Cross Reference to Related Application
Field of the Invention
[0001] The present invention relates to battery monitoring methods and apparatus and, more
particularly, to methods and apparatus for monitoring cells in a battery stack using
low voltage monitoring circuitry.
Background of the Invention
[0002] Rechargeable batteries are used in many applications. One such application is in
hybrid vehicles. In these vehicles, a plurality of individual battery cells are connected
in series to provide a battery stack having a desired output voltage. A large number
of cells may be connected in series such that the total potential difference developed
across the battery stack is on the order of 150-600 volts, for example.
[0003] In general, it is desirable to monitor the voltage, the impedance and the state of
charge of each individual cell in the battery stack. An excessive voltage may indicate
thermal runaway, in which the cell has the potential to catch on fire or to explode.
A low voltage may indicate a discharged condition. A typical requirement is to measure
all cell voltages in the battery stack and the battery stack current more or less
simultaneously, i.e., within a few microseconds, and to repeat the measurement on
the order of every 100 milliseconds. This permits the state of charge and the impedance
of the cells in the battery stack to be determined accurately.
[0004] Techniques for monitoring low voltage batteries are known in the art. However, significant
problems are presented in monitoring a battery stack of several hundred volts. It
is desirable to implement a battery monitoring system with low voltage circuitry,
such as circuitry that operates at or below 16-30 volts. In addition, it is desirable
to avoid the need for multiple isolation devices such as optical isolators. Accordingly,
there is a need for novel battery monitoring apparatus and methods.
[0005] US 2004/0051534 discloses an arrangement in which battery voltages are read in parallel for each
block of a battery pack by use of analog switches. Circuit safety is provided by including
a large current limiting resistor between each cell of the battery and an associated
analog switch.
Summary of the Invention
[0006] According to a first aspect of the invention, there is provided a battery monitoring
system to monitor a battery stack having multiple cells connected in series characterized
by: monitor modules to monitor respective subsets of the cells of the battery stack,
each monitor module, in response to one or more control signals, measuring cell voltages
of the respective subset of cells and providing at least one readout signal that represents
the sampled cell voltages, the monitor modules being electrically connected in a stack
such that each monitor module is referenced to the voltage of the respective subset
of cells, and the control signals and the readout signal are connected through the
monitor modules of the stack; and a system control unit to provide the control signals
to the monitor modules and to receive the readout signal from the monitor modules.
[0007] According to a second aspect of the present invention there is provided the method
for monitoring a battery stack having multiple cells connected in series, comprising:
providing one or more monitor modules to monitor respective subsets of the cells of
the battery stack; referencing each monitor module to the voltage of the respective
subset of cells; and connecting control signals and readout signals serially through
the monitor modules
Brief Description of the Drawings
[0008] For a better understanding of the present invention, reference is made to the accompanying
drawings, which are incorporated herein by reference and in which:
Fig. 1 is a schematic block diagram of a battery monitoring system in accordance with
an embodiment of the invention;
Fig. 2 is a schematic block diagram of a monitor module in accordance with an embodiment
of the invention;
Fig. 3 is a schematic block diagram that illustrates an embodiment of a circuit for
supplying a sample signal to monitor modules in a daisy-chain configuration;
Fig. 4 is a schematic block diagram that illustrates an embodiment of a circuit for
supplying a read signal to the monitor modules in the daisy-chain configuration;
Fig. 5 is a schematic block diagram that illustrates an embodiment of a readout circuit;
Fig. 6 is a timing diagram that illustrates operation of the battery monitoring system;
Fig. 7 is a schematic block diagram of an implementation of a monitor module in accordance
with an embodiment of the invention;
Fig. 8 is a timing diagram that illustrates operation of the monitor module of Fig.
7;
Fig. 9 is a schematic block diagram of a battery monitoring system that illustrates
the cell balance function in accordance with an embodiment of the invention; and
Fig. 10 is a timing diagram that illustrates operation of the cell balance function.
Detailed Description
[0009] The present invention allows small differential voltages, such as two to five volts,
for example, from a series stack of battery cells to be measured using high common
mode voltages, such as 300 to 600 volts for example. The measurement is accomplished
with standard, low-cost, low-voltage integrated circuit technologies. Embodiments
of the invention use a differential switched capacitor integrator as a sample and
hold circuit. The sample and hold circuit provides a high impedance load on the battery
cells to avoid unnecessary power loss. The sample and hold circuit allows all of the
cell voltages in the stack to be measured at the same point in time when the battery
stack current is measured. This simultaneous measurement of cell voltage and stack
current provides an accurate measurement of the output impedance of each battery cell.
To withstand the high common mode voltages, the high common mode voltage is divided
evenly across each monitor module. Therefore, each monitor module only sees the voltage
of a limited number of battery cells. The voltage measurement is made at the cell
level and is then converted to a current that is passed through the stack of monitor
modules toward ground reference. Similarly, the monitor modules are addressed by a
control signal that is passed through the stack of monitor modules from ground reference.
The disclosed system has an advantage of minimizing the number of costly isolation
channels that are required in the system.
[0010] A block diagram of a battery monitoring system 10 in accordance with an embodiment
of the invention is shown in Fig. 1. A battery stack 12 to be monitored includes so-called
"bricks", each of which includes a subset of the cells in the battery stack. In the
example of Fig. 1, bricks 14 and 16 are shown. A typical battery stack may include
multiple bricks. Each brick includes several cells 20 connected in series, and the
bricks are connected in series to form the battery stack. In the example of Fig. 1,
each brick 14, 16 includes six cells 20. It will be understood that different numbers
of bricks and different numbers of cells per brick may be utilized in a particular
battery stack. By way of example, the cells 20 may utilize lithium ion battery technology.
The number of cells in the battery stack depends on the voltage of individual cells
and the required voltage of the battery stack. The battery stack voltage may be positive
or negative.
[0011] The battery monitoring system 10 includes a monitor module associated with each brick,
and a system control unit. In the embodiment of Fig. 1, battery monitoring system
10 includes a monitor module 30 associated with brick 14, a monitor module 32 associated
with brick 16 and a system control unit 40. Each monitor module receives operating
power from the cells of the respective brick. Thus monitor module 30 receives operating
power from brick 14, and monitor module 32 receives operating power from brick 16.
In addition, the voltage of each cell in the brick is connected to the respective
monitor module for monitoring as described below.
[0012] The monitor modules of the battery monitoring system are interconnected in a series
or daisy-chain configuration. In the daisy-chain configuration, each monitor module
is referenced to one of the bricks or subsets of cells of the battery stack, and signals
are connected from one monitor module to another in sequence. The daisy-chain configuration
permits each module to operate at the potential difference of the respective brick,
even though the common mode voltage of a particular monitor module may be much higher
than the rated voltage of the circuitry in the monitor module. Assume, for example,
that brick 14 operates at 0 to 25 volts and brick 16 operates at 25 to 50 volts. Thus,
monitor module 30 operates at 0 to 25 volts and monitor module 32 operates at 25 to
50 volts.
[0013] The control and readout signals are connected between monitor modules in the daisy-chain
configuration to eliminate the need for multiple optical isolators or other isolation
devices. In the daisy-chain configuration, each monitor module, except the monitor
module at each end of the battery stack, has two adjacent monitor modules. As noted
above, the battery stack voltage may be positive or negative. The connection of the
control and readout signals in the daisy-chain configuration of monitor modules depends
on the polarity of the battery stack.
[0014] In the usual case of a positive battery voltage, control signals are connected from
system control unit 40 to the monitor module at ground reference and then to the adjacent
higher voltage monitor module, and so on to the highest voltage monitor module. The
readout signals in the case of a positive battery voltage are connected from the highest
voltage monitor module to the adjacent monitor module of lower voltage and so on.
Readout signals from the monitor module at ground reference are connected to system
control unit 40.
[0015] In the case of a negative battery voltage, control signals are connected from system
control unit 40 to the monitor module at ground reference and then to the adjacent
lower voltage monitor module, and so on to the lowest voltage monitor module. Readout
signals are connected from the lowest voltage monitor module to the adjacent higher
monitor module and so on. Readout signals from the monitor module at ground reference
are connected to system control unit 40.
[0016] As shown in Fig. 1, the control signals may include a sample signal which causes
the voltages of all the cells in the battery stack to be measured substantially simultaneously.
A read signal causes the measured cell voltages to be read out sequentially. The control
signals may be digital signals. Typically, the measured cell voltages are read out
in order beginning with the cell that is closest to ground reference. The readout
signal may be an analog differential current connected between each monitor module
in the daisy-chain configuration. As shown in Fig. 1, the differential output current
of monitor module 30 is referenced to ground through resistors 50 and 52 and is connected
to system control unit 40. In other embodiments, the readout signal may be an analog
single-ended current, an analog voltage, or a digital signal.
[0017] System control unit 40 may include a differential analog-to-digital converter 54
and a microcontroller 60. Analog-to-digital converter 54 converts the readout signals
to digital values and supplies the digital values to microcontroller 60. Microcontroller
60 performs calculations based on the measured cell voltages and the measured battery
stack current. In addition, microcontroller 60 provides control signals, including
a sample signal and a read signal, to the monitor modules.
[0018] In addition, a resistor 64 measures the current of battery stack 12. The voltage
across resistor 64 is supplied through an amplifier 66 to microcontroller 60. The
current of battery stack 12 is sampled at the same time as the voltages of each of
the cells of battery stack 12 are sampled by monitor modules 30 and 32. Thus, microcontroller
60 can determine an internal impedance of each of the cells.
[0019] A block diagram of an embodiment of monitor module 30 is shown in Fig. 2. Each monitor
module in the monitoring system may have the same configuration. A sampling circuit
is provided to sample cell voltages of corresponding cells of at least a subset of
the cells of the battery. The subset of cells typically corresponds to the cells in
a brick. In the example of Fig. 2, each brick includes six cells. Thus, monitor module
30 includes sampling circuits 100, 101, 102, 103, 104 and 105. Each sampling circuit
receives the cell voltage of a corresponding cell and provides a differential output
to a readout circuit 110. Each of the sampling circuits receives a sample command
to cause the sampling circuit to measure the voltage of the corresponding cell. Since
the cell voltages are sampled simultaneously, a common sample command can be utilized.
Each sampling circuit also receives a read command to cause the measured cell voltage
to be supplied to readout circuit 110. The measured cell voltages are read out of
the sampling circuit sequentially, thus requiring separate read command lines. An
addressing scheme could be utilized but would increase the complexity of the sampling
and control circuits.
[0020] The readout circuit 110 converts the measured cell voltages to differential currents
and supplies the differential currents to an adjacent monitor module in the daisy-chain
configuration or to the analog-to-digital converter 54 in system control unit 40.
The differential currents representative of cell voltages are supplied in the same
sequence as they are read out from sampling circuits 100-105. Then, the adjacent monitor
module (such as monitor module 32 in Fig. 1) is activated for readout. The measured
cell voltages, converted to differential currents, are supplied from monitor module
32 to readout circuit 110 in monitor module 30. In the daisy-chain configuration,
the differential currents are passed through the readout circuit 110 to the adjacent
monitor module or to system control unit 40. In this manner, all of the measured cell
voltages are read out in sequence and supplied as differential currents to system
control unit 40.
[0021] A module control unit 120 provides simultaneous sample commands to the sampling circuits
100-105 and provides sequential read commands to the sampling circuits, in response
to control signals. The control signals are received from the adjacent monitor module
in the daisy-chain configuration or from the system control unit 40, depending on
the position of the monitor module in the daisy-chain configuration. The read control
signal may be a read clock that sequences through the sampling circuits of the battery
monitoring system. The module control unit 120 may supply sample commands and the
read clock to the adjacent monitor module in the daisy-chain configuration of the
battery monitoring system 10.
[0022] A schematic diagram of an embodiment of the control circuitry in each monitor module
associated with the sample signal is shown in Fig. 3. Monitor modules 30, 32, 34 are
connected to bricks 14, 16, 18, respectively. Each monitor module includes a resistor
140, a transistor 142 and a comparator 144. The resistor 140 and the transistor 142
are connected in series within each monitor module, and the resistors and transistors
are connected in series through each monitor module. The comparator 144 senses the
voltage across resistor 140. The sample signal causes a current to flow through resistor
140 in each of the monitor modules. The voltage produced by the current changes the
output state of comparator 144 in each of the monitor modules, causing the sampling
circuits to measure all the cell voltages simultaneously. The circuitry in each monitor
module, including resistor 140, transistor 142 and comparator 144, is required to
withstand only the voltage of the corresponding brick.
[0023] A schematic diagram of an embodiment of the control circuitry in each monitor module
associated with the read signal is shown in Fig. 4. Each monitor module includes a
resistor 150, a comparator 152, a counter 154 and transistors 156, 158 and 160. When
each read signal is received from system control unit 40, a current is drawn through
resistor 150 and changes the output state of comparator 152, thereby incrementing
counter 154. Counter 154 provides a read command to each sampling circuit in the monitor
module in sequence. In addition, the read command may be supplied to the readout circuit
110 (Fig. 2) to enable the voltage-to-current converter. In the example described
above, counter 154 provides six read commands for the six sampling circuits of the
monitor module. Then, counter 154 turns on transistor 160, causing the read signal
to be supplied to the adjacent monitor module. The above process is repeated for the
adjacent monitor module, and so on for each monitor module in the stack. As a result,
all sampling circuits are read out sequentially.
[0024] A schematic diagram of an embodiment of readout circuit 110 (Fig. 2) is shown in
Fig. 5. A voltage-to-current converter 210 receives IN+ and IN- signals from sampling
circuits 100-105 (Fig. 2). Voltage-to-current converter 210 may be a differential
circuit including current sources 220 and 222, transistors 230, 232, 234, 240, 242
and 244, and current sources 250 and 252. A resistor 260 is connected between the
sources of transistors 230 and 240. A differential voltage at inputs IN+ and IN- causes
a current I
R to flow through resistor 260. It can be shown that the difference between output
currents I
01 and I
02 is equal to 2I
R. As a result, the differential output current represents the measured cell voltage.
[0025] The differential currents I
01 and I
02 are supplied to the adjacent monitor module or to the system control unit 40. In
addition, voltage-to-current converter 210 receives currents I
11 and I
12 from the previous monitor module in the daisy-chain configuration and supplies those
currents as outputs to the next monitor module. As noted above, the sampling circuits
are read out sequentially, and only one sampling circuit is read out at a given time.
When readout signals are being provided from other monitor modules, the voltage-to-current
converter 210 is either turned off or its currents are diverted from transistors 234
and 244. As a result, transistors 234 and 244 pass readout signals through to the
next monitor module in the daisy-chain configuration.
[0026] A timing diagram that illustrates operation of the battery monitoring system is shown
in Fig. 6. A sample signal is first supplied to all the monitor modules, and the voltages
of all the cells in the battery stack are measured substantially simultaneously. At
the same time, the current of battery stack 12, as sensed by resistor 64 in Fig. 1,
is supplied to system control unit 40. Then, the read clock causes the measured cell
voltages to be read out from the monitor modules sequentially. In the example of Fig.
6, the six measured cell voltages of monitor module 30 are read out, followed by the
six measured cell voltages of monitor module 32, and so on. The readout signal is
an analog differential current, the magnitude of which represents each measured cell
voltage. After all measured cell voltages have been read out, the process is repeated
at intervals, for example, of 100 milliseconds.
[0027] The monitor module has been described in connection with the function of measuring
and reading out cell voltages. Additional functions can be provided within the scope
of the present invention. In some embodiments, the monitor module can be used to perform
one or more control functions, such as control of the corresponding brick, in response
to control signals. For example, cell balance can be controlled by the monitor module
in response to control signals supplied from system control unit 40. In addition,
the monitor module can be used to measure any desired parameter of the brick. One
example is to measure the output of a temperature sensor, such as a thermistor, and
to read out the measured temperature to system control unit 40.
[0028] In further embodiments, the monitor module may have a low power mode for saving power
during inactive periods. By way of example only, the monitor module may automatically
switch from a normal mode to the low power mode if no control signals are received
for a predetermined time period. The monitor module may be switched back to the normal
mode if any control signals are received.
[0029] In additional embodiments, the monitor module may include one or more diagnostic
functions to verify that the monitor module is functioning properly. For example,
a reference voltage generated in the monitor module can be measured and read out to
system control unit 40, either at known intervals or in response to appropriate control
signals supplied by system control unit 40. It will be understood that a variety of
diagnostic functions may be utilized.
[0030] An implementation of a monitor module 300 in accordance with an embodiment of the
invention is shown in Figs. 7-10. Like elements in Figs. 1-10 have the same reference
numerals. Monitor module 300 may correspond to the monitor modules 30, 32, 34 described
above.
[0031] Referring to Fig. 7, a monitor module 300 includes sample-and-hold circuits 302 and
304, each of which samples the voltages of three cells. In addition, sample-and-hold
capacitors 306 are provided at the inputs to sample-and-hold circuits 302 and 304.
The outputs of sample-and-hold circuits 302 and 304 are provided to voltage-to-current
converters 310 and 312, respectively, which provide differential output currents IOUT1
and IOUT2. The voltage-to-current converter 310 receives differential input currents
IIN1 and IIN2 from an adjacent monitor module. The module control logic includes control
logic 320, a low daisy chain interface 322 to connect to an adjacent lower voltage
monitor module or to the system control unit, and a high daisy chain interface 324
to connect to an adjacent higher voltage monitor module. Monitor module 300 further
includes cell balance control units 330 and 332, and 2.5 volt reference voltages 334
and 336.
[0032] Monitor module timing is described with reference to the timing diagram of Fig. 8.
A digital control signal SYNCL received from the system control unit samples all cell
voltages on its falling edge. The control signal SYNCL corresponds to the sample signal
described above. The cell voltages are stored in the sample-and-hold capacitors 306.
A read clock READL provided by the system control unit samples the reference voltage
for system calibration, followed by a measurement of a thermistor voltage. Then, the
cell voltages stored in the sample-and-hold circuits 302 and 304 are read out in series
to provide differential output currents IOUT1 and IOUT2. The differential output currents
are proportional to the cell voltages and to the thermistor and reference voltages.
Differential voltages VOUT1 and VOUT2 in Fig. 8 represent the voltages across the
external resistors 50 and 52 shown in Fig. 1.
[0033] The cell balance function of monitor module 300 is described with reference to Figs.
9 and 10. Cell balancing is accomplished by control of external FETs 350 connected
to pins CB1-CB6 and logic signals CBL and CBTOL provided to the monitor module 300
by the system control unit. The control signals provide a logic high output at pins
CB1-CB6, based on which cell requires charge balancing.
[0034] Referring to Fig. 10, the control signal SYNCL is brought low and the read clock
READL is started. When the read clock READL reaches the third low cycle, which corresponds
to initiating a measurement of cell 1, a rising edge on control signal CBL sets cell
balance output CB1 high. When there is no rising edge on control signal CBL, the cell
balance output is not turned on and no charge balancing is performed for that cell.
The control signal CBTOL resets all cell balance lines CB1-CB6 low.
[0035] Having thus described several aspects of at least one embodiment of this invention,
it is to be appreciated various alterations, modifications, and improvements will
readily occur to those skilled in the art.
1. A battery monitoring system to monitor a battery stack having multiple cells connected
in series, comprising:
monitor modules (30, 32, 34) to monitor respective subsets of the cells of the battery
stack, each monitor module, in response to one or more control signals, sampling cell
voltages of the respective subset of cells and providing at least one readout signal
for each sampled cell that represents the sampled cell voltage, the monitor modules
being electrically connected such that each monitor module is referenced to the voltage
of the respective subset of cells, and the control signals and the readout signals
are connected through the monitor modules; and
a system control (40) unit to provide the control signals to the monitor modules and
to receive the readout signals from the monitor modules.
2. The battery monitoring system as defined in claim 1, wherein each of the monitor modules
comprises:
sampling circuits (100 - 105) to sample cell voltages of corresponding cells of the
subset of cells;
a readout circuit (110) to receive the sampled cell voltages of the corresponding
cells of the subset of cells and to provide at least one readout signal that represents
the sampled cell voltages; and
a module control unit (120) to provide simultaneous sample commands to the sampling
circuits and to provide sequential read commands to the sampling circuits and the
readout circuit, in response to the control signals.
3. The battery monitoring system as defined in any of claims 1 or 2, wherein each monitor
module is configured to supply the control signals to an adjacent monitor module in
the stack.
4. The battery monitoring system as defined in any of claims 1 to 3, wherein each of
the sampling circuits comprises a switched capacitor sampling circuit.
5. The battery monitoring system as defined in any of claims 1 to 4, wherein each of
the monitor modules is powered by the respective subset of cells of the battery stack.
6. The battery monitoring system as defined in any of claims 1 to 5, wherein each of
the monitor modules is configured to perform one or more control functions in response
to control signals.
7. The battery monitoring system as defined in any of claims 1 to 6, wherein each of
the monitor modules is configured to operate in a low power mode during inactive periods.
8. The battery monitoring system as defined in any of claims 1 to 7, wherein each of
the monitor modules is configured to perform one o r more diagnostic operations to
verify proper functioning.
9. The battery monitoring system as defined in any of claims 1 to 8, wherein the readout
signal comprises a differential current readout signal that represents sampled cell
voltages.
10. The battery monitoring system as defined in any of claims 1 to 5, wherein the readout
signal comprises an analog readout signal that represents sampled cell voltages.
11. A method for monitoring a battery stack having multiple cells connected in series,
comprising:
providing one or more monitor modules to monitor respective subsets of the cells of
the battery stack;
referencing each monitor module to the voltage of the respective subset of cells;
connecting control signals and readout signals serially through the monitor modules;
sampling cell voltages of the subsets of cells with the monitor modules; and
providing at least one readout signal for each sampled cell that represents the sampled
cell voltage.
12. The method as defined in claim 11, wherein connecting control signals and readout
signals serially through the monitor modules comprises supplying differential current
readout signals representative of monitored voltages of respective cells of the battery
stack.
13. The method as defined in claim 11, wherein connecting control signals and readout
signals serially through the monitor modules comprises supplying analog readout signals
representative of monitored voltages of respective cells of the battery stack.
14. The method as defined in any of claims 11 to 13, further comprising controlling cell
balance in the cells of the battery stack.
15. The method as defined in any of claims 11 to 14, further comprising performing one
or more control functions in response to the control signals.
16. The method as defined in any of claims 11 to 15, further comprising operating each
monitor module in a low power mode during inactive periods.
17. The method as defined in any of claims 11 to 16, further comprising:
providing one or more monitor modules to monitor respective subsets of the cells of
the battery stack;
simultaneously sampling cell voltages of the cells of the battery stack with the one
or more monitor modules; and
sequentially reading the sampled cell voltages of the cells of the battery stack.
18. The method as defined in claim 17, wherein simultaneously sampling cell voltages comprises
sampling cell voltages with a switched capacitor sampling circuit.
19. The method as defined in any of claims 17 or 18, wherein providing at least one readout
signal comprises providing a differential current readout signal that represents sampled
cell voltages.
20. The method as defined in any of claims 17 or 18, wherein providing at least one readout
signal comprises providing an analog readout signal that represents sampled cell voltages.
1. Batterieüberwachungssystem, um einen Batteriestapel mit mehreren in Reihe geschalteten
Zellen zu überwachen, umfassend:
Überwachungsmodule (30, 32, 34), um jeweilige Teilmengen der Zellen des Batteriestapels
zu überwachen, wobei jedes Überwachungsmodul, in Reaktion auf ein oder mehrere Steuerungssignale,
Zellspannungen der jeweiligen Teilmenge der Zellen abtastet und mindestens ein Auslesesignal
für jede abgetastete Zelle bereitstellt, das die abgetastete Zellspannung darstellt,
wobei die Überwachungsmodule derart elektrisch verbunden sind, dass jedes Überwachungsmodul
auf die Spannung der jeweiligen Teilmenge von Zellen referenziert wird und die Steuerungssignale
und die Auslesesignale durch die Überwachungsmodule verbunden sind; und
eine Systemsteuerungseinheit (40), um den Überwachungsmodulen die Steuerungssignale
bereitzustellen und die Auslesesignale von den Überwachungsmodulen zu empfangen.
2. Batterieüberwachungssystem nach Anspruch 1, wobei jedes der Überwachungsmodule umfasst:
Abtastschaltungen (100-105), um Zellspannungen der entsprechenden Zellen der Teilmenge
von Zellen abzutasten;
eine Ausleseschaltung (110), um die abgetasteten Zellspannungen der entsprechenden
Zellen der Teilmenge von Zellen zu empfangen und mindestens ein Auslesesignal bereitzustellen,
das die abgetasteten Zellspannungen darstellt; und
eine Modulsteuerungseinheit (120), um den Abtastschaltungen zeitgleiche Abtastbefehle
bereitzustellen und den Abtastschaltungen und der Ausleseschaltung aufeinanderfolgende
Lesebefehle bereitzustellen, in Reaktion auf die Steuerungssignale.
3. Batterieüberwachungssystem nach einem der Ansprüche 1 oder 2, wobei jedes Überwachungsmodul
dazu ausgelegt ist, die Steuerungssignale an ein benachbartes Überwachungsmodul in
dem Stapel zu liefern.
4. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 3, wobei jede der Abtastschaltungen
eine aus einem geschalteten Kondensator bestehende Abtastschaltung umfasst.
5. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 4, wobei jedes der Überwachungsmodule
von der jeweiligen Teilmenge von Zellen des Batteriestapels betrieben wird.
6. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 5, wobei jedes der Überwachungsmodule
dazu ausgelegt ist, eine oder mehrere Steuerungsfunktionen in Reaktion auf die Steuerungssignale
durchzuführen.
7. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 6, wobei jedes der Überwachungsmodule
dazu ausgelegt ist, während inaktiver Zeiträume in einem Niederleistungsmodus zu arbeiten.
8. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 7, wobei jedes der Überwachungsmodule
dazu ausgelegt ist, ein oder mehrere Diagnoseverfahren durchzuführen, um ein korrektes
Funktionieren zu überprüfen.
9. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 8, wobei das Auslesesignal
ein Differenzstromauslesesignal umfasst, das abgetastete Zellspannungen darstellt.
10. Batterieüberwachungssystem nach einem der Ansprüche 1 bis 5, wobei das Auslesesignal
ein analoges Auslesesignal umfasst, das die abgetasteten Zellspannungen darstellt.
11. Verfahren zur Überwachung eines Batteriestapels mit mehreren in Reihe geschalteten
Zellen, umfassend:
Bereitstellen von einem oder mehreren Überwachungsmodulen, um jeweilige Teilmengen
der Zellen des Batteriestapels zu überwachen;
Referenzieren jedes Überwachungsmoduls auf die Spannung der jeweiligen Teilmenge von
Zellen;
Inreiheschalten von Steuerungssignalen und Auslesesignalen durch die Überwachungsmodule;
Abtasten von Zellspannungen der Teilmengen von Zellen mit den Überwachungsmodulen;
und
Bereitstellen von mindestens einem Auslesesignal für jede abgetastete Zelle, das die
abgetastete Zellspannung darstellt.
12. Verfahren nach Anspruch 11, wobei das Inreiheschalten von Steuerungssignalen und Auslesesignalen
durch die Überwachungsmodule das Liefern von Differenzstromauslesesignalen, die überwachte
Spannungen der jeweiligen Zellen des Batteriestapels darstellen, umfasst.
13. Verfahren nach Anspruch 11, wobei das Inreiheschalten von Steuerungssignalen und Auslesesignalen
durch die Überwachungsmodule das Liefern von analogen Auslesesignalen, die überwachte
Spannungen der jeweiligen Zellen des Batteriestapels darstellen, umfasst.
14. Verfahren nach einem der Ansprüche 11 bis 13, ferner umfassend das Steuern des Zellgleichgewichts
in den Zellen des Batteriestapels.
15. Verfahren nach einem der Ansprüche 11 bis 14, ferner umfassend das Durchführen von
einer oder mehreren Steuerungsfunktionen in Reaktion auf die Steuerungssignale.
16. Verfahren nach einem der Ansprüche 11 bis 15, ferner umfassend das Betreiben jedes
Überwachungsmoduls während inaktiver Zeiträume in einem Niederleistungsmodus.
17. Verfahren nach einem der Ansprüche 11 bis 16, ferner umfassend:
Bereitstellen von einem oder mehreren Überwachungsmodulen, um jeweilige Teilmengen
der Zellen des Batteriestapels zu überwachen;
gleichzeitiges Abtasten von Zellspannungen der Zellen des Batteriestapels mit einem
oder mehreren Überwachungsmodulen; und
aufeinanderfolgendes Lesen der abgetasteten Zellspannungen der Zellen des Batteriestapels.
18. Verfahren nach Anspruch 17, wobei das gleichzeitige Abtasten von Zellspannungen das
Abtasten von Zellspannungen mit einer aus einem geschalteten Kondensator bestehenden
Abtastschaltung umfasst.
19. Verfahren nach einem der Ansprüche 17 oder 18, wobei das Bereitstellen von mindestens
einem Auslesesignal das Bereitstellen eines Differenzstromauslesesignals umfasst,
das abgetastete Zell spannungen darstellt.
20. Verfahren nach einem der Ansprüche 17 oder 18, wobei das Bereitstellen von mindestens
einem Auslesesignal das Bereitstellen eines analogen Auslesesignals umfasst, das abgetastete
Zell spannungen darstellt.
1. Système de surveillance de batterie pour surveiller un empilement de batteries comportant
plusieurs éléments de batterie reliés en série, comprenant :
- des modules de surveillance (30, 32, 34) pour surveiller des sous-ensembles respectifs
des éléments de batterie de l'empilement de batteries, chaque module de surveillance,
en réponse à un ou plusieurs signaux de commande, échantillonnant des tensions d'élément
de batterie du sous-ensemble respectif d'éléments de batterie et fournissant au moins
un signal de lecture pour chaque élément de batterie échantillonné qui représente
la tension de l'élément de batterie échantillonné, les modules de surveillance étant
reliés électriquement de telle manière que chaque module de surveillance est référencé
sur la tension du sous-ensemble respectif d'éléments de batterie, et les signaux de
commande et les signaux de lecture sont reliés par l'intermédiaire des modules de
surveillance ; et
- une unité de commande de système (40) pour fournir les signaux de commande aux modules
de surveillance et pour recevoir les signaux de lecture à partir des modules de surveillance.
2. Système de surveillance de batterie selon la revendication 1, dans lequel chacun des
modules de surveillance comprend :
- des circuits d'échantillonnage (100 - 105) pour échantillonner les tensions d'élément
de batterie d'éléments de batterie correspondants du sous-ensemble d'éléments de batterie
;
- un circuit de lecture (110) pour recevoir les tensions d'élément de batterie échantillonnées
des éléments de batterie correspondants du sous-ensemble d'éléments de batterie et
pour fournir au moins un signal de lecture qui représente les tensions d'élément de
batterie échantillonnées ; et
- une unité de commande de module (120) pour fournir des commandes d'échantillonnage
simultanées aux circuits d'échantillonnage et pour fournir des commandes de lecture
séquentielles aux circuits d'échantillonnage et au circuit de lecture, en réponse
aux signaux de commande.
3. Système de surveillance de batterie selon l'une quelconque des revendications 1 ou
2, dans lequel chaque module de surveillance est configuré pour délivrer les signaux
de commande à un module de surveillance adjacent dans l'empilement.
4. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
3, dans lequel chacun des circuits d'échantillonnage comprend un circuit d'échantillonnage
à capacités commutées.
5. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
4, dans lequel chacun des modules de surveillance est alimenté par le sous-ensemble
respectif d'éléments de batterie de l'empilement de batteries.
6. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
5, dans lequel chacun des modules de surveillance est configuré pour réaliser une
ou plusieurs fonctions de commande en réponse à des signaux de commande.
7. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
6, dans lequel chacun des modules de surveillance est configuré pour fonctionner en
mode faible puissance durant les périodes inactives.
8. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
7, dans lequel chacun des modules de surveillance est configuré pour réaliser une
ou plusieurs opérations de diagnostic pour vérifier le fonctionnement correct.
9. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
8, dans lequel le signal de lecture comprend un signal de lecture de courant différentiel
qui représente les tensions d'élément de batterie échantillonnées.
10. Système de surveillance de batterie selon l'une quelconque des revendications 1 à
5, dans lequel le signal de lecture comprend un signal de lecture analogique qui représente
les tensions d'élément de batterie échantillonnées.
11. Procédé de surveillance d'un empilement de batteries comportant plusieurs éléments
de batterie reliés en série, comprenant :
- la fourniture d'un ou plusieurs modules de surveillance pour surveiller les sous-ensembles
respectifs des éléments de batterie de l'empilement de batteries ;
- le référencement de chaque module de surveillance sur la tension du sous-ensemble
respectif d'éléments de batterie ;
- la liaison des signaux de commande et des signaux de lecture en série par l'intermédiaire
des modules de surveillance ;
- l'échantillonnage des tensions d'élément de batterie des sous-ensembles d'éléments
de batterie avec les modules de surveillance ; et
- la fourniture d'au moins un signal de lecture pour chaque élément de batterie échantillonné
qui représente la tension de l'élément de batterie échantillonné.
12. Procédé selon la revendication 11, dans lequel la liaison des signaux de commande
et des signaux de lecture en série par l'intermédiaire des modules de surveillance
comprend la délivrance de signaux de lecture de courant différentiel représentant
les tensions surveillées des éléments de batterie respectifs de l'empilement de batteries.
13. Procédé selon la revendication 11, dans lequel la liaison des signaux de commande
et des signaux de lecture en série par l'intermédiaire des modules de surveillance
comprend la délivrance de signaux de lecture analogiques représentant les tensions
surveillées des éléments de batterie respectifs de l'empilement de batteries.
14. Procédé selon l'une quelconque des revendications 11 à 13, comprenant en outre la
commande de l'équilibre des éléments de batterie dans les éléments de batterie de
l'empilement de batteries.
15. Procédé selon l'une quelconque des revendications 11 à 14, comprenant en outre la
réalisation d'une ou plusieurs fonctions de commande en réponse aux signaux de commande.
16. Procédé selon l'une quelconque des revendications 11 à 15, comprenant en outre le
fonctionnement de chaque module de surveillance en mode faible puissance durant les
périodes inactives.
17. Procédé selon l'une quelconque des revendications 11 à 16, comprenant en outre :
- la fourniture d'un ou plusieurs modules de surveillance pour surveiller les sous-ensembles
respectifs des éléments de batterie de l'empilement de batteries ;
- l'échantillonnage simultané des tensions d'élément de batterie des éléments de batterie
de l'empilement de batteries avec les un ou plusieurs modules de surveillance ; et
- la lecture séquentielle des tensions d'élément de batterie échantillonnées des éléments
de batterie de l'empilement de batteries.
18. Procédé selon la revendication 17, dans lequel l'échantillonnage simultané des tensions
d'élément de batterie comprend l'échantillonnage des tensions d'élément de batterie
avec un circuit d'échantillonnage à capacités commutées.
19. Procédé selon l'une quelconque des revendications 17 ou 18, dans lequel la fourniture
d'au moins un signal de lecture comprend la fourniture d'un signal de lecture de courant
différentiel qui représente les tensions d'élément de batterie échantillonnées.
20. Procédé selon l'une quelconque des revendications 17 ou 18, dans lequel la fourniture
d'au moins un signal de lecture comprend la fourniture d'un signal de lecture analogique
qui représente les tensions d'élément de batterie échantillonnées.