[0001] The invention is in the field of vacuum insulated door panels and methods for creating
vacuum insulated door panels for use in refrigerators.
[0002] US 2011/0146325 A1 discloses a refrigerator that includes a door comprising an outer case and a door
liner. A vacuum insulation panel is disposed between the outer case and an ice bin,
provided at the refrigerator door, to insulate a storage compartment, defined by a
cabinet included in the refrigerator, from an outside.
[0003] According to the present invention there are provided a vacuum insulated door structure
and a method for creating an integral vacuum insulated door structure as defined in
the independent claims.
[0004] These and other features, advantages, and aims of the present device will be further
understood and appreciated by those skilled in the art upon studying the following
specification, claims, and appended drawings.
[0005] The present invention will be further described by way of example with reference
to the accompanying drawings in which:-
FIG. 1 is a top perspective of a refrigerator containing one embodiment of the vacuum
insulated door structure with the door in the open position;
FIG. 2 is a top perspective view of the refrigerator of FIG. 1 with the door in the
closed position;
FIG. 3 is a bottom exploded perspective view of one embodiment of the vacuum insulated
door structure;
FIG. 4 is a top perspective of the vacuum insulated door structure of FIG. 3;
FIG. 5 is a cross-sectional view of the vacuum insulated door structure of FIG. 4
taken at line V-V;
FIG. 6 is a front elevational view of the vacuum insulated door structure of FIG.
3;
FIG. 7 is a rear elevational view of the vacuum insulated door structure of FIG. 3;
FIG. 8 is a side elevational view of the vacuum insulated door structure of FIG. 3;
FIG. 9 is a top plan view of the vacuum insulated door structure of FIG. 3;
FIG. 10 is a bottom plan view of the vacuum insulated door structure of FIG. 3;
FIG. 11 is an exploded cross-sectional view of the vacuum insulated door structure
of FIG. 5;
FIG. 12 is a cross-sectional view of one embodiment of the vacuum insulated door structure;
FIG. 13 is a partially exploded top perspective view of the refrigerator of FIG. 1;
and
FIG. 14 is a schematic flow diagram showing a method for creating the vacuum insulated
door structure of FIG. 1.
[0006] For purposes of description herein the terms "upper," "lower," "right," "left," "rear,"
"front," "vertical," "horizontal," and derivatives thereof shall relate to the device
as oriented in FIG. 1. However, it is to be understood that the device may assume
various alternative orientations and step sequences, except where expressly specified
to the contrary. It is also to be understood that the specific devices and processes
illustrated in the attached drawings, and described in the following specification
are simply exemplary embodiments of the inventive concepts defined in the appended
claims. Hence, specific dimensions and other physical characteristics relating to
the embodiments disclosed herein are not to be considered as limiting, unless the
claims expressly state otherwise.
[0007] With respect to FIG. 1, a refrigerator 10 is generally shown. In each of these embodiments,
the refrigerator 10 can have at least one door 12 operable between open and closed
positions, and an interior 14 wherein the door 12 selectively provides access to the
interior 14 of the refrigerator 10 when the door 12 is in the open position. As will
be more fully described below, the refrigerator 10 can also include a cooling loop
having an evaporator, a condenser, and/or coolant fluid that can be configured to
provide cooling to at least a portion of the door 12.
[0008] A first aspect, as illustrated in FIGS. 1-5, includes a vacuum insulated door structure
30 that can be disposed within the at least one door 12 of the refrigerator 10. The
vacuum insulated door structure 30 includes a first wall member 32 having a first
perimetrical edge 34 and at least four outer side walls 36 that extend substantially
perpendicular from the first perimetrical edge 34 to a perimetrical lip 38. The first
wall member 32 also includes a first inner facing surface 40 and a first outer facing
surface 42.
[0009] As shown in FIG. 3, the vacuum insulated door structure 30 also includes a second
wall member 50 having a second inner facing surface 52 and a second outer facing surface
54, and a second perimetrical edge 56. The second perimetrical edge 56 is coupled
to the first wall member 32 proximate the perimetrical lip 38. At least four inner
sidewalls 58 are included in the second wall member 50 and define a second wall opening
60 configured to be distal from at least a portion of the second perimetrical edge
56. The at least four inner sidewalls 58 extend from the second wall opening 60 toward
the first wall member 32 to a back wall 62. The at least four inner sidewalls 58 and
the back wall 62 define a second wall offset 64.
[0010] As shown in FIGS. 3-5, the vacuum insulated door structure 30 can include at least
one tubular member 80 that includes first and second conduit ends 82, 84, an inner
conduit surface 86 and an outer conduit surface 88. The first conduit end 82 is coupled
to a first wall conduit opening 90 defined by the first wall member 32 and the second
conduit end 84 is coupled to a second wall conduit opening 92 defined by the second
wall offset 64. In this manner, the inner conduit surface 86 provides a fluid communication
between the first outer facing surface 42 and the second outer facing surface 54.
[0011] The first and second wall members 32, 50 and the at least one tubular member 80 form
the vacuum insulated door structure 30 that includes an outside surface 100 and an
inside surface 102, wherein the inside surface 102 defines a cavity volume 104 that
is hermetically sealed. A barrier layer 106 comprising a hermetic barrier film and
a heat sealing layer are disposed on at least a portion of the first and second wall
members 32, 50 and the tubular member 80. A cavity insulation material 108 is also
disposed within the cavity volume 104 and the cavity volume 104 is configured to maintain
at least partial vacuum within the cavity volume 65.
[0012] According to one embodiment, the first and second wall members 32, 50 and the at
least one tubular member 80 can be made of materials that include, but are not limited
to, high impact polystyrene or acrylonitrile butadiene styrene that has been thermally
formed into the shape described above. While not preferred, it is understood that
the first and second wall members 32, 50 and the at least one tubular member 80 can
also be formed by attaching various members together to form the vacuum insulated
door structure 30, as described above.
[0013] Referring to the illustrated embodiment, as illustrated in FIGS. 3 and 5, the first
wall member 32 can include at least four offset sidewalls 120 that define a first
wall opening 122 configured to be distal from at least a portion of the first perimetrical
edge 34, and wherein the at least four offset sidewalls 120 extend substantially orthogonally
from the first wall opening 122 to an offset back wall 124, such that the offset inner
sidewalls 120 and the offset back wall 124 includes a first wall offset 126. In this
embodiment, the offset back wall 124 of the first offset is disposed proximate the
back wall 62 of the second wall offset 64. In addition, the at least one tubular member
80 is coupled to the first wall member 32 proximate the first wall conduit opening
90 defined by the first wall offset 126, and extends to the second conduit end 84
which is coupled to the second wall member 50 proximate the second wall conduit opening
92, defined by the second wall offset 64.
[0014] Referring now to FIGS. 3-5 of the illustrated embodiment, the barrier layer 106 disposed
on the first and second wall members 32, 50 and the at least one tubular member 80
can include at least one layer of polymeric barrier films and at least one heat sealing
layer. The one or more polymeric barrier films can include, but are not limited to,
ethylene vinyl alcohol co-polymer, or polyvinylidene chloride films. The barrier layer
106 can be disposed upon the first and second wall members 32, 50 and the at least
one tubular member 80 by thermally forming the barrier layer 106 onto the first and
second wall members 32, 50 and the at least one tubular member 80 by methods that
include, but are not limited to, laminating, coextruding, or coating the barrier layer
106 onto the first and second wall members 32, 50 and the at least one tubular member
80. Alternatively, these and other methods can be used to dispose the barrier layer
106 onto panels that will be formed into the first and second wall members 32, 50
and the at least one tubular member 80.
[0015] In various embodiments, the barrier layer 106 provides a hermetic surface to the
first and second wall members 32, 50 and the at least one tubular member 80 to increase
the ability of the vacuum insulated door structure 30 to retain a vacuum within the
cavity volume 104. The barrier layer 106 can be disposed on the first inner facing
surface 40 of the first wall member 32, the second inner facing surface 52 of the
second wall member 50, and the outer conduit surface 88 of the at least one tubular
member 80, whereby the barrier layer 106 is disposed proximate the cavity volume 104
and substantially seals the cavity volume 104. In this manner, the barrier layer 106,
being within the cavity volume 104, is substantially protected from damage that can
be caused by handling and installation of the vacuum insulated door structure 30 within
the refrigerator 10. In less preferred embodiments, the barrier layer 106 can be disposed
on the first outer facing surface 42 of the first wall member 32, the second outer
facing surface 54 of the second wall member 50, and the inner conduit surface 86 of
the at least one tubular member 80.
[0016] In other alternate embodiments, the vacuum insulated door structure 30 can be formed
by disposing a perimetrical flange having a first lip and a second lip to the first
wall member 32 and the second wall member 50, such that the first lip is coupled to
the first wall member 32 proximate the first perimetrical edge 34 and the second lip
is coupled to the second wall member 50 proximate the second perimetrical edge 56.
In this embodiment, the at least four outer sidewalls 36 make up the perimetrical
flange.
[0017] As illustrated in FIG. 5, the cavity insulation material 108 disposed within the
cavity volume 104 can be a low thermal conductivity material or polyurethane foam
that is disposed into the cavity volume 104. According to the present invention, the
cavity insulation material 108 is disposed within the cavity volume 104 after the
first wall member 32 is hermetically sealed to the second wall member 50. In addition,
the cavity insulation material 108 can be an injectable or loose material that can
be injected into the cavity volume 104 through at least one port 150. In alternate
embodiments, the cavity insulation material 108 can be a preformed substantially rigid
material, where the preformed shape of the cavity insulation material 108 typically
and substantially matches the shape of the cavity volume 104. In such an embodiment,
the preformed cavity insulation material 108 is configured to be received by the first
inner facing surface 40 of the first wall member 32, and is further configured to
receive the second inner facing surface 52 of the second wall member 50. The preformed
cavity insulation material 108 can also be configured to receive the at least one
tubular member 80 and the first and second wall offsets 126, 64. In this manner, the
preformed cavity insulation material 108 substantially fills the cavity volume 104
without having to inject the cavity insulation material 108. In addition, the preformed
cavity insulation material 108 can allow the manufacturer to inspect the quality of
the cavity insulation material 108 before installation to substantially insure that
the cavity insulation material 108 is disposed substantially throughout the cavity
volume 104.
[0018] Referring again to the embodiment illustrated in FIGS. 3-10, and as discussed above,
the first wall member 32, the second wall member 50, and the at least one tubular
member 80 are hermetically sealed together to form the vacuum insulated door structure
30 and the cavity volume 104 defined therein. It should be understood that the method
for sealing the cavity volume 104 can vary. The methods used in the various embodiments
are sufficient to hermetically seal the cavity volume 104 in order to maintain the
desired vacuum within the cavity volume 104 of the vacuum insulated door structure
30. These sealing methods can include, but are not limited to, heat sealing or ultrasonic
welding. The combination of the polymeric barrier films and the at least one heat
sealing layer in conjunction with the method of sealing the cavity volume 104 creates
an at least partial vacuum within the core cavity volume 104 that can be maintained
for extended periods of time, such as, at least five, ten, or fifteen years.
[0019] Referring now to the illustrated embodiment as illustrated in FIGS. 4-11, the at
least one port 150 can be disposed to the first outer facing surface 42 of the first
wall member 32. The at least one port 150 can include an extruded tube 160 that can
be attached to a port opening 162 defined by a portion of the first or second wall
members 32, 50. The port 150 provides a fluid communication between the outside of
the vacuum insulated door structure 30 and the cavity volume 104, so that material
can be passed from within the cavity volume 104 to the outside of the vacuum insulated
door structure 30, or vice versa.
[0020] As illustrated in FIG. 5, after the cavity volume 104 is sealed together, the port
150 can be used as a vacuum port 164 to draw out gas 166 that may be present in the
cavity volume 104 with the cavity insulation material 108. Once the desired amount
of gas 166 is extracted from the cavity volume 104, the port 150 can be removed, and
the port opening 162 in the first or second wall member 32, 50 can be closed and hermetically
sealed to maintain the desired vacuum within the cavity volume 104. It should be understood
that in various embodiments, more than one port 150 can be used to extract gas 166
from the cavity volume 104.
[0021] Referring again to the illustrated embodiment as shown in FIGS. 3, 5 and 11, the
cavity insulation material 108 is disposed within the cavity volume 104 after the
first wall member 32 is hermetically sealed to the second wall member 50. As the cavity
insulation material 108 is disposed within the cavity volume 104 after the cavity
volume 104 is hermetically sealed, at least one injection port 168 can be disposed
to the outside surface 100 of the vacuum insulated door structure 30 at the one or
more port openings 162 defined therein so that there can be a fluid communication
between the outside surface 100 of the vacuum insulated door structure 30 and the
cavity volume 104. The cavity insulation material 108 can then be injected through
the at least one injection port 168 into the cavity volume 104. The at least one vacuum
port 164 can also be disposed on the outside surface 100 of the vacuum insulated door
structure 30 as described above to extract the desired amount of gas 166 from the
cavity volume 104, and to aid in the injection of the cavity insulation material 108
throughout the cavity volume 104. Once the desired amount of cavity insulation material
108 is injected into the cavity volume 104, and the desired amount of gas 166 is extracted
from the cavity volume 104, the injection port 168 and the vacuum port 164 can be
removed, and the port openings 162 closed and hermetically sealed to maintain the
desired vacuum within the cavity volume 104.
[0022] It should be appreciated that a perfect vacuum is not necessary within the hermetically
sealed cavity volume 104. Various levels of gas 166 can remain within the cavity volume
104 without degrading the efficiency or effectiveness of the vacuum insulated door
structure 30.
[0023] Referring now to the embodiment illustrated in FIG. 12, the vacuum insulated door
structure 30 can be configured to include a module receptacle 190 disposed proximate
the first wall offset 126 and the first wall conduit opening 90, such that the module
receptacle 190 is in communication with the inner conduit surface 86. The module receptacle
190 is also in communication with the cooling loop, wherein the module receptacle
190 is configured to receive at least one cooling module 192 that can be coupled with
the cooling loop of the refrigerator 10.
[0024] In various embodiments, more than one module receptacle 190 can be defined by the
vacuum insulated door structure 30 such that more than one cooling module 192 can
be disposed on the vacuum insulated door structure 30 and connected to one or more
cooling loops of the refrigerator 10. The location of the module receptacles 190 on
the vacuum insulated door structure 30 can define the location of various specialty
cooling modules 192 that can be placed upon and typically removably mounted to one
or more module receptacles 190 (by hand and without the use of tools) of the refrigerator
10. By way of explanation, and not limitation, examples of cooling modules 192 can
include at least one of
a turbo chill module;
a fast freeze module;
a shock freeze module;
a temperature controlled crisper compartment module;
a fresh food compartment module;
an ice making module;
a heat exchanger module for dispensing cold or chilled water;
a heat exchanger module for creating cold or chilled water to facilitate its carbonation
and dispense a carbonated beverage; and
an airless cooling module.
[0025] In addition, the cooling modules 192 having at least one product dispensing function
can be placed in the module receptacle 190 proximate the first wall offset 126, such
that the cooling module 192 is in fluid communication with the inner conduit surface
86, the second outer facing surface 54, and the second wall offset 64. In this manner,
cooled products from the cooling modules 192 having at least one product dispensing
function can be disposed from the cooling module 192 through the tubular member 80
and into the second wall offset 64, such that a user of the refrigerator 10 can collect
the cooled product as desired. In addition, more than one cooling module 192 can use
the same tubular member 80 as a common conduit for dispensing cooled products into
the second wall offset 64. Alternatively, two or more tubular members 80 can be implemented
to serve two or more corresponding cooling modules 192 to dispense cooled products
into the second wall offset 64.
[0026] As illustrated in the embodiment of FIG. 12, an ice making module 200 is disposed
in the cooling module receptacle 190 proximate the first wall offset 126. The ice
making module 200 includes an ice container 202 for collecting ice that is made within
the ice making module 200 and an impeller 204 for directing the ice collected within
the ice container 202 into and through the at least one tubular member 80 and to the
second wall offset 64. A receptacle insulation material 206 can be disposed within
the module receptacle 190 and around the ice making module 200 to insulate the ice
making module 200, such that the use of cooling within the cooling module 192 can
be substantially maximized. The receptacle insulation material 206 can include, but
is not limited to, polyurethane foam, rigid insulation, or other insulation material.
[0027] Referring now to the embodiments of FIGS. 1, 2 and 13, the door 12 of a refrigerator
10 can include a metal clad covering 220 having a finished outer surface 222 and an
interior surface 224. The metal clad covering 220 also includes a door opening 230
defined by the metal clad covering 220 through which the second wall offset 64 can
be accessed. The interior surface 224 of the metal clad covering 220 is configured
to be disposed on at least a portion of the outside surface 100 of the vacuum insulated
door structure 30. The finished outer surface 222 of the metal clad covering 220 can
have varying finishes that can include, but are not limited to, painted metal, stainless
steel, magnetic stainless steel-type finishes, or other metallic finish. The interior
surface 224 of the metal clad covering 220 defines a door structure receptacle 226
for receiving the outside surface 100 of the vacuum insulated door structure 30. In
various other alternate embodiments, the outer surface of the vacuum insulated door
structure 30 can include a finished outer surface 222 of the door of the refrigerator
10. In such an embodiment, various indicia, patterns, or colors, can be disposed on
the outside surface 100 of the vacuum insulated door structure 30.
[0028] In other various embodiments, the outside surface 100 of the vacuum insulated door
structure 30 can include one or more integrated shelves or one or more integrated
shelf receptacles for receiving one or more selectively removable shelves for holding
items that can be cooled within the interior 14 of the refrigerator 10. In various
other embodiments of the refrigerator 10, the cooling loop of the refrigerator 10
can be routed through a hinged portion 228 of the refrigerator 10. In this manner,
the main loop can be configured to run through the hinged portion and into the door
12 to the cooling module receptacle 190 of the vacuum insulated door structure 30.
In still other various embodiments, a conduit for running the cooling loop through
the vacuum insulated door structure 30 can be provided through the vacuum insulated
door structure 30 or in a space provided between the metal clad covering 220 and the
vacuum insulated door structure 30, or both.
[0029] Another aspect of the refrigerator 10 as illustrated in FIG. 14 includes a method
250 for creating a vacuum insulated door structure 30 for a refrigerator 10. A first
step 252 in this method 250 includes providing first and second wall members 32, 50
and at least one tubular member 80 as described above. This step 252 of the method
250 also includes disposing a barrier layer 106 comprising a hermetic barrier film
and a heat simulator onto at least a portion of the first and second wall members
32, 50 and the tubular member 80. The next step 254 in the method 250 includes hermetically
sealing the first and second wall members 32, 50 and the at least one tubular member
80 together to create and define the cavity volume 104.
[0030] As illustrated in the embodiment of FIG. 14, the method 250 also includes the step
256 of disposing a cavity insulation material 108 within the cavity volume 104 defined
by the first wall inner facing surface 40, the second wall inner facing surface 52,
and the outer conduit surface 88 of the at least one tubular member 80.
[0031] After the cavity insulation material 108 is disposed within the cavity volume 104,
and the cavity volume 104 is hermetically sealed, a next step 258 in the method 250
includes extracting gas 166 from the cavity volume 104 through the at least one port
150 disposed on the vacuum insulated door structure 30, wherein the cavity volume
104 is configured to maintain at least partial vacuum within the cavity volume 104.
[0032] According to the present invention, the cavity insulation material 108 is disposed
within the cavity volume 104 after the first wall member 32 is hermetically sealed
to the second wall member 50. In addition, and as described above, as the cavity insulation
material 108 is disposed within the cavity volume 104 after the cavity volume 104
is hermetically sealed, the method 250 can include the step 256 of injecting the cavity
insulation material 108 into the cavity volume 104 through the at least one injection
port 168 and into the cavity volume 104. The at least one vacuum port 164 is also
used to extract gas 166 from the cavity volume 104 to create the desired vacuum within
the cavity volume 104.
[0033] As illustrated in FIG. 14, the method 250 can also include the step 260 of providing
a cooling module 192 and disposing the cooling module 192 within the module receptacle
190 defined by the first wall member 32 proximate the first wall offset 126 and in
communication with the inner conduit surface 86 and the second wall offset 64. As
discussed above, when the cooling module 192 is disposed within the module receptacle
190, the cooling loop is in fluid communication with the cooling module 192 wherein
the cooling loop includes the evaporator, condenser and cooling fluid. This step 260
of the method 250 can also include disposing the receptacle insulation material 206
within at least a portion of the module receptacle 190 to surround and insulate the
cooling module 192. As illustrated in the embodiment of FIG. 12, the cooling module
192 can include an ice maker and dispenser and a water dispenser, wherein the ice
and water dispensers are in fluid communication with the inner conduit surface 86
and the second wall offset 64, such that a user of the refrigerator 10 can collect
cooled products disposed by the ice and water dispensers.
[0034] As illustrated in FIG. 14, the method 250 can also include the step 262 of providing
a metal clad covering 220 disposing the vacuum insulated door structure 30 within
the door structure receptacle 226 of the metal clad covering 220, such that the interior
surface 224 of the metal clad covering 220 is proximate the outside surface 100 of
the vacuum insulated door structure 30.
[0035] It will be understood by one having ordinary skill in the art that construction of
the described device and other components is not limited to any specific material.
Other exemplary embodiments of the device disclosed herein may be formed from a wide
variety of materials, unless described otherwise herein.
[0036] For purposes of this disclosure, the term "coupled" (in all of its forms, couple,
coupling, coupled, etc.) generally means the joining of two components (electrical
or mechanical) directly or indirectly to one another. Such joining may be stationary
in nature or movable in nature. Such joining may be achieved with the two components
(electrical or mechanical) and any additional intermediate members being integrally
formed as a single unitary body with one another or with the two components. Such
joining may be permanent in nature or may be removable or releasable in nature unless
otherwise stated.
[0037] It is also important to note that the construction and arrangement of the elements
of the device as shown in the exemplary embodiments is illustrative only. Although
only a few embodiments of the present innovations have been described in detail in
this disclosure, those skilled in the art who review this disclosure will readily
appreciate that many modifications are possible (e.g., variations in sizes, dimensions,
structures, shapes and proportions of the various elements, values of parameters,
mounting arrangements, use of materials, colors, orientations, etc.) without materially
departing from the novel teachings and advantages of the subject matter recited. For
example, elements shown as integrally formed may be constructed of multiple parts
or elements shown as multiple parts may be integrally formed, the operation of the
interfaces may be reversed or otherwise varied, the length or width of the structures
and/or members or connector or other elements of the system may be varied, the nature
or number of adjustment positions provided between the elements may be varied. It
should be noted that the elements and/or assemblies of the system may be constructed
from any of a wide variety of materials that provide sufficient strength or durability,
in any of a wide variety of colors, textures, and combinations. Accordingly, all such
modifications are intended to be included within the scope of the present innovations.
Other substitutions, modifications, changes, and omissions may be made in the design,
operating conditions, and arrangement of the desired and other exemplary embodiments
without departing from the scope of the claims.
[0038] It will be understood that any described processes or steps within described processes
may be combined with other disclosed processes or steps to form structures within
the scope of the present device. The exemplary structures and processes disclosed
herein are for illustrative purposes and are not to be construed as limiting.
[0039] It is also to be understood that variations and modifications can be made on the
aforementioned structures and methods without departing from the concepts of the present
device, and further it is to be understood that such concepts are intended to be covered
by the following claims unless these claims by their language expressly state otherwise.
[0040] The above description is considered that of the illustrated embodiments only. Modifications
of the device will occur to those skilled in the art and to those who make or use
the device. Therefore, it is understood that the embodiments shown in the drawings
and described above is merely for illustrative purposes and not intended to limit
the scope of the device, which is defined by the following claims as interpreted according
to the principles of patent law, including the Doctrine of Equivalents.
1. A refrigerator (10) having a vacuum insulated door structure (30) comprising:
a first wall member (32) having a first perimetrical edge (34), a first inner facing
surface (40) and a first outer facing surface (42);
a second wall member (50) having a second inner facing surface (52), a second outer
facing surface (54), and a second perimetrical edge (56), wherein the second wall
member (50) comprises at least four inner side walls (58) defining a second wall opening
(60) distal from at least a portion of the second perimetrical edge (56), and wherein
the at least four inner side walls (58) extend from the second wall opening (60) toward
the first wall member (32) to a back wall (62), wherein the at least four inner side
walls (58) and the back wall (62) define a second wall offset (64);
at least one tubular member (80) having first and second conduit ends (82, 84), an
inner conduit surface (86) and an outer conduit surface (88), wherein the first conduit
end (82) is coupled to a first wall conduit opening (90) defined by the first wall
member (32) and the second conduit end (84) is coupled to a second wall conduit opening
(92) defined by the second wall offset (64), and wherein the inner conduit surface
(86) provides a fluid communication between the first outer facing surface (42) and
the second outer facing surface (54), and wherein the first and second wall members
(32, 50) and the at least one tubular member (80) form a door structure (30); and
a cavity insulation material (108) disposed within a cavity volume (104) defined by
an interior volume of the door structure (30), wherein
the first wall member (32) has at least four outer sidewalls (36) that extend substantially
perpendicular from the first perimetrical edge (34) and to a perimetrical lip (38),
wherein the second perimetrical edge (56) is coupled to the first wall member (32)
proximate the perimetrical lip (38);
characterised in that:
the first wall member (32) has a barrier layer (106) having a hermetic barrier film
and a heat sealing layer;
the second wall member (50) has a barrier layer (106) having a hermetic barrier film
and a heat sealing layer; and
the cavity volume (104) is hermetically sealed, wherein the cavity volume (104) includes
an at least partial vacuum, wherein the cavity insulation material (108) is disposed
within the cavity volume (104) after the first wall member (32), the second wall member
(50) and the at least one tubular member (80) have been sealed together.
2. The refrigerator (10) of claim 1, wherein the first wall member (32) comprises at
least four offset sidewalls (120) defining a first wall opening (122) distal from
the first perimetrical edge (34), and wherein the at least four offset sidewalls (120)
extend from the first wall opening (122) to an offset back wall (124), wherein the
at least four offset sidewalls (120) and the offset back wall (124) include a first
wall offset (126).
3. A refrigerator (10) having a vacuum insulated door structure (30), the refrigerator
(10) comprising:
an insulative first wall member (32) having a first perimetrical edge (31), a first
inner facing surface (40) and a first outer facing surface (42), wherein the first
wall member (32) comprises at least four offset sidewalls (120) defining a first wall
opening (122) distal from at least a portion of the first perimetrical edge (34),
and wherein the at least four offset sidewalls (120) extend substantially orthogonally
from the first wall opening (122) to a first back wall (124), wherein the at least
four offset sidewalls (120) and the first backwall (124) include a first wall offset
(126);
an insulative perimetrical flange having a first lip and a second lip, wherein the
first lip is coupled to the first wall member (32) proximate the first perimetrical
edge (34);
an insulative second wall member (50) having a second inner facing surface (52), a
second outer facing surface (54), and a second perimetrical edge (56) coupled to the
perimetrical flange proximate the second lip, wherein the insulative second wall member
(50) comprises at least four inner sidewalls (58) defining a second wall opening (60)
distal from at least a portion of the second perimetrical edge (56), and wherein the
at least four inner sidewalls (58) extend from the second wall opening (60) toward
the first wall member (32) to a second back wall (62), wherein the at least four inner
sidewalls (58) and the second back wall (62) include a second wall offset (64) that
is disposed proximate the first wall opening (122);
an insulative tubular member (80) having first and second conduit ends, an inner conduit
surface, and an outer conduit surface, wherein the first conduit end is coupled to
the first wall member (32) proximate a first wall conduit opening (90) that is defined
by the first wall offset (122); and
the second conduit end is coupled to the insulative second wall member (50) proximate
a second wall conduit opening (92) that is defined by the second wall offset (64);
and wherein the inner conduit surface provides a fluid communication between the first
wall outer facing surface and the second wall outer facing surface, and wherein
the first and second wall members (32, 50), the perimetrical flange, and the tubular
member (80) form a door structure (30);
a barrier layer (106) comprising a hermetic barrier film and a heat sealing layer
is disposed on at least a portion of the first and second wall members (52, 50), the
perimetrical flange, and the tubular member (80); and
a cavity insulation material (108) disposed within a cavity volume (104) defined by
the first inner facing surface (40) of the first wall member (32), the second inner
facing surface (52) of the second wall member (50), the perimetrical flange, and the
outer conduit surface (88), wherein the cavity insulation material (108) is disposed
within the cavity volume (104) after the first wall member (32), the second wall member
(50) and the at least one tubular member (80) have been sealed together, wherein the
cavity volume (104) is hermetically sealed and is configured to maintain an at least
partial vacuum within the cavity volume (104).
4. The refrigerator (10) of claim 1, 2 or 3 further comprising:
a module receptacle defined at least partially by the first wall member (32) or offset
(32, 122) and in communication with the inner conduit surface (86), wherein the module
receptacle is configured to receive at least one cooling module configured to dispense
a cooled materialthrough the at least one tubular member (80) and into the second
wall offset (64).
5. The refrigerator (10) according to any one of the preceding claims further comprising:
a metal clad covering having an interior surface, wherein the interior surface is
disposed to at least a portion of an exterior surface of the door structure (30).
6. The refrigerator (10) of claim 5 wherein the metal clad covering has a finished outer
surface.
7. The refrigerator (10) according to any one of the preceding claims, wherein the cavity
insulation material (108) is polyurethane foam that isdisposed within or injected
into the cavity volume (104) via at least one port disposed on the door structure
(30).
8. The refrigerator (10) of claim 4 or any claim dependent thereon further comprising:
at least one cooling module coupled with the module receptacle and configured to be
in fluid communication with the inner conduit surface (86), wherein each at least
one cooling module is in fluid communication with a cooling loop having an evaporator,
a condenser, and a coolant fluid.
9. The refrigerator (10) of claim 8 wherein polyurethane foam is disposed within at least
a portion of the module receptacle about the cooling module.
10. The refrigerator (10) of claim 9, wherein the at least one cooling module includes
an ice maker and dispenser and a water dispenser, wherein the ice and water dispensers
are in fluid communication with the inner conduit surface (86) and the second wall
offset (64).
11. A method for creating an integral vacuum insulated door structure (30) comprising
the steps of:
providing a first wall member (32) having a first perimetrical edge (34), at least
four outer sidewalls (36) that extend substantially perpendicular from the first perimetrical
edge (34) to a perimetrical lip (38), a barrier layer (106) having a hermetic barrier
film and a heat sealing layer, a first inner facing surface (40), and a first outer
facing surface (42), wherein the first wall member (32) comprises at least four offset
sidewalls (120) defining a first wall opening (122) distal from at least a portion
of the first perimetrical edge (34), and wherein the at least four offset sidewalls
(120) extend substantially orthogonally from the first wall opening (122) to a first
back wall (124), wherein the at least four offset sidewalls (120) and the first back
wall (124) include a first wall offset (126);
providing a second wall member (50) having a second inner facing surface (52), a second
outer facing surface (54), and a second perimetrical edge (56) disposed proximate
the perimetrical lip (38), wherein the second wall member (50) comprises at least
four inner sidewalls (58) defining a second wall opening (60) distal from at least
a portion of the second perimetrical edge (56), a barrier layer (106) having a hermetic
barrier film and a heat sealing layer, and wherein the at least four inner sidewalls
(58) extend from the second wall opening (60) toward the first wall member (32) to
a back wall (62), wherein the at least four sidewalls (58) and the back wall (62)
define a second wall offset (64);
providing a tubular member (80) having first and second conduit ends (82, 84), an
inner conduit surface (86) and an outer conduit surface (88), wherein the first conduit
end (82) is disposed to a first wall conduit opening (90) defined by the first wall
member (32) and the second conduit end (84) is disposed to a second wall conduit opening
(92) defined by the second wall offset (64), and wherein the inner conduit surface
(86) provides a fluid communication between the first outer facing surface (42) and
the second outer facing surface (54);
disposing a cavity insulation material (108) within a cavity volume (104) defined
by the first inner facing surface (40) of the first wall member (32), the second inner
facing surface (52) of the second wall member (50), and the outer conduit surface
(88) by injecting polyurethane foam into the cavity volume (104) via the at least
one port after the first and second wall members (32, 50) and the tubular member (80)
have been hermetically sealed together, wherein the at least one port includes at
least one injection port through which the polyurethane foam is injected, and wherein
the at least one port includes one vacuum port through which the gas is extracted
from the cavity volume (104); and
extracting gas from the cavity volume (104) via at least one port disposed on the
first wall (32) member proximate a port opening defined by the first wall member (32),
wherein the cavity volume (104) is configured to maintain an at least partial vacuum
within the cavity volume (104).
12. The method of claim 11, wherein the door structure (30) includes a module receptacle
at least partially defined by the first wall offset (126) and in communication with
the innerconduit surface (86), wherein the module receptacle is configured to receive
a cooling module.
13. The method of claim 11 or 12 further comprising the steps of:
providing a metal clad covering having an interior surface; and
disposing the metal clad covering to at least a portion of an exterior of the vacuum
insulated door structure (30) such that the interior surface of the metal clad covering
is proximate the vacuum insulated door structure (30).
14. The method of claim 12 or any claim dependent thereon further comprising the step
of:
providing a cooling module;
disposing the cooling module within the module receptacle, wherein the cooling module
is configured to be in fluid communication with the inner conduit surface (86),
providing a cooling loop in fluid communication with the cooling module, wherein the
cooling loop includes an evaporator, a condenser, and a coolant fluid; and
disposing polyurethane foam within at least a portion of the module receptacle about
the cooling module, optionally wherein the at least one cooling module includes an
ice maker and dispenser and a water dispenser, wherein the ice and water dispensers
are in fluid communication with the inner conduit surface (86) and the second wall
offset (64).
1. Kühlschrank (10) mit einer vakuumisolierten Türstruktur (30), umfassend:
ein erstes Wandelement (32) mit einer ersten Umfangskante (34), einer ersten nach
innen weisenden Fläche (40) und einer ersten nach außen weisenden Fläche (42);
ein zweites Wandelement (50) mit einer zweiten nach innen weisenden Fläche (52), einer
zweiten nach außen weisenden Fläche (54) und einer zweiten Umfangskante (56), wobei
das zweite Wandelement (50) mindestens vier innere Seitenwände (58) umfasst, die eine
zweite Wandöffnung (60) distal von mindestens einem Abschnitt der zweiten Umfangskante
(56) definieren, und wobei sich die mindestens vier inneren Seitenwände (58) von der
zweiten Wandöffnung (60) in Richtung des ersten Wandelements (32) zu einer Rückwand
(62) erstrecken, wobei die mindestens vier inneren Seitenwände (58) und die Rückwand
(62) einen zweiten Wandversatz (64) definieren;
mindestens ein rohrförmiges Element (80) mit ersten und zweiten Leitungsenden (82,
84), einer inneren Leitungsfläche (86) und einer äußeren Leitungsfläche (88), wobei
das erste Leitungsende (82) mit einer ersten Wandleitungsöffnung (90) gekoppelt ist,
die durch das erste Wandelement (32) definiert ist, und das zweite Leitungsende (84)
mit einer zweiten Wandleitungsöffnung (92) gekoppelt ist, die durch den zweiten Wandversatz
(64) definiert ist, und wobei die innere Leitungsfläche (86) eine Fluidverbindung
zwischen der ersten nach außen weisenden Fläche (42) und der zweiten nach außen weisenden
Fläche (54) bereitstellt, und wobei die ersten und zweiten Wandelemente (32, 50) und
das mindestens eine rohrförmige Element (80) eine Türstruktur (30) bilden; und
ein Hohlraumisoliermaterial (108), das innerhalb eines Hohlraumvolumens (104) angeordnet
ist, das durch ein Innenvolumen der Türstruktur (30) definiert ist, wobei
das erste Wandelement (32) mindestens vier äußere Seitenwände (36) aufweist, die sich
im Wesentlichen senkrecht von der ersten Umfangskante (34) und zu einer Umfangslippe
(38) erstrecken, wobei die zweite Umfangskante (56) mit dem ersten Wandelement (32)
in der Nähe der Umfangslippe (38) gekoppelt ist;
dadurch gekennzeichnet, dass:
das erste Wandelement (32) eine Sperrschicht (106) mit einem hermetischen Sperrfilm
und eine Wärmeversiegelungsschicht aufweist;
das zweite Wandelement (50) eine Sperrschicht (106) mit einem hermetischen Sperrfilm
und eine Wärmeversiegelungsschicht aufweist; und
das Hohlraumvolumen (104) hermetisch versiegelt ist, wobei das Hohlraumvolumen (104)
ein zumindest teilweises Vakuum aufweist, wobei das Hohlraumisoliermaterial (108)
innerhalb des Hohlraumvolumens (104) angeordnet wird, nachdem das erste Wandelement
(32), das zweite Wandelement (50) und das mindestens eine rohrförmige Element (80)
miteinander versiegelt wurden.
2. Kühlschrank (10) nach Anspruch 1, wobei das erste Wandelement (32) mindestens vier
versetzte Seitenwände (120) umfasst, die eine erste Wandöffnung (122) distal von der
ersten Umfangskante (34) definieren, und wobei sich die mindestens vier versetzten
Seitenwände (120) von der ersten Wandöffnung (122) zu einer versetzten Rückwand (124)
erstrecken, wobei die mindestens vier versetzten Seitenwände (120) und die versetzte
Rückwand (124) einen ersten Wandversatz (126) aufweisen.
3. Kühlschrank (10) mit einer vakuumisolierten Türstruktur (30), wobei der Kühlschrank
(10) umfasst:
ein isolierendes erstes Wandelement (32) mit einer ersten Umfangskante (31), einer
ersten nach innen weisenden Fläche (40) und einer ersten nach außen weisenden Fläche
(42), wobei das erste Wandelement (32) mindestens vier versetzte Seitenwände (120)
umfasst, die eine erste Wandöffnung (122) distal von mindestens einem Abschnitt der
ersten Umfangskante (34) definieren, und wobei sich die mindestens vier versetzten
Seitenwände (120) im Wesentlichen orthogonal von der ersten Wandöffnung (122) zu einer
ersten Rückwand (124) erstrecken, wobei die mindestens vier versetzten Seitenwände
(120) und die erste Rückwand (124) einen ersten Wandversatz (126) aufweisen;
einen isolierenden Umfangsflansch mit einer ersten Lippe und einer zweiten Lippe,
wobei die erste Lippe mit dem ersten Wandelement (32) in der Nähe der ersten Umfangskante
(34) gekoppelt ist;
ein isolierendes zweites Wandelement (50) mit einer zweiten nach innen weisenden Fläche
(52), einer zweiten nach außen weisenden Fläche (54) und einer zweiten Umfangskante
(56), gekoppelt mit dem Umfangsflansch in der Nähe der zweiten Lippe, wobei das isolierende
zweite Wandelement (50) mindestens vier innere Seitenwände (58) umfasst, die eine
zweite Wandöffnung (60) distal von mindestens einem Abschnitt der zweiten Umfangskante
(56) definieren, und wobei sich die mindestens vier inneren Seitenwände (58) von der
zweiten Wandöffnung (60) in Richtung des ersten Wandelements (32) zu einer zweiten
Rückwand (62) erstrecken, wobei die mindestens vier inneren Seitenwände (58) und die
zweite Rückwand (62) einen zweiten Wandversatz (64) aufweisen, der in der Nähe der
ersten Wandöffnung (122) angeordnet ist;
ein isolierendes rohrförmiges Element (80) mit ersten und zweiten Leitungsenden, einer
inneren Leitungsfläche und einer äußeren Leitungsfläche, wobei das erste Leitungsende
mit dem ersten Wandelement (32) in der Nähe einer ersten Wandleitungsöffnung (90)
gekoppelt ist, die durch den ersten Wandversatz (122) definiert ist; und
wobei das zweite Leitungsende mit dem isolierenden zweiten Wandelement (50) in der
Nähe einer zweiten Wandleitungsöffnung (92) gekoppelt ist, die durch den zweiten Wandversatz
(64) definiert ist; und wobei die innere Leitungsfläche eine Fluidverbindung zwischen
der nach außen weisenden Fläche der ersten Wand und der nach außen weisenden Fläche
der zweiten Wand bereitstellt, und wobei
die ersten und zweiten Wandelemente (32, 50), der Umfangsflansch und das rohrförmige
Element (80) eine Türstruktur (30) bilden;
eine Sperrschicht (106), die einen hermetischen Sperrfilm umfasst, und eine Wärmeversiegelungsschicht,
auf mindestens einem Abschnitt der ersten und zweiten Wandelemente (52, 50), des Umfangsflansches
und des rohrförmigen Elements (80) angeordnet sind; und
ein Hohlraumisoliermaterial (108) innerhalb eines Hohlraumvolumens (104) angeordnet
ist, das durch die erste nach innen weisende Fläche (40) des ersten Wandelements (32),
die zweite nach innen weisende Fläche (52) des zweiten Wandelements (50), den Umfangsflansch
und die äußere Leitungsfläche (88) definiert ist, wobei das Hohlraumisoliermaterial
(108) innerhalb des Hohlraumvolumens (104) angeordnet wird, nachdem das erste Wandelement
(32), das zweite Wandelement (50) und das mindestens eine rohrförmige Element (80)
miteinander versiegelt wurden, wobei das Hohlraumvolumen (104) hermetisch versiegelt
ist und konfiguriert ist, um ein zumindest teilweises Vakuum innerhalb des Hohlraumvolumens
(104) aufrechtzuerhalten.
4. Kühlschrank (10) nach Anspruch 1, 2 oder 3, weiter umfassend:
eine Modulaufnahme, die zumindest teilweise durch das erste Wand-element (32) oder
den Versatz (32, 122) definiert ist und mit der inneren Leitungsfläche (86) in Verbindung
steht, wobei die Modulaufnahme konfiguriert ist, um mindestens ein Kühlmodul aufzunehmen,
das konfiguriert ist, um ein gekühltes Material durch das mindestens eine rohrförmige
Element (80) und in den zweiten Wandversatz (64) hinein abzugeben.
5. Kühlschrank (10) nach einem der vorstehenden Ansprüche, weiter umfassend:
eine metallverkleidete Abdeckung mit einer Innenfläche, wobei die Innenfläche an mindestens
einem Abschnitt einer Außenfläche der Türstruktur (30) angeordnet ist.
6. Kühlschrank (10) nach Anspruch 5, wobei die metallverkleidete Abdeckung eine veredelte
Außenfläche aufweist.
7. Kühlschrank (10) nach einem der vorstehenden Ansprüche, wobei das Hohlraumisoliermaterial
(108) Polyurethanschaum (108) ist, der innerhalb des Hohlraumvolumens (104) über mindestens
eine an der Türstruktur (30) angeordnete Öffnung angeordnet oder in dieses eingespritzt
ist.
8. Kühlschrank (10) nach Anspruch 4 oder einem davon abhängigen Anspruch, weiter umfassend:
mindestens ein Kühlmodul, das mit der Modulaufnahme gekoppelt und konfiguriert ist,
um in Fluidverbindung mit der inneren Leitungsfläche (86) zu stehen, wobei jedes mindestens
eine Kühlmodul in Fluidverbindung mit einem Kühlkreislauf steht, der einen Verdampfer,
einen Kondensator und ein Kühlmittel aufweist.
9. Kühlschrank (10) nach Anspruch 8, wobei Polyurethanschaum in mindestens einem Abschnitt
der Modulaufnahme um das Kühlmodul herum angeordnet ist.
10. Kühlschrank (10) nach Anspruch 9, wobei das mindestens eine Kühlmodul einen Eisbereiter
und -spender und einen Wasserspender aufweist, wobei die Eis- und Wasserspender in
Fluidverbindung mit der inneren Leitungsfläche (86) und dem zweiten Wandversatz (64)
stehen.
11. Verfahren zur Herstellung einer integrierten vakuumisolierten Türstruktur (30), umfassend
die Schritte von:
Bereitstellen eines ersten Wandelements (32) mit einer ersten Umfangskante (34), mindestens
vier äußeren Seitenwänden (36), die sich im Wesentlichen senkrecht von der ersten
Umfangskante (34) zu einer Umfangslippe (38) erstrecken, einer Sperrschicht (106)
mit einem hermetischen Sperrfilm und einer Wärmeversiegelungsschicht, einer ersten
nach innen weisenden Fläche (40) und einer ersten nach außen weisenden Fläche (42),
wobei das erste Wandelement (32) mindestens vier versetzte Seitenwände (120) umfasst,
die eine erste Wandöffnung (122) distal von mindestens einem Abschnitt der ersten
Umfangskante (34) definieren, und wobei sich die mindestens vier versetzten Seitenwände
(120) im Wesentlichen orthogonal von der ersten Wandöffnung (122) zu einer ersten
Rückwand (124) erstrecken, wobei die mindestens vier versetzten Seitenwände (120)
und die erste Rückwand (124) einen ersten Wandversatz (126) aufweisen;
Bereitstellen eines zweiten Wandelements (50) mit einer zweiten nach innen weisenden
Fläche (52), einer zweiten nach außen weisenden Fläche (54) und einer zweiten Umfangskante
(56), die in der Nähe der Umfangslippe (38) angeordnet ist, wobei das zweite Wandelement
(50) mindestens vier innere Seitenwände (58) umfasst, die eine zweite Wandöffnung
(60) distal von mindestens einem Abschnitt der zweiten Umfangskante (56) definieren,
eine Sperrschicht (106) mit einem hermetischen Sperrfilm und eine Wärmeversiegelungsschicht,
und wobei sich die mindestens vier inneren Seitenwände (58) von der zweiten Wandöffnung
(60) in Richtung des ersten Wandelements (32) zu einer Rückwand (62) erstrecken, wobei
die mindestens vier Seitenwände (58) und die Rückwand (62) einen zweiten Wandversatz
(64) definieren;
Bereitstellen eines rohrförmigen Elements (80) mit ersten und zweiten Leitungsenden
(82, 84), einer inneren Leitungsfläche (86) und einer äußeren Leitungsfläche (88),
wobei das erste Leitungsende (82) an einer ersten Wandleitungsöffnung (90) angeordnet
ist, die durch das erste Wandelement (32) definiert ist, und das zweite Leitungsende
(84) an einer zweiten Wandleitungsöffnung (92) angeordnet ist, die durch den zweiten
Wandversatz (64) definiert ist, und wobei die innere Leitungsfläche (86) eine Fluidverbindung
zwischen der ersten nach außen weisenden Fläche (42) und der zweiten nach außen weisenden
Fläche (54) bereitstellt;
Anordnen eines Hohlraumisoliermaterials (108) innerhalb eines Hohlraumvolumens (104),
das durch die erste nach innen weisende Fläche (40) des ersten Wandelements (32),
die zweite nach innen weisende Fläche (52) des zweiten Wandelements (50) und die äußere
Leitungsfläche (88) definiert ist, durch Einspritzen von Polyurethanschaum in das
Hohlraumvolumen (104) über die mindestens eine Öffnung nachdem die ersten und zweiten
Wandelemente (32, 50) und das rohrförmige Element (80) hermetisch miteinander versiegelt
wurden, wobei die mindestens eine Öffnung mindestens eine Einspritzöffnung aufweist,
durch die der Polyurethanschaum eingespritzt wird, und wobei die mindestens eine Öffnung
eine Vakuumöffnung aufweist, durch die das Gas aus dem Hohlraumvolumen (104) entnommen
wird; und
Entnehmen von Gas aus dem Hohlraumvolumen (104) über die mindestens eine Öffnung,
die an dem ersten Wand-(32)-Element in der Nähe einer durch das erste Wandelement
(32) definierten Anschlussöffnung angeordnet ist, wobei das Hohlraumvolumen (104)
konfiguriert ist, um ein zumindest teilweises Vakuum innerhalb des Hohlraumvolumens
(104) aufrechtzuerhalten.
12. Verfahren nach Anspruch 11, wobei die Türstruktur (30) eine Modulaufnahme aufweist,
die zumindest teilweise durch den ersten Wandversatz (126) definiert ist und mit der
inneren Leitungsfläche (86) in Verbindung steht, wobei die Modulaufnahme konfiguriert
ist, um ein Kühlmodul aufzunehmen.
13. Verfahren nach Anspruch 11 oder 12, weiter umfassend die Schritte von:
Bereitstellen einer metallverkleideten Abdeckung mit einer Innenfläche; und
Anordnen der metallverkleideten Abdeckung an mindestens einem Abschnitt einer Außenseite
der vakuumisolierten Türstruktur (30), so dass sich die Innenfläche der metallverkleideten
Abdeckung in der Nähe der vakuumisolierten Türstruktur (30) befindet.
14. Verfahren nach Anspruch 12 oder einem davon abhängigen Anspruch, weiter umfassend
den Schritt von:
Bereitstellen eines Kühlmoduls;
Anordnen des Kühlmoduls innerhalb der Modulaufnahme, wobei das Kühlmodul konfiguriert
ist, um mit der inneren Leitungsfläche (86) in Fluidverbindung zu stehen,
Bereitstellen eines Kühlkreislaufs in Fluidverbindung mit dem Kühlmodul, wobei der
Kühlkreislauf einen Verdampfer, einen Kondensator und ein Kühlmittel aufweist; und
Anordnen von Polyurethanschaum in mindestens einem Abschnitt der Modulaufnahme um
das Kühlmodul herum, wobei optional das mindestens eine Kühlmodul einen Eisbereiter
und -spender und einen Wasserspender aufweist, wobei die Eis- und Wasserspender mit
der inneren Leitungsfläche (86) und dem zweiten Wandversatz (64) in Fluidverbindung
stehen.
1. Réfrigérateur (10) présentant une structure de porte isolée par le vide (30) comprenant
:
un premier élément de paroi (32) présentant une première arête périmétrique (34),
une première surface de face intérieure (40) et une première surface de face extérieure
(42) ;
un second élément de paroi (50) présentant une seconde surface de face intérieure
(52), une seconde surface de face extérieure (54), et une seconde arête périmétrique
(56), dans lequel le second élément de paroi (50) comprend au moins quatre parois
latérales intérieures (58) définissant une seconde ouverture de paroi (60) distale
d'au moins une portion de la seconde arête périmétrique (56), et dans lequel les au
moins quatre parois latérales intérieures (58) s'étendent depuis la seconde ouverture
de paroi (60) vers le premier élément de paroi (32) à une paroi arrière (62), dans
lequel les au moins quatre parois latérales intérieures (58) et la paroi arrière (62)
définissent un second décalage de paroi (64) ;
au moins un élément tubulaire (80) présentant des première et seconde extrémités de
conduit (82, 84), une surface de conduit intérieur (86) et une surface de conduit
extérieur (88), dans lequel la première extrémité de conduit (82) est couplée à une
première ouverture de conduit de paroi (90) définie par le premier élément de paroi
(32) et la seconde extrémité de conduit (84) est couplée à une seconde ouverture de
conduit de paroi (92) définie par le second décalage de paroi (64), et dans lequel
la surface de conduit intérieur (86) fournit une communication fluidique entre la
première surface de face extérieure (42) et la seconde surface de face extérieure
(54), et dans lequel
les premier et second éléments de paroi (32, 50) et l'au moins un élément tubulaire
(80) forment une structure de porte (30) ; et
un matériau d'isolation de cavité (108) disposé dans un volume de cavité (104) défini
par un volume intérieur de la structure de porte (30), dans lequel
le premier élément de paroi (32) présente au moins quatre parois latérales extérieures
(36) qui s'étendent sensiblement perpendiculairement depuis la première arête périmétrique
(34) et à une lèvre périmétrique (38), dans lequel la seconde arête périmétrique (56)
est couplée au premier élément de paroi (32) à proximité de la lèvre périmétrique
(38) ;
caractérisé en ce que :
le premier élément de paroi (32) présente une couche barrière (106) présentant un
film de barrière hermétique et une couche de thermoscellage ;
le second élément de paroi (50) présente une couche barrière (106) présentant un film
de barrière hermétique et une couche de thermoscellage ; et
le volume de cavité (104) est hermétiquement scellé, dans lequel le volume de cavité
(104) inclut un vide au moins partiel, dans lequel le matériau d'isolation de cavité
(108) est disposé dans le volume de cavité (104) après que le premier élément de paroi
(32), le second élément de paroi (50) et l'au moins un élément tubulaire (80) ont
été scellés ensemble.
2. Réfrigérateur (10) selon la revendication 1, dans lequel le premier élément de paroi
(32) comprend au moins quatre parois latérales décalées (120) définissant une première
ouverture de paroi (122) distale de la première arête périmétrique (34), et dans lequel
les au moins quatre parois latérales décalées (120) s'étendent depuis la première
ouverture de paroi (122) à une paroi arrière décalée (124), dans lequel les au moins
quatre parois latérales décalées (120) et la paroi arrière décalée (124) incluent
un premier déport de paroi (126).
3. Réfrigérateur (10) présentant une structure de porte isolée par le vide (30), le réfrigérateur
(10) comprenant :
un premier élément de paroi isolant (32) présentant une première arête périmétrique
(31), une première surface de face intérieure (40) et une première surface de face
extérieure (42), dans lequel le premier élément de paroi (32) comprend au moins quatre
parois latérales décalées (120) définissant une première ouverture de paroi (122)
distale d'au moins une portion de la première arête périmétrique (34), et dans lequel
les au moins quatre parois latérales décalées (120) s'étendent sensiblement orthogonalement
de la première ouverture de paroi (122) à une première paroi arrière (124), dans lequel
les au moins quatre parois latérales décalées (120) et la première paroi arrière (124)
incluent un premier décalage de paroi (126) ;
une bride périmétrique isolante présentant une première lèvre et une seconde lèvre,
dans lequel la première lèvre est couplée au premier élément de paroi (32) à proximité
de la première arête périmétrique (34) ;
un second élément de paroi isolant (50) présentant une seconde surface de face intérieure
(52), une seconde surface de face extérieure (54), et une seconde arête périmétrique
(56) couplée à la bride périmétrique à proximité de la seconde lèvre, dans lequel
le second élément de paroi isolant (50) comprend au moins quatre parois latérales
intérieures (58) définissant une seconde ouverture de paroi (60) distale d'au moins
une portion de la seconde arête périmétrique (56), et dans lequel les au moins quatre
parois latérales intérieures (58) s'étendent depuis la seconde ouverture de paroi
(60) vers le premier élément de paroi (32) à une seconde paroi arrière (62), dans
lequel les au moins quatre parois latérales intérieures (58) et la seconde paroi arrière
(62) incluent un second décalage de paroi (64) qui est disposé à proximité de la première
ouverture de paroi (122) ;
un élément tubulaire isolant (80) présentant des première et seconde extrémités de
conduit, une surface de conduit intérieur, et une surface de conduit extérieur, dans
lequel la première extrémité de conduit est couplée au premier élément de paroi (32)
à proximité d'une première ouverture de conduit de paroi (90) qui est définie par
le premier décalage de paroi (122) ; et
la seconde extrémité de conduit est couplée au second élément de paroi isolant (50)
à proximité d'une seconde ouverture de conduit de paroi (92) qui est définie par le
second décalage de paroi (64); et dans lequel la surface de conduit intérieure fournit
une communication fluidique entre la première surface de face extérieure de paroi
et la seconde surface de face extérieure de paroi, et dans lequel
les premier et second éléments de paroi (32, 50), la bride périmétrique, et l'élément
tubulaire (80) forment une structure de porte (30) ;
une couche barrière (106) comprenant un film de barrière hermétique et une couche
de thermoscellage est disposée sur au moins une portion des premier et second éléments
de paroi (52, 50), la bride périmétrique, et l'élément tubulaire (80) ; et
un matériau d'isolation de cavité (108) disposé dans un volume de cavité (104) défini
par la première surface de face intérieure (40) du premier élément de paroi (32),
la seconde surface de face intérieure (52) du second élément de paroi (50), la bride
périmétrique, et la surface de conduit extérieur (88), dans lequel le matériau d'isolation
de cavité (108) est disposé dans le volume de cavité (104) après que le premier élément
de paroi (32), le second élément de paroi (50) et l'au moins un élément tubulaire
(80) ont été scellés ensemble, dans lequel le volume de cavité (104) est hermétiquement
scellé et est configuré pour maintenir un vide au moins partiel dans le volume de
cavité (104).
4. Réfrigérateur (10) selon la revendication 1, 2 ou 3, comprenant en outre :
un réceptacle de module défini au moins partiellement par le premier élément de paroi
(32) ou décalage (32, 122) et en communication avec la surface de conduit intérieur
(86), dans lequel le réceptacle de module est configuré pour recevoir au moins un
module de refroidissement configuré pour distribuer un matériau refroidi au travers
de l'au moins un élément tubulaire (80) et dans le second décalage de paroi (64).
5. Réfrigérateur (10) selon l'une quelconque des revendications précédentes, comprenant
en outre :
une couverture métallique présentant une surface intérieure, dans lequel la surface
intérieure est disposée sur au moins une portion d'une surface extérieure de la structure
de porte (30).
6. Réfrigérateur (10) selon la revendication 5, dans lequel la couverture métallique
présente une surface extérieure finie.
7. Réfrigérateur (10) selon l'une quelconque des revendications précédentes, dans lequel
le matériau d'isolation de cavité (108) est de la mousse de polyuréthane qui est disposée
dans le volume de cavité (104) ou injectée dans celui-ci via au moins un orifice disposé
sur la structure de porte (30).
8. Réfrigérateur (10) selon la revendication 4 ou l'une quelconque des revendications
précédentes dépendant de celle-ci, comprenant en outre :
au moins un module de refroidissement couplé au réceptacle de module et configuré
pour être en communication fluidique avec la surface de conduit intérieur (86), dans
lequel chaque au moins un module de refroidissement est en communication fluidique
avec une boucle de refroidissement présentant un évaporateur, un condensateur, et
un fluide réfrigérant.
9. Réfrigérateur (10) selon la revendication 8, dans lequel de la mousse de polyuréthane
est disposée dans au moins une portion du réceptacle de module autour du module de
refroidissement.
10. Réfrigérateur (10) selon la revendication 9, dans lequel l'au moins un module de refroidissement
inclut une machine de fabrication et de distribution de glaçons et une machine de
distribution d'eau, dans lequel les machines de distribution de glaçons et d'eau sont
en communication fluidique avec la surface de conduit intérieur (86) et le second
décalage de paroi (64).
11. Procédé de création d'une structure de porte isolée par le vide d'un seul tenant (30),
comprenant les étapes de :
la fourniture d'un premier élément de paroi (32) présentant une première arête périmétrique
(34), au moins quatre parois latérales extérieures (36) qui s'étendent sensiblement
perpendiculairement de la première arête périmétrique (34) à une lèvre périmétrique
(38), une couche barrière (106) présentant un film de barrière hermétique et une couche
de thermoscellage, une première surface de face intérieure (40), et une première surface
de face extérieure (42), dans lequel le premier élément de paroi (32) comprend au
moins quatre parois latérales décalées (120) définissant une première ouverture de
paroi (122) distale d'au moins une portion de la première arête périmétrique (34),
et dans lequel les au moins quatre parois latérales décalées (120) s'étendent sensiblement
orthogonalement depuis la première ouverture de paroi (122) à une première paroi arrière
(124), dans lequel les au moins quatre parois latérales décalées (120) et la première
paroi arrière (124) incluent un premier décalage de paroi (126) ;
la fourniture d'un second élément de paroi (50) présentant une seconde surface de
face intérieure (52), une seconde surface de face extérieure (54), et une seconde
arête périmétrique (56) disposée à proximité de la lèvre périmétrique (38), dans lequel
le second élément de paroi (50) comprend au moins quatre parois latérales intérieures
(58) définissant une seconde ouverture de paroi (60) distale d'au moins une portion
de la seconde arête périmétrique (56), une couche barrière (106) présentant un film
de barrière hermétique et une couche de thermoscellage, et dans lequel les au moins
quatre parois latérales intérieures (58) s'étendent depuis la seconde ouverture de
paroi (60) vers le premier élément de paroi (32) à une paroi arrière (62), dans lequel
les au moins quatre parois latérales (58) et la paroi arrière (62) définissent un
second décalage de paroi (64) ;
la fourniture d'un élément tubulaire (80) présentant des première et seconde extrémités
de conduit (82, 84), une surface de conduit intérieur (86) et une surface de conduit
extérieur (88), dans lequel la première extrémité de conduit (82) est disposée sur
une première ouverture de conduit de paroi (90) définie par le premier élément de
paroi (32) et la seconde extrémité de conduit (84) est disposée sur une seconde ouverture
de conduit de paroi (92) définie par le second décalage de paroi (64), et dans lequel
la surface de conduit intérieur (86) fournit une communication fluidique entre la
première surface de face extérieure (42) et la seconde surface de face intérieure
(54) ;
la disposition d'un matériau d'isolation de cavité (108) dans un volume de cavité
(104) défini par la première surface de face intérieure (40) du premier élément de
paroi (32), la seconde surface de face intérieure (52) du second élément de paroi
(50), et la surface de conduit extérieur (88) par injection de mousse de polyuréthane
dans le volume de cavité (104) via l'au moins un orifice après que les premier et
second éléments de paroi (32,50) et l'élément tubulaire (80) ont été hermétiquement
scellés ensemble, dans lequel l'au moins un orifice inclut au moins un orifice d'injection
au travers duquel la mousse de polyuréthane est injectée, et dans lequel l'au moins
un orifice inclut un orifice de vide au travers duquel le gaz est extrait du volume
de cavité (104) ; et
l'extraction du gaz du volume de cavité (104) via au moins un orifice disposé sur
le premier élément de paroi (32) à proximité d'une ouverture d'orifice définie par
le premier élément de paroi (32), dans lequel le volume de cavité (104) est configuré
pour maintenir un vide au moins partiel dans le volume de cavité (104).
12. Procédé selon la revendication 11, dans lequel la structure de porte (30) inclut un
réceptacle de module au moins partiellement défini par le premier décalage de paroi
(126) et en communication avec la surface de conduit intérieur (86), dans lequel le
réceptacle de module est configuré pour recevoir un module de refroidissement.
13. Procédé selon la revendication 11 ou 12, comprenant en outre les étapes de :
la fourniture d'une couverture métallique présentant une surface inférieure ; et
la disposition de la couverture métallique sur au moins une portion d'un extérieur
de la structure de porte isolée par le vide (30) de sorte que la surface intérieure
de la couverture métallique soit à proximité de la structure de porte isolée par le
vide (30).
14. Procédé selon la revendication 12 ou l'une quelconque des revendications dépendant
de celle-ci comprenant en outre l'étape de :
la fourniture d'un module de refroidissement ;
la disposition du module de refroidissement dans le réceptacle de module, dans lequel
le module de refroidissement est configuré pour être en communication fluidique avec
la surface de conduit intérieur (86),
la fourniture d'une boucle de refroidissement en communication fluidique avec le module
de refroidissement, dans lequel la boucle de refroidissement inclut un évaporateur,
un condensateur, et un fluide réfrigérant ; et
la disposition de mousse de polyuréthane dans au moins une portion du réceptacle de
module autour du module de refroidissement, en option dans lequel l'au moins un module
de refroidissement inclut une machine de fabrication et de distribution de glaçons
et une machine de distribution d'eau, dans lequel les machines de distribution de
glaçons et d'eau sont en communication fluidique avec la surface de conduit intérieur
(86) et le second décalage de paroi (64).