wortleitung vorgespannt ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus befindet.
     
    6. System nach Anspruch 2, wobei jede der ersten Mehrzahl von Flash-Speicherzellen einen Löschgate-Anschluss (328) umfasst und jede der Mehrzahl von Schein-Flash-Speicherzellen einen Löschgate-Anschluss (328) umfasst.
     
    7. System nach Anspruch 1, wobei die erste Mehrzahl von Flash-Speicherzellen einen Sektor von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
     
    8. System nach Anspruch 1, ferner umfassend eine zweite Mehrzahl von Flash-Speicherzellen, wobei jede der zweiten Mehrzahl von Flash-Speicherzellen einen Drain und eine Quelle umfasst, wobei die Quelle jeder der zweiten Mehrzahl von Flash-Speicherzellen mit einer zweiten gemeinsamen Quellleitung (640 oder 630) gekoppelt ist, wobei die zweite gemeinsame Quellleitung mit der gemeinsamen Quellleitung gekoppelt ist, wenn sich die erste Mehrzahl von Flash-Speicherzellen in einem Lesemodus oder einem Löschmodus befindet.
     
    9. System nach Anspruch 8, wobei die erste Mehrzahl von Flash-Speicherzellen einen Sektor von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
     
    10. System nach Anspruch 9, wobei die zweite Mehrzahl von Flash-Speicherzellen einen Sektor von Flash-Speicherzellen bildet, der als eine Einheit gelöscht werden kann.
     
    11. System nach Anspruch 8, wobei die erste Mehrzahl von Flash-Speicherzellen und die zweite Mehrzahl von Flash-Speicherzellen einen Sektor von Flash-Speicherzellen bilden, der als eine Einheit gelöscht werden kann.
     


    Revendications

    1. Système de mémoire flash (500, 600) comprenant :

    une première pluralité de cellules de mémoire flash (410) agencées en une rangée, chacune de la première pluralité de cellules de mémoire flash comprenant un drain et une source, dans lequel la source de chacune de la première pluralité de cellules de mémoire flash est directement reliée à une ligne source commune (630 ou 640, ou 414) ;

    une pluralité de cellules de mémoire flash factices (510, 610) directement reliées à la ligne source commune (414, 514) et à une ligne de bit factice (520), où la ligne source commune est couplée à la masse (GND) à travers la ligne de bit factice lorsque la première pluralité de cellules de mémoire flash sont en mode lecture ou en mode effacement et la ligne de bit factice est couplée à une source de tension (VDD) lorsque la première pluralité de cellules de mémoire flash sont en mode programme,

    dans lequel chacune de la première pluralité de cellules de mémoire flash et chacune de la pluralité de cellules de mémoire flash factices comprend une région de canal (118, 218, 318) entre la source (114, 214, 314) de la cellule et le drain (116, 216, 316) de la cellule, une borne de ligne de mot (122, 222, 322) positionnée au-dessus d'une première partie de la région de canal, et une grille flottante (124, 224, 324) adjacente à la borne de ligne de mot et positionnée au-dessus d'une deuxième partie de la région de canal.


     
    2. Système selon la revendication 1, dans lequel chacune de la première pluralité de cellules de mémoire flash comprend une borne de grille de commande (226, 326) et chacune de la pluralité de cellules de mémoire flash factices comprend une borne de grille de commande (226, 326).
     
    3. Système selon la revendication 1, dans lequel la borne de ligne de mot de chacune de la première pluralité de cellules de mémoire flash est couplée à une ligne de mot, et la borne de ligne de mot de chacune de la pluralité de cellules de mémoire flash factices est couplée à une ligne de mot factice.
     
    4. Système selon la revendication 2, dans lequel la borne de grille de commande de chacune de la pluralité de cellules de mémoire factices est polarisée à une tension différente de celle de la borne de grille de commande de chacune de la première pluralité de cellules de mémoire flash lorsque la première pluralité de cellules de mémoire flash sont en mode lecture.
     
    5. Système selon la revendication 3, dans lequel la ligne de mot factice est polarisée à une tension différente de celle de la ligne de mot lorsque la première pluralité de cellules de mémoire flash sont en mode lecture.
     
    6. Système selon la revendication 2, dans lequel chacune de la première pluralité de cellules de mémoire flash comprend un terminal de grille d'effacement (328) et chacune de la pluralité de cellules de mémoire flash factices comprend un terminal de grille d'effacement (328).
     
    7. Système selon la revendication 1, dans lequel la première pluralité de cellules de mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées en tant qu'unité.
     
    8. Système selon la revendication 1, comprenant en outre une deuxième pluralité de cellules de mémoire flash, chacune de la deuxième pluralité de cellules de mémoire flash comprenant un drain et une source, dans lequel la source de chacune de la deuxième pluralité de cellules de mémoire flash est couplée à une deuxième ligne source commune (640 ou 630), où la deuxième ligne source commune est couplée à la ligne source commune lorsque la première pluralité de cellules de mémoire flash sont en mode lecture ou en mode effacement.
     
    9. Système selon la revendication 8, dans lequel la première pluralité de cellules de mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées en tant qu'unité.
     
    10. Système selon la revendication 9, dans lequel la deuxième pluralité de cellules de mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées en tant qu'unité.
     
    11. Système selon la revendication 8, dans lequel la première pluralité de cellules de mémoire flash et la deuxième pluralité de cellules de mémoire flash forment un secteur de cellules de mémoire flash qui peuvent être effacées en tant qu'unité.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description