[0001] The invention relates to a rotative assembly, to a method for dismounting a sealing
element of such a rotative assembly and to an extraction tool for implementing such
a method.
[0002] Rotative assemblies are equipped with several dynamic sealing elements also named
« DUSE » seals, which have to be replaced when they are worn off. In order to dismount
such sealing elements, some components, such as rolling bearings, must often be dismounted
so that the sealing elements can be extracted and replaced by new ones.
[0003] In tunnel boring machines, oil pumping installations or marine applications, some
rotative assemblies cannot be dismounted without heavy operations and tooling.
[0004] The aim of the invention is to provide a new rotative assembly in which the sealing
elements can be replaced without complex and lengthy operations.
[0005] To this end, the invention concerns a rotative assembly comprising a first element
rotating with respect to a second element around a rotation axis, at least one bearing
arranged between the first and second element, and at least one sealing element arranged
between the first element and the second element, the sealing element being housed
in a peripheral groove provided on the first element, the sealing element comprising
at least one sealing lip resting on a surface of the second element. The rotative
assembly is characterized in that the first element comprises an extraction groove
realized on a radial surface of the first element, and which forms an empty space
below an internal surface of the sealing element and creates an axial access to said
empty space from an axial end surface of the first element.
[0006] Thanks to the invention, the sealing element can be dismounted and extracted from
the rotative assembly without dismounting any of the other components of the rotative
assembly, such as bearings. Consequently, replacement of sealing elements takes less
time and fewer operations than for rotative assemblies of the prior art.
[0007] According to further aspects of the invention which are advantageous but not compulsory,
such a rotative assembly may incorporate one or several of the following features:
- The extraction groove extends parallely to the rotation axis of the rotative assembly
on an angular sector of the circumference of the first element.
- The extraction groove has a partly cylindrical shape.
- The extraction groove has a radius equal to the radius of a machining cutter used
to realize the extraction groove.
[0008] The invention also concerns a method for dismounting a sealing element of a rotative
assembly as mentioned here-above, characterized in that it comprises steps consisting
in:
- a) inserting a tool in the extraction groove so that a hook portion of the tool is
comprised in the empty space extending between the sealing element and the extraction
groove;
- b) lifting the sealing element from its housing by rotating the tool around its longitudinal
axis and inserting the hook portion of the tool between a radial surface of the peripheral
groove and a radial surface of the sealing element on a side opposed to the axial
end surface of the first element;
- c) extracting the sealing element from the peripheral groove by pulling the tool along
its longitudinal axis.
[0009] Advantageously, at step c), the sealing element is radially compressed between the
surface of the second element on which the sealing lip lays and the radial surface
of the first element on which the extraction groove is provided.
[0010] The invention will now be explained in reference to the annexed figures, as an illustrative
example. In the annexed figures:
- figure 1 is a sectional view of a rotative assembly according to the invention,
- figure 2 is a sectional view, along plane II-II on figure 4, of a portion of the rotative
assembly of figure 1,
- figure 3 is a sectional view along plane III-III on figure 4, of a portion of the
rotative assembly of figure 1,
- figure 4 is a view along arrow IV on figure 2, of a rotative assembly according to
a first embodiment of the invention,
- figure 5 is a view similar to figure 4, of a rotative assembly according to a second
embodiment of the invention,
- figure 6 is a view similar to figure 3, an extraction tool according to the invention
being inserted in an extraction groove of a rotatable element of the rotative assembly
of figure 1,
- figure 7 is a view similar to figure 6, the extraction tool of figure 6 being rotated
around its longitudinal axis,
- figure 8 is a view similar to figures 6 and 7, a sealing element of the rotative assembly
being extracted thanks to the extraction tool of figures 6 and 7.
[0011] A rotative assembly A is represented on figure 1. Rotative assembly A comprises a
rotatable element R and a non rotatable element B. Rotatable element R is adapted
to rotate with respect to non rotatable element B around a rotation axis X-X'.
[0012] Rotative assembly A comprises bearing systems which permit the rotation of rotatable
element R with respect to non rotatable element B. These bearing systems comprise
two radial roller bearings 2, comprising rollers which have a rotation axis perpendicular
to axis X-X', and one axial roller bearing 4, which comprises rollers which have a
rotation axis parallel to axis X-X'.
[0013] According to a non-shown embodiment of the invention, rotative assembly A may comprise
other types of bearing systems such as ball bearings, needle bearings or plain bearings.
[0014] For example, rotative assembly A may belong to a tunnel boring machine, an oil pumping
installation or any other application in marine activities or not.
[0015] Rotative assembly A includes sealing elements 6 and 8 adapted to prevent lubrication
oil, which facilitates rotation of rotatable element R with respect to non rotatable
element B, from getting outside assembly A, and to prevent exterior elements, such
as dust, metal particulates or sea water, from getting inside rotative assembly A
and damaging its components. Sealing elements 6 and 8 are coupled in rotation with
rotatable element R, and comprise respective sealing lips 62 and 82 which lay on respective
radial surfaces 10 and 11 of non rotatable element B.
[0016] According to a non-shown embodiment of the invention, rotative assembly A may comprise
only one sealing element 6 or 8.
[0017] Sealing elements 6 and 8 are housed in respective peripheral grooves 12 and 13 of
rotatable element R. As shown in figures 2 and 3, peripheral groove 12 defines a bottom
120 formed by a cylindrical surface parallel to axis X-X'. Rotatable element R comprises
an axial end surface 14 which is perpendicular to axis X-X'. Peripheral groove 12
also defines a first annular surface 122 which is perpendicular to axis X-X' and which
extends radially outwards with respect to bottom 120 on the side of axial surface
14. Between annular surface 122 and end surface 14, rotatable element R comprises
a radial cylindrical surface 16. Peripheral groove 12 is axially delimited, on its
side opposed to annular surface 122, by an annular surface 124 which is parallel to
annular surface 122. The outer diameter of annular surface 124 is superior to the
outer diameter of annular surface 122.
[0018] Sealing element 6 extends around a central axis X6, which corresponds to axis X-X'
on figure 1. Along axis X6, sealing element 6 comprises a first terminal surface 64
which abuts against annular surface 122 in the mounted configuration of sealing element
6, and a terminal surface 66 which abuts against annular surface 124 in the mounted
configuration of sealing element 6. Sealing element 6 comprises an internal cylindrical
surface 68 which lies against bottom 120. Sealing lip 62 extends from an outer surface
of sealing lip 6 located on the side of terminal surface 66 and is directed radially
outwards on the side of terminal surface 64. Sealing lip 62 extends from a tubular
portion 63 of sealing element 6 which bears surfaces 64, 66 and 68.
[0019] In case sealing element 6 is worn out, sealing element 6 must be dismounted and replaced.
In order to dismount sealing element 6, rotatable element R comprises an extraction
groove 18 which extends on cylindrical surface 16 parallel to axis X-X' from end surface
14 towards annular surface 124. Extraction groove 18 extends on an angular sector
of the circumference of rotatable element R. The depth of extraction groove 18 is
superior to the depth of peripheral groove 12 with respect to cylindrical surface
16. Extraction groove 18 provides an empty space 22 below internal surface 68, and
provides an axial access from end surface 14 towards empty space 22 and sealing element
6.
[0020] The method for dismounting sealing element 6 from rotative assembly A comprises a
first step consisting in inserting an extraction tool 20 in extraction groove 18.
Extraction tool 20 comprises a handle 200 and an elongated rod 201, which defines
a longitudinal axis X20, terminated by a hook portion 203. When extraction tool 20
is inserted in extraction groove 18 as represented on figure 6, hook portion 203 is
completely comprised in the empty space 22 extending between internal surface 68 and
bottom 120.
[0021] The extraction method comprises a second step consisting in rotating extraction tool
20 around longitudinal axis X20, as represented by arrow F1 so that hook portion 203
lifts sealing element 6 from bottom 120. Sealing element 6 must be lifted so that
internal surface 68 is able to come out of peripheral groove 12. It is then possible
to insert hook portion 203 between surfaces 66 and 120, on the side opposed to axial
end surface 14, thanks to the shape of hook portion 203, which is perpendicular to
elongated rod 201.
[0022] In a third step, sealing element 6 is extracted from rotative assembly A by pulling
extraction tool 20 away from rotative assembly A along longitudinal axis X20, as shown
by arrow F2. While pulling extraction tool 20 away from rotative assembly A, sealing
element 6 is radially compressed so that sealing lip 62 is pushed against central
tubular portion 63, in order to allow sealing element 6 to be extracted between cylindrical
radial surface 16 and cylindrical radial surface 10 on the side of end surface 14.
[0023] Thanks to this extraction method, no component of rotative assembly A needs to be
dismounted. The extraction operation and the subsequent sealing element replacement
is therefore simpler and faster than in rotative assemblies of the prior art.
[0024] In order to facilitate the extraction of sealing element 6 or 8, the extraction tool
20 can be moved between the groove 12 and the sealing element 6 or 8 around the whole
circumference of rotatable element R, so as to lift sealing element 6 or 8 from groove
12 around the whole circumference of groove 12.
[0025] Extraction groove 18 may have a substantially rectangular shape, as shown on figure
4.
[0026] According to an alternative embodiment represented on figure 5, extraction groove
18 may have a partly cylindrical shape, having a radius R18 equal to the radius of
a machining cutter used to realize extraction groove 18.
[0027] According to a non-shown embodiment of the invention, hook portion 203 may be flat
shaped perpendicularly to longitudinal axis X20, so that hook portion 203 can be easily
inserted between sealing element 6 and extraction groove 18 on the side opposed to
end surface 14.
[0028] According to another non-shown embodiment of the invention, at least one of the sealing
elements 6 and 8 may be mounted in a groove of non-rotatable element B instead of
rotatable element R.
1. Rotative assembly (A) comprising a first element (R) rotating with respect to a second
element (B) around a rotation axis (X-X'), at least one bearing (2, 4) arranged between
the first and second element (R, B), and at least one sealing element (6, 8) arranged
between the first element (R) and the second element (B), the sealing element (6,
8) being housed in a peripheral groove (12) provided on the first element (R), the
sealing element (6) comprising at least one sealing lip (62) resting on a surface
(10) of the second element (B), characterised in that
the first element (R) comprises an extraction groove (18) realized on a radial surface
(16) of the first element (R), and which forms an empty space (22) below an internal
surface (68) of the sealing element (6) and creates an axial access to said empty
space (22) from an axial end surface (14) of the first element (R).
2. Rotative assembly according to claim 1, wherein the extraction groove (18) extends
parallely to the rotation axis (X-X') of the rotative assembly (A) on an angular sector
of the circumference of the first element (R).
3. Rotative assembly according to claim 2, wherein the extraction groove (18) has a partly
cylindrical shape.
4. Rotative assembly according to claim 3, wherein the extraction groove (18) has a radius
(R18) equal to the radius of a machining cutter used to realize the extraction groove
(18).
5. Method for dismounting a sealing element (6, 8) of a rotative assembly (A) according
to one of the previous claims, wherein it comprises steps consisting in:
a) inserting a tool (20) in the extraction groove (18) so that a hook portion (203)
of the tool (20) is comprised in the empty space (22) extending between the sealing
element (6) and the extraction groove (18);
b) lifting the sealing element (6) from its housing (12) by rotating the tool (20)
around its longitudinal axis (X20) and inserting the hook portion (203) of the tool
(20) between a radial surface (120) of the peripheral groove (12) and a radial surface
(66) of the sealing element (6) on a side opposed to the axial end surface (14) of
the first element (R);
c) extracting the sealing element (6) from the peripheral groove (12) by pulling the
tool (20) along its longitudinal axis (X20).
6. Method according to claim 5, wherein at step c), the sealing element (6) is radially
compressed between the surface (10) of the second element (B) on which the sealing
lip (62) lays and the radial surface (16) of the first element (R) on which the extraction
groove (18) is provided.
1. Drehanordnung (A), ein erstes Element (R), das sich in Bezug zu einem zweiten Element
(B) um eine Drehachse (X-X') dreht, mindestens ein Lager (2, 4), das zwischen dem
ersten und dem zweiten Element (R, B) angeordnet ist, und mindestens ein Dichtungselement
(6, 8), das zwischen dem ersten Element (R) und dem zweiten Element (B) angeordnet
ist, umfassend, wobei das Dichtungselement (6, 8) in einer auf dem ersten Element
(R) vorgesehenen Umfangsnut (12) aufgenommen ist, wobei das Dichtungselement (6) mindestens
eine Dichtungslippe (62) umfasst, die auf einer Fläche (10) des zweiten Elements (B)
aufliegt, dadurch gekennzeichnet, dass
das erste Element (R) eine Ausbaunut (18) umfasst, die auf einer Radialfläche (16)
des ersten Elements (R) ausgestaltet ist und die einen Hohlraum (22) unter einer Innenfläche
(68) des Dichtungselements (6) ausbildet und einen axialen Zugang von einer axialen
Endfläche (14) des ersten Elements (R) zu dem Hohlraum (22) erzeugt.
2. Drehanordnung nach Anspruch 1, wobei sich die Ausbaunut (18) parallel zur Drehachse
(X-X') der Drehanordnung (A) auf einem Winkelbereich des Umfangs des ersten Elements
(R) erstreckt.
3. Drehanordnung nach Anspruch 2, wobei die Ausbaunut (18) eine zum Teil zylindrische
Form aufweist.
4. Drehanordnung nach Anspruch 3, wobei die Ausbaunut (18) einen Radius (R18) aufweist,
der dem Radius eines Schneidwerkzeugs entspricht, das zur Ausgestaltung der Ausbaunut
(18) verwendet wird.
5. Verfahren zur Demontage eines Dichtungselements (6, 8) aus einer Drehanordnung (A)
nach einem der vorstehenden Ansprüche, die folgenden Schritte umfassend:
a) Einsetzen eines Werkzeugs (20) in die Ausbaunut (18), sodass ein Hakenabschnitt
(203) des Werkzeugs (20) in dem Hohlraum (22), der sich zwischen dem Dichtungselement
(6) und der Ausbaunut (18) erstreckt, befindet;
b) Heben des Dichtungselements (6) aus seinem Gehäuse (12) durch Drehen des Werkzeugs
(20) um seine Längsachse (X20) und Einsetzen des Hakenabschnitts (203) des Werkzeugs
(20) zwischen einer Radialfläche (120) der Umfangsnut (12)und einer Radialfläche (66)
des Dichtungselements (6) auf einer Seite, die der axialen Endfläche (14) des ersten
Elements (R) entgegengesetzt ist;
c) Ausbauen des Dichtungselements (6) aus der Umfangsnut (12) durch Ziehen des Werkzeugs
(20) entlang seiner Längsachse (X20).
6. Verfahren nach Anspruch 5, wobei bei Schritt c) das Dichtungselement (6) zwischen
der Fläche (10) des zweiten Elements (B), auf der die Dichtungslippe (62) aufliegt,
und der Radialfläche (16) des ersten Elements (R), auf der die Ausbaunut (18) vorgesehen
ist, radial zusammengedrückt wird.
1. Ensemble rotatif (A), comprenant un premier élément (R) entrant en rotation par rapport
à un second élément (B) autour d'un axe de rotation (X-X'), au moins un palier (2,
4) agencé entre le premier et le second élément (R, B), et au moins un élément d'étanchéité
(6, 8) agencé entre le premier élément (R) et le second élément (B), l'élément d'étanchéité
(6, 8) étant logé dans une rainure périphérique (12) prévue sur le premier élément
(R), l'élément d'étanchéité (6) comprenant au moins une lèvre d'étanchéité (62) reposant
sur une surface (10) du second élément (B), caractérisé en ce que
le premier élément (R) comprend une rainure d'extraction (18) réalisée sur une surface
radiale (16) du premier élément (R), et qui forme un espace vide (22) en dessous d'une
surface interne (68) de l'élément d'étanchéité (6) et crée un accès axial audit espace
vide (22) à partir d'une surface d'extrémité axiale (14) du premier élément (R).
2. Ensemble rotatif selon la revendication 1, dans lequel la rainure d'extraction (18)
s'étend parallèlement à l'axe de rotation (X-X') de l'ensemble rotatif (A) sur un
secteur angulaire de la circonférence du premier élément (R).
3. Ensemble rotatif selon la revendication 2, dans lequel la rainure d'extraction (18)
a une forme partiellement cylindrique.
4. Ensemble rotatif selon la revendication 3, dans lequel la rainure d'extraction (18)
a un rayon (R18) égal au rayon d'une fraise d'usinage utilisée pour réaliser la rainure
d'extraction (18).
5. Procédé pour démonter un élément d'étanchéité (6, 8) d'un ensemble rotatif (A) selon
une des revendications précédentes, dans lequel il comprend les étapes consistant
à :
a) insérer un outil (20) dans la rainure d'extraction (18) pour qu'une portion à crochet
(203) de l'outil (20) soit comprise dans l'espace vide (22) s'étendant entre l'élément
d'étanchéité (6) et la rainure d'extraction (18) ;
b) lever l'élément d'étanchéité (6) à partir de son logement (12) en mettant en rotation
l'outil (20) autour de son axe longitudinal (X20) et insérant la portion à crochet
(203) de l'outil (20) entre une surface radiale (120) de la rainure périphérique (12)
et une surface radiale (66) de l'élément d'étanchéité (6) sur un côté opposé à la
surface d'extrémité axiale (14) du premier élément (R) ;
c) extraire l'élément d'étanchéité (6) à partir de la rainure périphérique (12) en
tirant l'outil (20) le long de son axe longitudinal (X20).
6. Procédé selon la revendication 5, dans lequel, à l'étape c), l'élément d'étanchéité
(6) est radialement comprimé entre la surface (10) du second élément (B) sur laquelle
la lèvre d'étanchéité (62) se trouve et la surface radiale (16) du premier élément
(R) sur laquelle la rainure d'extraction (18) est prévue.