BACKGROUND AND PRIOR ART
[0001] The present invention relates to a method for drying hygroscopic material according
to the preamble of claim 1. The invention also relates to an apparatus for drying
hygroscopic material according to the preamble of claim 10.
[0002] When drying hygroscopic material, for example during timber drying, slow drying is
undesirable from an economic standpoint. Too fast drying, i.e. when the moisture evaporation
from the surface of the hygroscopic material is too fast, is also undesirable because
the surface of the hygroscopic material will be dried before the moisture in the inner
part of the material has migrated from the inner part of the hygroscopic material
to its surface. This results in that the hygroscopic material's capillary effect vanishes
and the water migration from the inner part of the hygroscopic material to its surface
is interrupted. Then a tensile stress occurs between the surface of the hygroscopic
material and the inner part of the hygroscopic material when the surface shrinks,
but not the inner material. This results in undesired deformations, such as crack
formation, twisting and cupping, in the hygroscopic material or residual internal
stresses in the hygroscopic material. The state with residual internal stresses is
in English called "case hardening" and can result in, for example, that the saw blades
will pinch in the material during sawing, when the tensions are released. Too fast
drying can also lead to cell collapse. Cell collapse means that the wood cells plastically
deforms by the capillary forces, whereby cracks may occur. The above mentioned defects
result in lower product quality, which in turn results in more rejects and thus higher
production costs.
[0003] The control of drying processes for production of wood products is today based on
drying schedules, i.e. regulations regarding the air's dry and wet bulb temperatures
as a function of time or the wood's current average moisture content during drying.
The wet bulb temperature is measured with a wet thermometer, wherein the thermometer
bulb is wrapped in a constantly damp cloth. The dry bulb temperature is measured with
a conventional (dry) thermometer. The moisture content is the ratio of the mass of
water in a given volume to the dry mass of wood substance in the same volume, expressed
in weight percent. The goal with the drying schedules is to decrease the wood's average
moisture content so that the wood do not get defects and to decrease it to the average
moisture content expected to prevail in the surrounding environment where the wood
is to be used or to an average moisture content low enough to avoid attacks from various
organisms. The drying schedules give different recommendations for different kinds
of wood, thicknesses of wood and quality requirements.
[0004] The average moisture content can also be determined directly by the oven dry weight
method or indirectly with other methods. According to the oven dry weight method,
the wood sample is weighed in a damp condition after which the sample is dried at
103 ± 2 °C until the weight stabilizes at 0% moisture content. The sample is then
weighed again and the weight of the evaporated moisture is calculated. The weight
of the evaporated moisture divided by the dry weight of the wood is a measure of the
wood's average moisture content for the whole material.
[0005] One of the most common industrial methods to determine moisture content is by electrical
resistance. A pin is pressed or hit into the wood during measuring. The resistance
or the impedance, in the case where the meter uses alternating voltage, measured between
the pins is a measure of the wood's average moisture content. Other indirect methods
use capacitive meters, electromagnetic fields or Near-infrared (NIR) to determine
the average moisture content.
[0006] An example of a known method for drying hygroscopic material is shown in document
US3721013. It is a method for fast drying of wood which combines radio frequency heating or
microwave heating with heated air that is circulated, in which method the surface
temperature of the wood is measured and the wet and the dry bulb temperatures of the
circulated heated air in the kiln are measured, and wherein the temperature of the
wet bulb thermometer is maintained according to a drying schedule for different kinds
of wood and thicknesses of wood, and furthermore the supply of radio frequency energy
or microwave energy and the temperature of the dry thermometer in the kiln are regulated
to control the wood's surface temperature according to the dry thermometer's temperature
in the drying schedule.
SUMMARY OF THE INVENTION
[0008] Despite known methods and apparatus for drying hygroscopic material, there is a need
of a new method and a new apparatus for optimizing the drying process to improve product
quality. Improved product quality means, in this context, that undesired deformations,
such as crack formation, twisting and cupping, in the hygroscopic material or residual
internal stresses in the hygroscopic material are avoided.
[0009] The object of this invention is to provide a new method and a new apparatus for optimizing
the drying process for hygroscopic material, so that undesired deformations, such
as crack formation, twisting and cupping, in the hygroscopic material or residual
internal stresses in the hygroscopic material are avoided.
[0010] A further object of the present invention is to provide a new method and a new apparatus
for optimizing the drying time and/or the energy consumption in relation to the desired
product quality.
[0011] Another object of the present invention is to provide a new method and a new apparatus
for determining if the material has reached the equilibrium moisture content. These
objects are achieved with a method for drying hygroscopic material according to the
features in claim 1.
[0012] These objects are also achieved with an apparatus for drying hygroscopic material
according to the features in claim 10.
[0013] Further optional embodiments also belonging to the invention are described in the
dependent claims.
[0014] With the present invention undesired energy consumption, residual internal stresses
and undesired deformations in hygroscopic material are avoided. Also the drying time
for hygroscopic material is optimized and the equilibrium moisture content of hygroscopic
material is determined in an efficient manner. Further advantages with the invention
are evident from the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] In the following is described, as an example, a preferred embodiment of the invention
with reference to the accompanying drawings, in which:
- Fig. 1
- shows a flow chart of a method for drying hygroscopic material according to the present
invention,
- Fig. 2
- shows an apparatus for drying hygroscopic material according to the present invention,
and
- Fig. 3
- shows a hygroscopic material according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0016] Fig. 1 shows a flow chart for a method for drying hygroscopic material 2 according
to the present invention. The method comprises the following steps and will be described
together with fig. 1, and also together with fig. 2, which shows an apparatus 1 for
drying hygroscopic material 2 according to the invention, and fig 3 showing a hygroscopic
material 2 according to the present invention.
[0017] In a first step a, hygroscopic material 2 is supplied in a drying chamber 4 comprising
a drying medium 6. In the drying chamber 4, which for example can be a batch kiln
or a progressive kiln, the climate can be controlled as desired. The drying medium
6 is preferably hot air with a controlled equilibrium moisture content lower than
the moisture content of the surface of the hygroscopic material 2. The drying medium
6 may also comprise a medium other than air, for example a fluid. The hygroscopic
material 2 is preferably organic material of biological origin, such as wood, peat
and biomass. The invention is particularly suitable for drying wood products in the
form of sawn timber, which has a thickness greater than 8 mm, preferably greater than
10 mm, or in another form, for example veneer having a thickness less than 8 mm, preferably
less than 4 mm. Several parts of hygroscopic material 2, for example pieces of wood,
can be arranged together into stacked layers. When stacking, stickers 8, i.e. spacer
elements of narrow width or weak material other than wood, are arranged between the
parts of hygroscopic material 2, so that the drying medium 6 is able to pass between
the parts of hygroscopic material 2.
[0018] In a second step b, energy is supplied to the drying chamber 4, so that the moisture
in the hygroscopic material 2 can be evaporated. The energy is produced by heating
means 10, for example heating elements of different types. The drying medium 6 transports
away moisture from the surface of the hygroscopic material 2. Drying is preferably
done from an average moisture content above the fiber saturation moisture content,
when cell walls are saturated with water and cell lumens are empty, to an average
moisture content below the fiber saturation moisture content, however drying is always
done from a higher average moisture content to a lower average moisture content. During
drying of wood, the cell cavities, or lumens, are first emptied of water. Thereafter
the drying of the cell walls begins. The moisture content at which the cell cavities
are dried out, but the cell walls still are saturated with water is called the fiber
saturation moisture content. Wood often has a fiber saturation moisture content between
about 25 % and about 30 %.
[0019] In a third step c, the drying medium's 2 dry bulb temperature in the drying chamber
4 is detected continuously or periodically and an output signal for the detected dry
bulb temperature is provided continuously or periodically. The dry bulb temperature
is measured with a first temperature detecting means 12, preferably a conventional
(dry) thermometer, for example a mercury thermometer or a digital thermometer, at
one or more places in the drying medium 6. To improve the measurement, the drying
medium 6 is kept ventilated around the first temperature detecting means 12.
[0020] In a fourth step d, the drying medium's 2 wet bulb temperature in the drying chamber
4 is detected continuously or periodically and an output signal for the detected wet
bulb temperature is provided continuously or periodically. The wet bulb temperature
is measured with a second temperature detecting means 14, wherein the bulb of the
second temperature detecting means 14 is wrapped in a constantly damp material 16,
which is hygroscopic, for example cotton or fabric. The measuring is made at one or
more places in the drying medium 6. To improve the measurement, the drying medium
6 is ventilated around the second temperature detecting means 14.
[0021] In a fifth step e, the temperature of the hygroscopic material's 2 surface layer
11 is continuously or periodically detected and an output signal for the detected
temperature is continuously or periodically provided. The surface layer 11 is a three-dimensional
geometry with a minimum thickness 17. The minimum thickness 17 is less than 2 mm,
preferably less than 0.2 mm. The measuring of the surface layer's 11 temperature is
done with a third temperature detecting means, preferably a contactless thermometer
18, i.e. a thermometer that does not come in contact with the object whose temperature
it measures. A contactless thermometer 18 does not have an impact on the hygroscopic
material 2, which results in more accurate measured values than if a thermometer requiring
contact with the hygroscopic material 2 is used. The measurement is done at one or
more places on the surface layer 11 of the hygroscopic material 2. The contactless
thermometer 18 can for example be a pyrometer 18 or an infra-red thermometer 18, which
has a receiver that receives infra-red radiation from a material and then calculates
the temperature of the material. The contactless thermometer 18 has preferably a receiver
that detects radiation with wave lengths greater than 700 nm, preferably greater than
2.5 µm, because radiation with these wave lengths has a minimal penetration depth,
so that the contactless thermometer 18 only measures the temperature on the surface
layer 11 of the hygroscopic material 2.
[0022] In a sixth step f, the output signal for the detected dry bulb temperature, the output
signal for the detected wet bulb temperature and the output signal for the detected
surface temperature are used as an indication of the hygroscopic material's 2 surface
moisture content to control the properties of the drying medium 6. The properties
of the drying medium 6 are its temperature and water content. The temperature of the
drying medium 6 is controlled by supply of energy to the drying chamber 4. The water
content of the drying medium 6 is controlled by steam, i.e. supplying moisture to
the drying chamber 4. Because the dry bulb temperature, the wet bulb temperature and
the surface temperature are measured continuously or periodically and output signals
for these detected temperatures are provided continuously or periodically, the indication
of the hygroscopic material's 2 surface moisture content can be provided continuously
or periodically. The difference between the dry bulb temperature and the wet bulb
temperature is called the psychrometer difference and is a measure of the relative
humidity. The relative humidity indicates the percentage of water vapour in relation
to the maximum possible amount of water vapour at the current temperature and the
current pressure. The wet bulb temperature is always equal to or lower than the dry
bulb temperature, depending on how much moisture the surrounding drying medium 6 comprises.
Heat energy is consumed and the temperature decreases when water from the hygroscopic
material 2 evaporates. This continues until an equilibrium is reached between the
absorbed heat energy from the drying medium 6 and the energy consumption for the water
evaporation. At the beginning of the drying process, the surface of the hygroscopic
material 2 has, if its surface is saturated with moisture, the wet bulb temperature.
The hygroscopic material 2 more and more reaches the dry bulb temperature as drying
proceeds. The surface has a temperature equal to the drying medium's 6 dry bulb temperature
when the surface of the hygroscopic material 2 has reached the equilibrium moisture
content. The surface temperature is thus, in relation to the dry bulb temperature
and the wet bulb temperature, a measure of the surface moisture content.
[0023] By creating an xy chart with the temperature indicated on one axis and time on the
other axis and by adding the measured values of the hygroscopic material's 2 surface
temperature and the drying medium's 6 dry bulb temperature at different points of
time to the xy chart, it is possible by means of the hygroscopic material's 2 surface
temperature curve to estimate when the surface temperature curve will reach the temperature
of the drying medium 6. This estimation thus makes it possible to predict the end
of the drying process before it happens, making it possible to control the drying
process with higher accuracy.
[0024] The surface moisture content gives an indication of the rate at which water evaporates
from the surface of the hygroscopic material 2. The supply of energy is regulated
to ensure that the evaporation rate of the hygroscopic material's 2 surface in the
drying chamber 4 is held below a predetermined maximum. In this way, undesirable deformations,
such as crack formation, twisting and cupping, in the hygroscopic material 2 or residual
internal stresses in the hygroscopic material 2 are avoided. The hygroscopic material's
2 surface moisture content can also be used to optimize the drying time in relation
to the desired product quality and to determine if the hygroscopic material 2 has
reached the equilibrium moisture content.
[0025] Water migrates from the inner part of the hygroscopic material 2 to the surface of
the hygroscopic material 2 and then evaporates to the drying medium 6 that passes
the surface of the hygroscopic material 2 when the hygroscopic material 2 is dried.
The water on the surface of the hygroscopic material 2 only vaporizes if the moisture
content of the hygroscopic material's 2 surface is greater than the hygroscopic material's
2 equilibrium moisture content in the drying medium 6. As long as water migrates from
the surface of the hygroscopic material 2 to the drying medium 6, i.e. as long as
drying occurs, the moisture content of the hygroscopic material's 2 surface is greater
than the drying medium's 6 equilibrium moisture content. When no more water migrates
from the inner part of the hygroscopic material 2 to the surface of the hygroscopic
material 2, i.e. when drying has stopped and there is no moisture content gradient
in the hygroscopic material 2 anymore, the moisture content of the hygroscopic material's
2 surface is equal to the drying medium's 6 equilibrium moisture content.
[0026] By creating an xy chart with the moisture content indicated on one axis and time
on the other axis and by adding the hygroscopic material's 2 measured surface moisture
content values and the drying medium's 6 equilibrium moisture content at different
points of time in the xy chart, it is possible to estimate, before the hygroscopic
material's 2 equilibrium moisture content has reached the drying medium's 6 equilibrium
moisture content, when the hygroscopic material's 2 surface moisture content curve
will reach the drying medium's 6 equilibrium moisture content by means of the hygroscopic
material's 2 surface moisture content curve. This estimation thus makes it possible
to prediet the end of the drying process before it has occurred, making it possible
to control the drying process with higher accuracy.
[0027] Wood always contains a certain amount of water bound in the cell walls. This water
is in direct relation to the ambient air temperature partly, but in particular to
the relative humidity. The moisture content that the wood aims to reach with respect
to the air temperature and the relative humidity is called the equilibrium moisture
content and is specified in percent of the dry weight. If the wood is more humid than
the equilibrium moisture content, the wood will emit water to the surrounding air
and will also shrink. Conversely, the wood absorbs humidity from the surrounding air
and swells if the wood's moisture content is lower than the prevailing equilibrium
moisture content. Wood built into constructions should therefore have a moisture content
as close as possible to the equilibrium moisture content in the finished construction
to prevent moisture migration.
[0028] In a seventh step g, control of the drying medium's 6 flow rate and flow direction
is done. The drying medium's 6 flow rate and flow direction can be measured by a flow
meter 24. In order to increase the energy supply to the hygroscopic material 2, the
drying medium's 6 speed and/or temperature can be increased, and in order to lower
the energy supply to the hygroscopic material 2, the drying medium's 6 speed and/or
temperature can be decreased. The circulation of the drying medium 6 is done by means
of ventilation means 20. The ventilation means 20 are driven by a motor 21 and can
vary the flow direction of the drying medium 6 by reversing, i.e. is changing the
rotation direction. Reversing the drying medium 6 is advantageous during drying. Unless
reversing of the drying medium 6 is done, the hygroscopic material 2 that comes in
contact with the drying medium 6 first will dry faster than the hygroscopic material
2 that comes in contact with the drying medium 6 last.
[0029] In an eighth step h, the drying medium 6 is exchanged. If the surrounding drying
medium 6 is dry, it can absorb more water vapour from the hygroscopic material 2 compared
to if the drying medium 6 is humid at the same temperature. If the drying medium 6
is saturated with water, i.e. if the relative humidity is 100%, the drying medium
6 cannot absorb any humidity at all. It is therefore important to replace humid drying
medium 6 surrounding the hygroscopic material 2 with new dry drying medium 6, so that
the drying continues. The drying medium 6 can be let out from the drying chamber 4
through at least one ventilation opening 25 and new drying medium 6 can be supplied
to the drying chamber 4 through at least one ventilation opening 25. The drying medium
6 can also be let out from the drying chamber 4 and be dehydrated, for example by
condensation drying, and then reintroduced into the drying chamber 4.
[0030] The apparatus 1 according to the invention comprises, as mentioned above, a drying
chamber 4 for accommodation of hygroscopic material 2 and a drying medium 6 and also
heating means 10 for supplying energy to drying chamber 4. The drying chamber 4 can
for example be a kiln or travelling dryer. The hygroscopic material 2 is preferably
organic material of biological origin, such as wood, peat and biomass. The apparatus
is particularly suitable for drying wood products in the form of sawn timber with
a thickness greater than 8 mm, preferably greater than 10 mm, or in another form,
for example veneers having a thickness less than 8 mm, preferably less than 4 mm.
Several parts of hygroscopic material 2, for example pieces of wood, can be arranged
together by stacking layers. When stacking, stickers 8, i.e. spacer elements of narrow
width and height lumber or weak material other than lumber, are arranged between the
parts of hygroscopic material 2, so that the drying medium 6 can pass between the
parts of hygroscopic material 2.
[0031] The heating means 10 are for example heaters of various types. The drying medium
6 transports away moisture from the surface of the hygroscopic material 2 and is preferably
hot air with a controlled equilibrium moisture content that is lower than the moisture
content of the surface of the hygroscopic material 2. The drying is preferably done
from an average moisture content above the fibre saturation moisture content to an
average moisture content below the fibre saturation moisture content, however it is
always done from a higher average moisture content to a lower average moisture content.
During drying of wood, the cell cavities are first emptied of water. Thereafter the
dehydration of the cell walls starts. The moisture content at which the cell cavities
are dehydrated, but the cell walls still are saturated with water is called the wood's
fibre saturation moisture content.
[0032] Furthermore, the apparatus 1 comprises first temperature detecting means 12 that
detects the drying medium's 6 dry bulb temperature in the drying chamber 4 and provides
an output signal for the detected dry bulb temperature, second temperature detecting
means 14 that detects the drying medium's 6 wet bulb temperature in the drying chamber
4 and provides an output signal for the detected wet bulb temperature, and third temperature
detecting means 18 that detects the surface temperature of the hygroscopic material
2 and provides an output signal for the detected surface temperature.
[0033] The first temperature detecting means 12 is preferably a conventional (dry) thermometer,
such as a mercury thermometer or a digital thermometer. The first temperature detecting
means 12 measures continuously or periodically at one or more places of the drying
medium 6. The drying medium 6 around the first temperature detecting means 12 is kept
ventilated to improve the measuring.
[0034] The bulb of the second temperature detecting means 14 is wrapped with a constantly
damp material 16, such as cotton or fabric. The measuring is performed continuously
or periodically at one or more places in the drying medium 6. The drying medium 6
around the second temperature detecting means 14 is kept ventilated to improve the
measuring.
[0035] As mentioned above, the third temperature detecting means 18 is preferably a contactless
thermometer, i.e. a thermometer that does not contact the object whose temperature
it measures. The measuring is done at one or several places on a surface layer 11
of the hygroscopic material 2. The surface layer 11 is a three dimensional geometry
with a minimal thickness 17. The contactless thermometer 18 does not affect the hygroscopic
material 2, which leads to more accurate measured values than if a thermometer that
requires contact with the hygroscopic material 2 is used. As mentioned above, the
contactless thermometer 18 can for example be an infrared thermometer or pyrometer.
[0036] The apparatus 1 also comprises a control unit 22 that receives the output signal
for the detected dry bulb temperature, the output signal for the detected wet bulb
temperature and the output signal for the detected surface temperature through a signal
wire 23 or a wireless construction. The control unit 22 is then given an indication
of the hygroscopic material's 2 surface moisture content and regulates the properties
of the drying medium 6. The properties of the drying medium 6 are its temperature
and water content. The temperature of the drying medium 6 is regulated by supply of
energy to the drying chamber 4. The water content of the drying medium 6 water is
regulated by steaming, i.e. addition of moisture to the drying chamber 4. The supply
of moisture to the drying chamber 4 is done using a steam apparatus 26. Because the
dry bulb temperature, the wet bulb temperature and the surface temperature are measured
continuously or periodically, an indication of the hygroscopic material's 2 surface
moisture content can be given continuously or periodically. The surface of the hygroscopic
material 2 has, if the surface is saturated with moisture, the wet bulb temperature
at the beginning of the drying process. The hygroscopic material 2 more and more reaches
the dry bulb temperature as drying continuous. When the surface of the hygroscopic
material 2 has reached the equilibrium moisture content, the surface has a temperature
equal to the dry bulb temperature. The surface temperature is thus, in relation to
the dry bulb temperature and the wet bulb temperature, a measure of the surface moisture
content.
[0037] The surface moisture content gives an indication of the rate at which water evaporates
from the surface of the hygroscopic material 2. The supply of energy is regulated
to ensure that the evaporation rate from the hygroscopic material's 2 surface in the
drying chamber 4 is held below a predetermined maximum. In this way, undesirable deformations,
such as crack formation, twisting and cupping, in the hygroscopic material 2 or residual
internal stresses in the hygroscopic material 2 can be avoided. The water evaporation
rate from the hygroscopic material 2 can also be used to optimize the drying time
and/or energy consumption in relation to the desired product quality and to determine
if the hygroscopic material 2 has reached the equilibrium moisture content.
[0038] Further, the present invention comprises ventilation means 20 for regulating the
drying medium's 6 flow rate and flow direction. The drying medium's 6 flow rate and
flow direction can be measured by a flow meter 24. The ventilation means 20 are driven
by a motor 21. In order to increase the energy supply to the hygroscopic material
2, the drying medium's 6 speed and/or temperature can be increased and to lower the
energy supply to the hygroscopic material 2, the drying medium's 6 speed and/or temperature
can be decreased. The ventilation means 20 varies the flow direction of the drying
medium 6 by reversing, i.e. reversing the rotation direction. Reversing the drying
medium 6 is advantageous during drying. Unless reversing of the drying medium 6 is
done, the hygroscopic material 2 in contact with the drying medium 6 first, dries
faster than the hygroscopic material 2 in contact with the drying medium 6 later.
[0039] The ventilation means 20 can also exchange the drying medium 6. If the surrounding
drying medium 6 is dry, it can absorb more water vapour from the hygroscopic material
2 compared to if the drying medium 6 is humid at the same temperature. If the drying
medium 6 is saturated with water, i.e. if the relative humidity is 100%, the drying
medium 6 cannot absorb any moisture at all. It is therefore important to replace the
humid drying medium 6 surrounding the hygroscopic material 2 with new dry drying medium
6, so that drying continues. The drying medium 6 can be let out from the drying chamber
4 through at least a ventilation opening 25 and new drying medium 6 can be supplied
to the drying chamber 4. The drying medium 6 can be let out from the drying chamber
4 and dehydrated, for example by condensation drying, and then reintroduced into the
drying chamber 4.
1. Method for drying hygroscopic material (2), comprising the steps:
a) supplying hygroscopic material (2) in a drying chamber (4) comprising a drying
medium (6), wherein the hygroscopic material (2) is wood, peat or biomass,
b) supplying energy to the drying chamber (4),
c) detecting the drying medium's (6) dry bulb temperature in the drying chamber (4)
and providing an output signal for the detected dry bulb temperature,
d) detecting the drying medium's (6) wet bulb temperature in the drying chamber (4)
and providing an output signal for the detected wet bulb temperature,
e) detecting the temperature of the hygroscopic material's (2) surface layer (11)
and providing an output signal for the detected surface temperature,
characterized by the step:
f) utilizing the output signal for the detected dry bulb temperature, the output signal
for the detected wet bulb temperature and the output signal for the detected surface
temperature as an indication of the hygroscopic material's (2) surface moisture content
for regulating the properties of the drying medium (6),
wherein at the beginning of the drying process, if the surface is saturated with moisture,
the surface temperature of the hygroscopic material corresponds to the wet bulb temperature
of the drying medium,
wherein, as drying proceeds, the surface temperature more and more reaches the dry
bulb temperature of the drying medium, and the surface of the hygroscopic material
reaches an equilibrium surface moisture content when the surface has a temperature
equal to the drying medium's dry bulb temperature,
wherein a measure of the surface moisture content of the hygroscopic material is obtained
from the relation between the surface temperature and the dry bulb temperature, and
the relation between the surface temperature and the wet bulb temperature, and wherein
said measure of the surface moisture content of the hygroscopic material is used for
the regulating of the properties of the drying medium and for predicting the end of
the drying process before it happens.
2. The method according to claim 1, characterized in that the drying medium's (6) properties are its temperature and water content.
3. The method according to claim 1 or 2, characterized by the further step: g) regulating the drying medium's (6) flow rate and flow direction.
4. The method according to any of the above claims, characterized by the further step: h) exchanging the drying medium (6).
5. The method according to any of the above claims, characterized in that the thickness of the hygroscopic material (2) is greater than 8 mm, preferably greater
than 10 mm.
6. The method according to any of claims 1-4 , characterized in that the thickness of the hygroscopic material (2) is less than 8 mm, preferably less
than 4 mm.
7. The method according to any of the above claims, characterized in that the detecting of the hygroscopic material's (2) surface temperature is performed
using an infrared thermometer (18) or a pyrometer (18).
8. The method according to claim 7, characterized in that the infrared thermometer (18) has a receiver that detects radiation with wave lengths
greater than 700 nm, preferably greater than 2.5 µm.
9. The method according to any of the above claims, characterized in that the drying medium (6) is air.
10. Apparatus for drying hygroscopic material (2), wherein the hygroscopic material (2)
is wood, peat or biomass, comprising a drying chamber (4) for accommodating hygroscopic
material (2) and a drying medium (6), heating means (10) for supplying energy to the
drying chamber (4), first temperature detecting means (12) for detecting the drying
medium's (6) dry bulb temperature in the drying chamber (4) and providing an output
signal for the detected dry bulb temperature, second temperature detecting means (14)
for detecting the drying medium's (6) wet bulb temperature in the drying chamber (4)
and providing an output signal for the detected wet bulb temperature, third temperature
detecting means (18) for detecting the temperature of the hygroscopic material's (2)
surface layer (11) and providing an output signal for the detected surface temperature,
characterized by
a control unit (22) configured to receive:
the output signal for the detected dry bulb temperature, the output signal for the
detected wet bulb temperature;
the output signal for the detected surface temperature; and
a measure of the hygroscopic material's (2) surface moisture content obtained from
the relation between the surface temperature and the dry bulb temperature, and the
relation between the surface temperature and the wet bulb temperature;
wherein the control unit is configured to regulate the properties of the drying medium
and to predict the end of the drying process before it happens based on said measure
of the surface moisture content.
11. The apparatus according to claim 10, characterized in that the properties of the drying medium (6) are its temperature and water content.
12. The apparatus according to claim 10 or 11, characterized in that it further comprises ventilation means (20) for regulating the flow rate and flow
direction of the drying medium (6).
13. The apparatus according to any of claims 10-12, characterized in that the drying chamber (4) comprises at least a ventilation opening (25) for exchange
of the drying medium (6).
14. The apparatus according to any of claims 10-13, characterized in that the thickness of the hygroscopic material (2) is greater than 8mm, preferably greater
than 10 mm.
15. The apparatus according to any of claims 10-13, characterized in that the thickness of the hygroscopic material (2) is less than 8mm, preferably less than
4 mm.
16. The apparatus according to any of claims 10-15, characterized in that the third temperature detecting means (18) is an infrared thermometer or pyrometer.
17. The apparatus according to claim 16, characterized in that the infrared thermometer (18) has a receiver that detects radiation with wave lengths
greater than 700 nm, preferably greater than 2.5 µm.
18. The apparatus according to any of claims 10-17, characterized in that the drying medium (6) is air.
1. Verfahren zum Trocknen eines Hygroskopmaterials (2), umfassend die folgenden Schritte:
a) Zuführen eines Hygroskopmaterials (2) zu einer Trocknungskammer (4) umfassend ein
Trocknungsmedium (6), wobei das Hygroskopmaterial (2) Holz, Torf oder Biomasse ist,
b) Zuführen von Energie zur Trocknungskammer (4),
c) Detektieren der Trockenkugeltemperatur des Trocknungsmediums (6) in der Trocknungskammer
(4) und Bereitstellen eines Ausgangssignals für die detektierte Trockenkugeltemperatur,
d) Detektieren der Feuchtkugeltemperatur des Trocknungsmediums (6) in der Trocknungskammer
(4) und Bereitstellen eines Ausgangssignals für die detektierte Feuchtkugeltemperatur,
e) Detektieren der Temperatur der Oberflächenschicht (11) des Hygroskopmaterials (2)
und Bereitstellen eines Ausgangssignals für die detektierte Oberflächentemperatur,
gekennzeichnet durch den folgenden Schritt:
f) Verwendung des Ausgangssignals für die detektierte Trockenkugeltemperatur, des
Ausgangssignals für die detektierte Feuchtkugeltemperatur und des Ausgangssignals
für die detektierte Oberflächentemperatur als eine Anzeige des Oberflächenfeuchtegehalts
des Hygroskopmaterials (2) zur Regelung der Eigenschaften des Trocknungsmediums (6),
wobei beim Anfang des Trocknungsverfahrens, wenn die Oberfläche mit Feuchte gesättigt
ist, die Oberflächentemperatur des Hygroskopmaterials der Feuchtkugeltemperatur des
Trocknungsmediums entspricht,
wobei, während des Trocknens, die Oberflächentemperatur mehr und mehr die Trockenkugeltemperatur
des Trocknungsmediums erreicht, und die Oberfläche des Hygroskopmaterials einen Gleichgewichtsoberflächenfeuchtegehalt
erreicht, wenn die Oberfläche eine Temperatur aufweist, die gleich der Trockenkugeltemperatur
der Trocknungsmediums ist,
wobei ein Maß des Oberflächenfeuchtegehalts des Hygroskopmaterials aus der Beziehung
zwischen der Oberflächentemperatur und der Trockenkugeltemperatur und der Beziehung
zwischen der Oberflächentemperatur und der Feuchtkugeltemperatur erhalten wird, und
wobei das Maß des Oberflächenfeuchtegehalts des Hygroskopmaterials zur Regelung der
Eigenschaften des Trocknungsmediums und zur Vorhersage des Endes des Trocknungsverfahrens
vor dessen Eintreten verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Eigenschaften des Trocknungsmediums (6) seine Temperatur und sein Wassergehalt
sind.
3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch den weiteren Schritt:
g) Regelung der Strömungsgeschwindigkeit und Strömungsrichtung des Trocknungsmediums
(6).
4. Verfahren nach einem der vorgehenden Ansprüche, gekennzeichnet durch den weiteren Schritt:
h) Auswechseln des Trocknungsmediums (6).
5. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke des Hygroskopmaterials (2) höher als 8 mm, vorzugsweise höher als 10 mm,
ist.
6. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Dicke des Hygroskopmaterials (2) kleiner als 8 mm, vorzugsweise kleiner als 4
mm, ist.
7. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Detektieren der Oberflächentemperatur des Hygroskopmaterials (2) unter Verwendung
eines Infrarotthermometers (18) oder eines Pyrometers (18) erfolgt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Infrarotthermometer (18) einen Empfänger aufweist, der Strahlung mit Wellenlängen
höher als 700 nm, vorzugsweise höher als 2,5 µm detektiert.
9. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Trocknungsmedium (6) Luft ist.
10. Vorrichtung zum Trocknen eines Hygroskopmaterials (2), wobei das Hygroskopmaterial
(2) Holz, Torf oder Biomasse ist, umfassend eine Trocknungskammer (4) zur Aufnahme
von Hygroskopmaterials (2) und ein Trocknungsmedium (6), Heizmittel (10) zum Zuführen
von Energie zur Trocknungskammer (4), ein erstes Temperaturerfassungsmittel (12) zum
Detektieren der Trockenkugeltemperatur des Trocknungsmediums (6) in der Trocknungskammer
(4) und Bereitstellen eines Ausgangssignals für die detektierte Trockenkugeltemperatur,
ein zweites Temperaturerfassungsmittel (14) zum Detektieren der Feuchtkugeltemperatur
des Trocknungsmediums (6) in der Trocknungskammer (4) und Bereitstellen eines Ausgangssignals
für die detektierte Feuchtkugeltemperatur, ein drittes Temperaturerfassungsmittel
(18) zum Detektieren der Temperatur der Oberflächenschicht (11) des Hygroskopmaterials
(2) und Bereitstellen eines Ausgangssignals für die detektierte Oberflächentemperatur,
gekennzeichnet durch
eine Steuereinheit (22), die zum Empfangen vom Folgenden ausgelegt ist:
das Ausgangssignal für die detektierte Trockenkugeltemperatur, das Ausgangssignal
für die detektierte Feuchtkugeltemperatur;das Ausgangssignal für die detektierte Oberflächentemperatur;
und
ein Maß des Oberflächenfeuchtegehalts des Hygroskopmaterials (2), erhalten aus der
Beziehung zwischen der Oberflächentemperatur und der Trockenkugeltemperatur und der
Beziehung zwischen der Oberflächentemperatur und der Feuchtkugeltemperatur;
wobei die Steuereinheit ausgelegt ist, um die Eigenschaften des Trocknungsmediums
zu regeln und das Ende des Trocknungsverfahrens vor dessen Eintreten basierend auf
dem Maß des Oberflächenfeuchtegehalts vorherzusagen.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Eigenschaften des Trocknungsmediums (6) seine Temperatur und sein Wassergehalt
sind.
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass sie ferner Lüftungsmittel (20) zur Regelung der Strömungsgeschwindigkeit und Strömungsrichtung
des Trocknungsmediums (6) umfasst.
13. Vorrichtung nach einem der Ansprüche 10-12, dadurch gekennzeichnet, dass die Trocknungskammer (4) mindestens eine Lüftungsöffnung (25) zum Auswechseln des
Trocknungsmediums (6) umfasst.
14. Vorrichtung nach einem der Ansprüche 10-13, dadurch gekennzeichnet, dass die Dicke des Hygroskopmaterials (2) höher als 8 mm, vorzugsweise höher als 10 mm,
ist.
15. Vorrichtung nach einem der Ansprüche 10-13, dadurch gekennzeichnet, dass die Dicke des Hygroskopmaterials (2) kleiner als 8 mm, vorzugsweise kleiner als 4
mm, ist.
16. Vorrichtung nach einem der Ansprüche 10-15, dadurch gekennzeichnet, dass das dritte Temperaturerfassungsmittel (18) ein Infrarotthermometer oder ein Pyrometer
ist.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass das Infrarotthermometer (18) einen Empfänger aufweist, der Strahlung mit Wellenlängen
höher als 700 nm, vorzugsweise höher als 2,5 µm, detektiert.
18. Vorrichtung nach einem der vorgehenden Ansprüche 10-17, dadurch gekennzeichnet, dass das Trocknungsmedium (6) Luft ist.
1. Procédé de séchage d'un matériau hygroscopique (2) comprenant les étapes consistant
à :
a) fournir un matériau hygroscopique (2) dans une chambre de séchage (4) comprenant
un milieu de séchage (6), le matériau hygroscopique (2) étant du bois, de la tourbe
ou de la biomasse,
b) fournir de l'énergie à la chambre de séchage (4),
c) détecter la température de bulbe sec du milieu de séchage (6) dans la chambre de
séchage (4) et fournir un signal de sortie pour la température de bulbe sec détectée,
d) détecter la température de bulbe humide du milieu de séchage (6) dans la chambre
de séchage (4) et fournir un signal de sortie pour la température de bulbe humide
détectée,
e) détecter la température de la couche superficielle (11) du matériau hygroscopique
(2) et fournir un signal de sortie pour la température de surface détectée,
caractérisé par les étapes consistant à :
f) utiliser le signal de sortie pour la température de bulbe sec détectée, le signal
de sortie pour la température de bulbe humide détectée et le signal de sortie pour
la température de surface détectée en tant qu'indication de la teneur en humidité
superficielle du matériau hygroscopique (2) pour réguler les propriétés du milieu
de séchage (6),
dans lequel au début du procédé de séchage, si la surface est saturée d'humidité,
la température de surface du matériau hygroscopique correspond à la température de
bulbe humide du milieu de séchage,
dans lequel, tant que le séchage se déroule, la température de surface atteint de
plus en plus la température de bulbe sec du milieu de séchage, et la surface du matériau
hygroscopique atteint une teneur en humidité superficielle d'équilibre lorsque la
surface a une température égale à la température de bulbe sec du milieu de séchage,
dans lequel une mesure de la teneur en humidité superficielle du matériau hygroscopique
est obtenue à partir du rapport entre la température de surface et la température
de bulbe sec, et du rapport entre la température de surface et la température de bulbe
humide, et
dans lequel ladite mesure de la teneur en humidité superficielle du matériau hygroscopique
est utilisée pour réguler les propriétés du milieu de séchage et pour prédire la fin
du procédé de séchage avant qu'elle n'ait lieu.
2. Procédé selon la revendication 1, caractérisé en ce que les propriétés du milieu de séchage (6) sont constituées par sa température et sa
teneur en eau.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre l'étape consistant à :
g) réguler le débit du milieu de séchage (6) et sa direction d'écoulement.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre l'étape consistant à : h) échanger le milieu de séchage (6).
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur du matériau hygroscopique (2) est supérieure à 8 mm, de préférence supérieure
à 10 mm.
6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'épaisseur du matériau hygroscopique (2) est inférieure à 8 mm, de préférence inférieure
à 4 mm.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détection de la température de surface du matériau hygroscopique (2) est effectuée
à l'aide d'un thermomètre à infrarouge (18) ou d'un pyromètre (18).
8. Procédé selon la revendication 7, caractérisé en ce que le thermomètre infrarouge (18) comporte un récepteur qui détecte un rayonnement avec
des longueurs d'onde supérieures à 700 nm, de préférence supérieures à 2,5 µm.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le milieu de séchage (6) est de l'air.
10. Appareil pour sécher un matériau hygroscopique (2), dans lequel le matériau hygroscopique
(2) est du bois, de la tourbe ou de la biomasse, comprenant une chambre de séchage
(4) pour loger un matériau hygroscopique (2) et un milieu de séchage (6), un moyen
de chauffage (10) pour fournir de l'énergie à la chambre de séchage (4), un premier
moyen de détection de température (12) pour détecter la température de bulbe sec du
milieu de séchage (6) dans la chambre de séchage (4) et pour fournir un signal de
sortie pour la température de bulbe sec détectée, un deuxième moyen de détection de
température (14) pour détecter la température de bulbe humide du milieu de séchage
(6) dans la chambre de séchage (4) et fournir un signal de sortie pour la température
de bulbe humide détectée, un troisième moyen de détection de température (18) pour
détecter la température de la couche superficielle (11) du matériau hygroscopique
(2) et fournir un signal de sortie pour la température de surface détectée,
caractérisé par
une unité de commande (22) configurée pour recevoir :
le signal de sortie pour la température de bulbe sec détectée, le signal de sortie
pour la température de bulbe humide détectée ;
le signal de sortie pour la température de surface détectée ; et
une mesure de la teneur en humidité superficielle du matériau hygroscopique (2) obtenue
à partir du rapport entre la température de surface et la température de bulbe sec,
et du rapport entre la température de surface et la température de bulbe humide ;
dans lequel l'unité de commande est configurée pour réguler les propriétés du milieu
de séchage et pour prédire la fin du procédé de séchage avant qu'elle n'ait lieu sur
la base de ladite mesure de la teneur en humidité superficielle.
11. Appareil selon la revendication 10, caractérisé en ce que les propriétés du milieu de séchage (6) sont constituées par sa température et sa
teneur en eau.
12. Appareil selon la revendication 10 ou 11, caractérisé en ce qu'il comprend en outre un moyen de ventilation (20) pour réguler le débit et la direction
d'écoulement du milieu de séchage (6).
13. Appareil selon l'une quelconque des revendications 10 à 12, caractérisé en ce que la chambre de séchage (4) comprend au moins une ouverture de ventilation (25) pour
l'échange du milieu de séchage (6).
14. Appareil selon l'une quelconque des revendications 10 à 13, caractérisé en ce que l'épaisseur du matériau hygroscopique (2) est supérieure à 8 mm, de préférence supérieure
à 10 mm.
15. Appareil selon l'une quelconque des revendications 10 à 13, caractérisé en ce que l'épaisseur du matériau hygroscopique (2) est inférieure à 8 mm, de préférence inférieure
à 4 mm.
16. Appareil selon l'une quelconque des revendications 10 à 15, caractérisé en ce que le troisième moyen de détection de température (18) est un thermomètre à infrarouge
ou un pyromètre.
17. Appareil selon la revendication 16, caractérisé en ce que le thermomètre infrarouge (18) comporte un récepteur qui détecte un rayonnement avec
des longueurs d'onde supérieures à 700 nm, de préférence supérieures à 2,5 µm.
18. Appareil selon l'une quelconque des revendications 10 à 17, caractérisé en ce que le milieu de séchage (6) est de l'air.