(19)
(11) EP 3 077 085 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.02.2020 Bulletin 2020/06

(21) Application number: 14825207.5

(22) Date of filing: 08.12.2014
(51) International Patent Classification (IPC): 
B01D 53/94(2006.01)
B01J 29/74(2006.01)
B01J 23/44(2006.01)
(86) International application number:
PCT/US2014/069089
(87) International publication number:
WO 2015/085303 (11.06.2015 Gazette 2015/23)

(54)

PASSIVE NOX ADSORBER COMPRISING NOBLE METAL AND SMALL PORE MOLECULAR SIEVE

PASSIVER NOX-ADSORBER MIT EDELMETALL- UND KLEINPORIGEM MOLEKULARSIEB

ADSORBEUR DE NOX PASSIF COMPRENANT UN MÉTAL NOBLE ET UN TAMIS MOLÉCULAIRE À PETITS PORES


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 06.12.2013 US 201361912834 P

(43) Date of publication of application:
12.10.2016 Bulletin 2016/41

(60) Divisional application:
19207712.1

(73) Proprietor: Johnson Matthey Public Limited Company
London EC4A 4AB (GB)

(72) Inventors:
  • CHEN, Hai-Ying
    Conshohocken, Pennsylvania 19428 (US)
  • RAJARAM, Raj Rao
    Slough Berkshire SL3 7PH (GB)
  • LIU, Dongxia
    Wayne, Pennsylvania 19087 (US)

(74) Representative: Lenden, Philip 
Johnson Matthey PLC Gate 20 Orchard Road
Royston, Herts. SG8 5HE
Royston, Herts. SG8 5HE (GB)


(56) References cited: : 
EP-A2- 0 935 055
WO-A1-2011/112949
WO-A1-2012/170421
US-A1- 2010 267 548
EP-A2- 1 184 556
WO-A1-2012/166868
US-A1- 2003 115 859
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention relates to an exhaust system for internal combustion engines comprising a passive NOx adsorber, and a method for reducing NOx in an exhaust gas.

    BACKGROUND OF THE INVENTION



    [0002] Internal combustion engines produce exhaust gases containing a variety of pollutants, including nitrogen oxides ("NOx"), carbon monoxide, and uncombusted hydrocarbons, which are the subject of governmental legislation. Emission control systems are widely utilized to reduce the amount of these pollutants emitted to atmosphere, and typically achieve very high efficiencies once they reach their operating temperature (typically, 200°C and higher). However, these systems are relatively inefficient below their operating temperature (the "cold start" period).

    [0003] For instance, current urea based selective catalytic reduction (SCR) applications implemented for meeting Euro 6b emissions require that the temperature at the urea dosing position be above about 180°C before urea can be dosed and used to convert NOx. NOx conversion below 180°C is difficult to address using the current systems, and future European and US legislation will stress the low temperature NOx storage and conversion. Currently this is achieved by heating strategies but this has a detrimental effect of CO2 emissions.

    [0004] As even more stringent national and regional legislation lowers the amount of pollutants that can be emitted from diesel or gasoline engines, reducing emissions during the cold start period is becoming a major challenge. Thus, methods for reducing the level of NOx emitted during cold start condition continue to be explored.

    [0005] For instance, PCT Intl. Appl. WO 2008/047170 discloses a system wherein NOx from a lean exhaust gas is adsorbed at temperatures below 200°C and is subsequently thermally desorbed above 200°C. The NOx adsorbent is taught to consist of palladium and a cerium oxide or a mixed oxide or composite oxide containing cerium and at least one other transition metal.

    [0006] U.S. Appl. Pub. No. 2011/0005200 teaches a catalyst system that simultaneously removes ammonia and enhances net NOx conversion by placing an ammonia-selective catalytic reduction ("NH3-SCR") catalyst formulation downstream of a lean NOx trap. The NH3-SCR catalyst is taught to adsorb the ammonia that is generated during the rich pulses in the lean NOx trap. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap, which increases NOx conversion rate while depleting the stored ammonia.

    [0007] PCT Intl. Appl. WO 2004/076829 discloses an exhaust-gas purification system which includes a NOx storage catalyst arranged upstream of an SCR catalyst. The NOx storage catalyst includes at least one alkali, alkaline earth, or rare earth metal which is coated or activated with at least one platinum group metal (Pt, Pd, Rh, or Ir). A particularly preferred NOx storage catalyst is taught to include cerium oxide coated with platinum and additionally platinum as an oxidizing catalyst on a support based on aluminum oxide. EP 1027919 discloses a NOx adsorbent material that comprises a porous support material, such as alumina, zeolite, zirconia, titania, and/or lanthana, and at least 0.1 wt% precious metal (Pt, Pd, and/or Rh). Platinum carried on alumina is exemplified. U.S. Appl. Pub. No. 2012/0308439 A1 teaches a cold start catalyst that comprises (1) a zeolite catalyst comprising a base metal, a noble metal, and a zeolite, and (2) a supported platinum group metal catalyst comprising one or more platinum group metals and one or more inorganic oxide carriers.

    [0008] PCT Intl. Appl. WO 2012/166868 discloses a cold start catalyst. The cold start catalyst comprises a zeolite catalyst and a supported platinum group metal catalyst. The zeolite catalyst comprises a base metal, a noble metal, and a zeolite. The supported platinum group metal catalyst comprises one or more platinum group metals and one or more inorganic oxide carriers. The invention also includes an exhaust system comprising the cold start catalyst. The cold start catalyst and the process result in improved NOx storage and NOx conversion, improved hydrocarbon storage and conversion, and improved CO oxidation through the cold start period.

    [0009] As with any automotive system and process, it is desirable to attain still further improvements in exhaust gas treatment systems, particularly under cold start conditions. We have discovered a new passive NOx adsorber that provides enhanced cleaning of the exhaust gases from internal combustion engines. The new passive NOx adsorber also exhibits improved sulfur tolerance.

    SUMMARY OF THE INVENTION



    [0010] The invention is an exhaust system for internal combustion engines comprising a passive NOx adsorber that is effective to adsorb NOx at or below a low temperature and release the adsorbed NOx at temperatures above the low temperature. The passive NOx adsorber consists of a noble metal and a small pore molecular sieve. The small pore molecular sieve has a maximum ring size of eight tetrahedral atoms. The exhaust system comprises, in addition to the passive NOx adsorber, a catalyst component selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NOx adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof. The passive NOx adsorber is a separate component from the catalyst component. The exhaust system is configured so that the passive NOx adsorber is located close to the engine and the catalyst component(s) are located downstream of the passive NOx adsorber. The low temperature is 200°C.

    [0011] A further aspect of the invention is method for reducing NOx in an exhaust gas, said method comprising
    adsorbing NOx onto a passive NOx adsorber effective to adsorb NOx at or below a low temperature and release the adsorbed NOx at temperatures above the low temperature, said passive NOx adsorber consisting of palladium and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms at or below a low temperature,
    thermally desorbing NOx from the passive NOx adsorber at a temperature above the low temperature, and catalytically removing the desorbed NOx on a catalyst component selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NOx adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof,
    wherein the catalyst component(s) are located downstream of the passive NOx adsorber;
    wherein the passive NOx adsorber is a separate component from the catalyst component;
    and wherein the low temperature is 200°C.

    DETAILED DESCRIPTION OF THE INVENTION



    [0012] The passive NOx adsorber of the exhaust system of the invention is effective to adsorb NOx at or below a low temperature and release the adsorbed NOx at temperatures above the low temperature. The low temperature is 200°C. The passive NOx adsorber consists of a noble metal and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms. The noble metal is palladium.

    [0013] The small pore molecular sieve has a maximum ring size of eight tetrahedral atoms. The small pore molecular sieve may be any natural or a synthetic molecular sieve, including zeolites, and is preferably composed of aluminum, silicon, and/or phosphorus. The molecular sieves typically have a three-dimensional arrangement of SiO4, AlO4, and/or PO4 that are joined by the sharing of oxygen atoms, but may also be two-dimensional structures as well. The molecular sieve frameworks are typically anionic, which are counterbalanced by charge compensating cations, typically alkali and alkaline earth elements (e.g., Na, K, Mg, Ca, Sr, and Ba), ammonium ions, and also protons. Other metals (e.g., Fe, Ti, and Ga) may be incorporated into the framework of the small pore molecular sieve to produce a metal-incorporated molecular sieve.

    [0014] Preferably, the small pore molecular sieve is selected from an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate molecular sieve, or a metal-substituted aluminophosphate molecular sieve. More preferably, the small pore molecular sieve is a molecular sieve having the Framework Type of ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, as well as mixtures or intergrowths of any two or more. Particularly preferred intergrowths of the small pore molecular sieves include KFI-SIV, ITE-RTH, AEW-UEI, AEI-CHA, and AEI-SAV. Most preferably, the small pore molecular sieve is AEI or CHA, or an AEI-CHA intergrowth.

    [0015] The passive NOx adsorber may be prepared by any known means. For instance, the noble metal may be added to the small pore molecular sieve to form the passive NOx adsorber by any known means, the manner of addition is not considered to be particularly critical. For example, a noble metal compound (such as palladium nitrate) may be supported on the molecular sieve by impregnation, adsorption, ion-exchange, incipient wetness, precipitation, or the like.

    [0016] Preferably, some of the noble metal (more than 1 percent of the total noble metal added) in the passive NOx adsorber is located inside the pores of the small pore molecular sieve. More preferably, more than 5 percent of the total amount of noble metal is located inside the pores of the small pore molecular sieve; and even more preferably may be greater than 10 percent or greater than 25% or greater than 50 percent of the total amount of noble metal that is located inside the pores of the small pore molecular sieve.

    [0017] Preferably, the passive NOx adsorber further comprises a flow-through substrate or filter substrate. In one embodiment, the passive NOx adsorber is coated onto the flow-through or filter substrate, and preferably deposited on the flow-through or filter substrate using a washcoat procedure to produce a passive NOx adsorber system.

    [0018] The flow-through or filter substrate is a substrate that is capable of containing catalyst components. The substrate is preferably a ceramic substrate or a metallic substrate. The ceramic substrate may be made of any suitable refractory material, e.g., alumina, silica, titania, ceria, zirconia, magnesia, zeolites, silicon nitride, silicon carbide, zirconium silicates, magnesium silicates, aluminosilicates, metallo aluminosilicates (such as cordierite and spudomene), or a mixture or mixed oxide of any two or more thereof. Cordierite, a magnesium aluminosilicate, and silicon carbide are particularly preferred.

    [0019] The metallic substrates may be made of any suitable metal, and in particular heat-resistant metals and metal alloys such as titanium and stainless steel as well as ferritic alloys containing iron, nickel, chromium, and/or aluminum in addition to other trace metals.

    [0020] The flow-through substrate is preferably a flow-through monolith having a honeycomb structure with many small, parallel thin-walled channels running axially through the substrate and extending throughout from an inlet or an outlet of the substrate. The channel cross-section of the substrate may be any shape, but is preferably square, sinusoidal, triangular, rectangular, hexagonal, trapezoidal, circular, or oval.

    [0021] The filter substrate is preferably a wall-flow monolith filter. The channels of a wall-flow filter are alternately blocked, which allow the exhaust gas stream to enter a channel from the inlet, then flow through the channel walls, and exit the filter from a different channel leading to the outlet. Particulates in the exhaust gas stream are thus trapped in the filter.

    [0022] The passive NOx adsorber may be added to the flow-through or filter substrate by any known means. A representative process for preparing the passive NOx adsorber using a washcoat procedure is set forth below. It will be understood that the process below can be varied according to different embodiments of the invention.

    [0023] The pre-formed passive NOx adsorber may be added to the flow-through or filter substrate by a washcoating step. Alternatively, the passive NOx adsorber may be formed on the flow-through or filter substrate by first washcoating unmodified small pore molecular sieve onto the substrate to produce a molecular sieve-coated substrate. Noble metal may then be added to the molecular sieve-coated substrate, which may be accomplished by an impregnation procedure, or the like.

    [0024] The washcoating procedure is preferably performed by first slurrying finely divided particles of the passive NOx adsorber (or unmodified small pore molecular sieve) in an appropriate solvent, preferably water, to form the slurry. Additional components, such as transition metal oxides, binders, stabilizers, or promoters may also be incorporated in the slurry as a mixture of water soluble or water-dispersible compounds. The slurry preferably contains between 10 to 70 weight percent solids, more preferably between 20 to 50 weight percent. Prior to forming the slurry, the passive NOx adsorber (or unmodified small pore molecular sieve) particles are preferably subject to a size reduction treatment (e.g., milling) such that the average particle size of the solid particles is less than 20 microns in diameter.

    [0025] The flow-through or filter substrate may then be dipped one or more times into the slurry or the slurry may be coated on the substrate such that there will be deposited on the substrate the desired loading of catalytic materials. If noble metal is not incorporated into the molecular sieve prior to washcoating the flow-through or filter substrate, the molecular sieve-coated substrate is typically dried and calcined and then, the noble metal may be added to the molecular sieve-coated substrate by any known means, including impregnation, adsorption, or ion-exchange, for example, with a noble metal compound (such as palladium nitrate). Preferably, the entire length of the flow-through or filter substrate is coated with the slurry so that a washcoat of the passive NOx adsorber covers the entire surface of the substrate.

    [0026] After the flow-through or filter substrate has been coated with the passive NOx adsorber, and impregnated with noble metal if necessary, the coated substrate is preferably dried and then calcined by heating at an elevated temperature to form the passive NOx adsorber-coated substrate. Preferably, the calcination occurs at 400 to 600°C for approximately 1 to 8 hours.

    [0027] In an alternative embodiment, the flow-through or filter substrate is comprised of the passive NOx adsorber. In this case, the passive NOx adsorber is extruded to form the flow-through or filter substrate. The passive NOx adsorber extruded substrate is preferably a honeycomb flow-through monolith.

    [0028] Extruded molecular sieve substrates and honeycomb bodies, and processes for making them, are known in the art. See, for example, U.S. Pat. Nos. 5,492,883, 5,565,394, and 5,633,217 and U.S. Pat. No. Re. 34,804. The molecular sieve may contain the noble metal prior to extruding such that a passive NOx adsorber monolith is produced by the extrusion procedure. Alternatively, the noble metal may be added to a pre-formed molecular sieve monolith in order to produce the passive NOx adsorber monolith.

    [0029] The invention also includes an exhaust system for internal combustion engines comprising the passive NOx adsorber. The exhaust system comprises one or more additional after-treatment devices capable of removing pollutants from internal combustion engine exhaust gases at normal operating temperatures. The exhaust system comprises the passive NOx adsorber as hereinbefore described and one or more other catalyst components selected from: (1) a selective catalytic reduction (SCR) catalyst, (2) a particulate filter, (3) a SCR filter, (4) a NOx adsorber catalyst, (5) a three-way catalyst, (6) an oxidation catalyst, or any combination thereof. The passive NOx adsorber is a separate component from any of the above after-treatment devices.

    [0030] These after-treatment devices are well known in the art. Selective catalytic reduction (SCR) catalysts are catalysts that reduce NOx to N2 by reaction with nitrogen compounds (such as ammonia or urea) or hydrocarbons (lean NOx reduction). A typical SCR catalyst is comprised of a vanadia-titania catalyst, a vanadia-tungsta-titania catalyst, or a metal/zeolite catalyst such as iron/beta zeolite, copper/beta zeolite, copper/SSZ-13, copper/SAPO-34, Fe/ZSM-5, or copper/ZSM-5.

    [0031] Particulate filters are devices that reduce particulates from the exhaust of internal combustion engines. Particulate filters include catalyzed particulate filters and bare (non-catalyzed) particulate filters. Catalyzed particulate filters (for diesel and gasoline applications) include metal and metal oxide components (such as Pt, Pd, Fe, Mn, Cu, and ceria) to oxidize hydrocarbons and carbon monoxide in addition to destroying soot trapped by the filter.

    [0032] Selective catalytic reduction filters (SCRF) are single-substrate devices that combine the functionality of an SCR and a particulate filter. They are used to reduce NOx and particulate emissions from internal combustion engines. In addition to the SCR catalyst coating, the particulate filter may also include other metal and metal oxide components (such as Pt, Pd, Fe, Mn, Cu, and ceria) to oxidize hydrocarbons and carbon monoxide in addition to destroying soot trapped by the filter.

    [0033] NOx adsorber catalysts (NACs) are designed to adsorb NOx under lean exhaust conditions, release the adsorbed NOx under rich conditions, and reduce the released NOx to form N2. NACs typically include a NOx-storage component (e.g., Ba, Ca, Sr, Mg, K, Na, Li, Cs, La, Y, Pr, and Nd), an oxidation component (preferably Pt) and a reduction component (preferably Rh). These components are contained on one or more supports.

    [0034] Three-way catalysts (TWCs) are typically used in gasoline engines under stoichiometric conditions in order to convert NOx to N2, carbon monoxide to CO2, and hydrocarbons to CO2 and H2O on a single device.

    [0035] Oxidation catalysts, and in particular diesel oxidation catalysts (DOCs), are well-known in the art. Oxidation catalysts are designed to oxidize CO to CO2 and gas phase hydrocarbons (HC) and an organic fraction of diesel particulates (soluble organic fraction) to CO2 and H2O. Typical oxidation catalysts include platinum and optionally also palladium on a high surface area inorganic oxide support, such as alumina, silica-alumina and a zeolite.

    [0036] The exhaust system is configured so that the passive NOx adsorber is located close to the engine and the additional after-treatment device(s) are located downstream of the passive NOx adsorber. Thus, under normal operating conditions, engine exhaust gas first flows through the passive NOx adsorber prior to contacting the after-treatment device(s). U.S. Pat. No. 5,656,244, for example, teaches means for controlling the flow of the exhaust gas during cold-start and normal operating conditions.

    [0037] The invention also includes a method for treating exhaust gas from an internal combustion engine. The method comprises adsorbing NOx onto the passive NOx adsorber at temperatures at or below a low temperature, thermally desorbing NOx from the passive NOx adsorber at a temperature above the low temperature, and catalytically removing the desorbed NOx on a catalyst component downstream of the passive NOx adsorber. The low temperature is about 200°C.

    [0038] The catalyst component downstream of the passive NOx adsorber is a SCR catalyst, a particulate filter, a SCR filter, a NOx adsorber catalyst, a three-way catalyst, an oxidation catalyst, or combinations thereof.

    EXAMPLE 1: PREPARATION OF PASSIVE NOx ADSORBERS (PNAs)



    [0039] Palladium is added to a small pore chabazite (CHA) zeolite with a silica -to-alumina ratio (SAR) of 26, a medium pore ZSM-5 (MFI) zeolite with a SAR=23 and a large pore beta (BEA) zeolite with an SAR=26 to produce PNA 1A (Pd/CHA), Comparative PNA 1B (Pd/MFI) and Comparative PNA 1C (Pd/BEA) according to the following general procedure: The powder catalyst is prepared by wet impregnation of the zeolite using palladium nitrate as the precursor. After drying at 100°C, the samples are calcined at 500°C. The samples are then hydrothermally aged at 750°C in an air atmosphere containing 10% H2O. The Pd loading for all the three samples is 1 wt.%.

    [0040] Comparative PNA 1D (Pd/CeO2) is prepared following the procedures reported in WO 2008/047170. The Pd loading is 1 wt.%. The sample is hydrothermally aged at 750°C in an air atmosphere containing 10% H2O.

    EXAMPLE 2: NOx STORAGE CAPACITY TESTING PROCEDURES



    [0041] The PNA (0.4 g) is held at an adsorption temperature about 80°C for 2 minutes in an NO-containing gas mixture flowing at 2 liters per minute at a MHSV of 300 L hr-1 ∗ g-1. This adsorption stage is followed by Temperature Programmed Desorption (TPD) at a ramping rate of 10°C/minute in the presence of the NO-containing gas until the bed temperature reaches about 400°C in order to purge the catalyst of all stored NOx for further testing. The test is then repeated starting from an adsorption temperature of 170°C, instead of 80°C.

    [0042] The NO-containing gas mixture during both the adsorption and desorption comprises 12 vol.% O2, 200 ppm NO, 5 vol.% CO2, 200 ppm CO, 50 ppm C10H22, and 5 vol.% H2O.

    [0043] The NOx storage is calculated as the amount of NO2 stored per liter of catalyst with reference to a monolith containing a catalyst loading of about 0.18 g/cm3 (3 g/in3). The results at the different temperatures are shown in Table 1.

    [0044] The results at Table 1 show that the PNA of the invention (PNA 1A) demonstrates comparable NOx storage capacity both at 80 and 170°C as compared to Comparative PNA 1D. Although Comparative PNAs 1B and 1C exhibit higher NOx storage capacity at 80°C, their NOx storage capacity at 170°C is lower. For applications require high NOx storage capacity at temperatures above about 170°C, PNA 1A and Comparative PNA 1D show advantages over Comparative PNAs 1B and 1C.

    EXAMPLE 3: NOx STORAGE CAPACITY AFTER SULFUR EXPOSURE TESTING PROCEDURES



    [0045] PNA 1A and Comparative PNA 1D were subjected to a high level of sulfation by contacting them with a SO2 containing gas (100 ppm SO2, 10% O2, 5% CO2 and H2O, balance N2) at 300°C to add about 64 mg S per gram of catalyst. The NOx storage capacity of the catalysts before and after sulfation is measured at 100°C following the procedures of Example 2. The results are listed in Table 2.

    [0046] The results shown in Table 2 indicate that the PNA of the invention (PNA 1A) retains a significant amount of the NOx storage capacity even after high a level of sulfur exposure. In contrast, Comparative PNA 1D loses almost all of its NOx adsorption ability under the same sulfation conditions. The PNA of the invention exhibits much improved sulfur tolerance.

    EXAMPLE 4: PREPARATION OF SMALL PORE MOLECULAR SIEVE SUPPORTED PASSIVE NOx ADSORBERS (PNAs)



    [0047] Palladium is added to a series of small pore molecular sieves following the procedure of Example 1. The Pd loading is kept at 1 wt.% for all the samples. The samples are hydrothermally aged at 750°C in an air atmosphere containing 10% H2O. The aged samples are then tested for their NOx storage capacities following the procedure of Example 2.

    [0048] These PNAs and their NOx storage capacity at 80 and 170°C are listed in Table 3.

    [0049] The results in Table 3 show that a wide range of small pore molecular sieve supported PNAs have high NOx storage capacity.

    EXAMPLE 5: PREPARATION OF SMALL PORE MOLECULAR SIEVE SUPPORTED PASSIVE NOx ADSORBERS (PNAS) WITH DIFFERENT PALLADIUM LOADINGS



    [0050] Palladium is added to a small pore molecular sieve CHA following the procedure of Example 1. The Pd loading is increased to 2 wt.% for the sample. The sample is hydrothermally aged at 750°C in an air atmosphere containing 10% H2O. The aged sample is tested for its NOx storage capacities following the procedure of Example 2. The NOx storage capacities at 80 and 170°C on the sample are listed in Table 4.

    [0051] The results in Table 4 show that increasing Pd loading increases the NOx storage capacity.
    TABLE 1: NOx storage capacity (g NO2/L)
    Catalyst NOx storage capacity (80°C) NOx storage capacity (170°C)
    1A 0.28 0.45
    1B * 0.35 0.28
    1C * 0.68 0.07
    1D * 0.29 0.38
    * Comparative Example
    TABLE 2: NOx storage capacity (g NO2/L)
    Catalyst NOx storage capacity at 100°C
    Before Sulfation After Sulfation
    1A 0.41 0.28
    1D * 0.31 0.01
    * Comparative Example
    TABLE 3: NOx storage capacity (g NO2/L)
    Catalyst Small pore molecular sieve NOx storage capacity (80°C) NOx storage capacity (170°C)
    PNA 1A CHA (SAR=26) 0.28 0.45
    PNA 4A CHA (SAR=12) 0.42 0.60
    PNA 4B CHA (SAR=13) 0.34 0.51
    PNA 4C CHA (SAR=17) 0.20 0.42
    PNA 4D CHA (SAR=22) 0.28 0.42
    PNA 4E AEI (SAR=20) 0.33 0.57
    PNA 4F ERI (SAR=12) 0.08 0.2
    PNA 4G CHA (SAPO-34) 0.29 0.41
    PNA 4H AEI-CHA Intergrowth (SAPO) 0.22 0.23
    TABLE 4: NOx storage capacity (g NO2/L)
    Catalyst Molecular sieve Pd loading (wt. %) NOx storage capacity (80°C) NOx storage capacity (170°C)
    PNA 1A CHA (SAR=26) 1 0.28 0.45
    PNA 5A CHA (SAR=26) 2 0.43 0.66



    Claims

    1. An exhaust system for internal combustion engines comprising
    a passive NOx adsorber effective to adsorb NOx at or below a low temperature and release the adsorbed NOx at temperatures above the low temperature, said passive NOx adsorber consisting of palladium and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms; and
    a catalyst component selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NOx adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof;
    wherein the passive NOx adsorber is a separate component from the catalyst component;
    wherein the exhaust system is configured so that the passive NOx adsorber is located close to the engine and the catalyst component(s) are located downstream of the passive NOx adsorber;
    and wherein the low temperature is 200°C.
     
    2. The exhaust system of claim 1, wherein the small pore molecular sieve is selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate molecular sieves and metal-substituted aluminophosphate molecular sieves.
     
    3. The exhaust system of claim 1 or claim 2, wherein the small pore molecular sieve is selected from the group of Framework Type consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, and mixtures or intergrowths thereof.
     
    4. The exhaust system of claim 3, wherein the small pore molecular sieve is selected from the group Framework Type consisting of AEI and CHA.
     
    5. The exhaust system of claim 3 wherein the intergrowths of the small pore molecular sieves include KFI-SIV, ITE-RTH, AEW-UEI, AEI-CHA, and AEI-SAV.
     
    6. The exhaust system of any of claims 1 to 5 wherein the passive NOx adsorber is coated onto a flow-through or filter substrate.
     
    7. The exhaust system of claim 6 wherein the flow-through substrate is a honeycomb monolith.
     
    8. The exhaust system of any of claims 1 to 5 wherein the passive NOx adsorber is extruded to form a flow-through or filter substrate.
     
    9. The exhaust system of any of claims 1 to 8 wherein greater than 5 percent of the total amount of noble metal is located inside pores of the small pore molecular sieve.
     
    10. A method for reducing NOx in an exhaust gas, said method comprising
    adsorbing NOx onto a passive NOx adsorber effective to adsorb NOx at or below a low temperature and release the adsorbed NOx at temperatures above the low temperature, said passive NOx adsorber consisting of palladium and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms at or below a low temperature,
    thermally desorbing NOx from the passive NOx adsorber at a temperature above the low temperature, and catalytically removing the desorbed NOx on a catalyst component selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NOx adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof,
    wherein the catalyst component(s) are located downstream of the passive NOx adsorber;
    wherein the passive NOx adsorber is a separate component from the catalyst component;
    and wherein the low temperature is 200°C.
     


    Ansprüche

    1. Abgassystem für einen Verbrennungsmotor, umfassend:
    einen passiven NOX-Adsorber, der bewirkt, dass NOX bei oder unter einer niedrigen Temperatur adsorbiert wird und das adsorbierte NOX bei Temperaturen oberhalb der niedrigen Temperatur freigegeben wird, wobei der passive NOX-Adsorber aus Palladium besteht und ein kleinporiges Molekularsieb aufweist, welches eine maximale Ringgröße von acht tetraedischen Atomen hat; und

    eine Katalysatorkomponente ausgewählt aus der Gruppe bestehend aus einem selektiven katalytischen Reduktions (SCR)-Katalysator, einem Partikelfilter, einem SCR-Filter, einem NOX-Adsorber-Katalysator, einem Dreiwege-Katalysator, einem Oxidationskatalysator und Kombinationen daraus;

    wobei der passive NOX-Adsorber ein von der Katalysatorkomponente getrenntes Bauteil ist;

    wobei das Abgassystem so konfiguriert ist, dass sich der passive NOX-Adsorber in der Nähe des Motors befindet und der/die Katalysatorkomponente(n) dem passiven NOX-Adsorber nachgelagert angeordnet ist/sind;

    und wobei die niedrige Temperatur 200°C beträgt.


     
    2. Abgassystem nach Anspruch 1, wobei das kleinporige Molekularsieb ausgewählt ist aus der Gruppe bestehend aus Alumosilikatmolekularsieben, metallsubstituierten Alumosilikatmolekularsieben, Alumophosphatmolekularsieben und metallsubstituierten Alumophosphatmolekularsieben.
     
    3. Abgassystem nach Anspruch 1 oder 2, wobei das kleinporige Molekularsieb ausgewählt ist aus Gerüsttypgruppe bestehend aus: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON und Mischungen oder Verwachsungen daraus.
     
    4. Abgassystem nach Anspruch 3, wobei das kleinporige Molekularsieb ausgewählt ist aus der Gerüstbaugruppe bestehend aus AEI und CHA.
     
    5. Abgassystem nach Anspruch 3, wobei die Verwachsungen des kleinporigen Molekularsiebs KFI-SIV, ITE-RTH, AEW-UEI, AEI-CHA und AEI-SAV einschließen.
     
    6. Abgassystem nach einem der Ansprüche 1 bis 5, wobei der passive NOx-Adsorber auf ein Durchfluss- oder Filtersubstrat aufgebracht ist.
     
    7. Abgassystem nach Anspruch 6, wobei das Durchflusssubstrat ein Wabenmonolith ist.
     
    8. Abgassystem nach einem der Ansprüche 1 bis 5, wobei der passive NOx-Adsorber extrudiert ist, um ein Durchfluss- oder Filtersubstrat zu bilden.
     
    9. Abgassystem nach einem der Ansprüche 1 bis 8, wobei mehr als 5 Prozent der Gesamtmenge des Edelmetalls im Inneren der Poren des kleinporigen Molekularsiebs angeordnet sind.
     
    10. Verfahren zur Reduzierung von NOX in einem Auspuffgas, wobei das Verfahren umfasst:

    Adsorbieren von NOX auf einen passiven NOX-Adsorber, der bewirkt, dass NOX bei oder unter einer niedrigen Temperatur adsorbiert wird und das adsorbierte NOX bei Temperaturen oberhalb der niedrigen Temperatur freigegeben wird, wobei der NOX-Adsorber aus Palladium besteht und ein kleinporiges Molekularsieb aufweist, welches eine maximale Ringgröße von acht tetraedischen Atomen hat,

    thermisches Desorbieren von NOX aus dem passiven NOX-Adsorber bei einer Temperatur oberhalb der niedrigen Temperatur und katalytisches Entfernen des desorbierten NOX auf einer Katalysatorkomponente ausgewählt aus der Gruppe bestehend aus einem selektiven katalytischen Reduktions (SCR)-Katalysator, einem Partikelfilter, einem SCR-Filter, einem NOX-Adsorber-Katalysator, einem Dreiwegekatalysator, einem Oxidationskatalysator und Kombinationen daraus,

    wobei der/die Katalysatorkomponente(n) dem passiven NOX-Adsorber nachgelagert angeordnet ist/sind;

    wobei der passive NOX-Adsorber ein von der Katalysatorkomponente getrenntes Bauteil ist;

    und wobei die niedrige Temperatur 200°C beträgt.


     


    Revendications

    1. Système d'échappement pour moteurs à combustion interne comprenant :

    un adsorbeur passif de NOx efficace pour adsorber les NOX à ou en dessous d'une basse température et libérer les NOx adsorbés à des températures supérieures à la basse température, ledit adsorbeur passif de NOx consistant en du palladium et en un tamis moléculaire à petits pores ayant une taille de cycle maximale de huit atomes tétraédriques ; et

    un composant catalytique choisi dans le groupe constitué par un catalyseur de réduction catalytique sélective (SCR, « Selective Catalytic reduction »), un filtre à particules, un filtre SCR, un catalyseur d'adsorption de NOx, un catalyseur à trois voies, un catalyseur d'oxydation, et les combinaisons de ceux-ci ;

    l'adsorbeur passif de NOx étant un composant distinct du composant catalytique ;

    le système d'échappement étant configuré de façon à ce que l'adsorbeur passif de NOx soit situé à proximité du moteur et à ce que le(les) composant(s) catalytique(s) soient situés en aval de l'adsorbeur passif de NOx ;

    et la basse température étant de 200 °C.


     
    2. Système d'échappement selon la revendication 1, dans lequel le tamis moléculaire à petits pores est choisi dans le groupe constitué par les tamis moléculaires aluminosilicates, les tamis moléculaires aluminosilicates à substitution métallique, les tamis moléculaires aluminophosphates et les tamis moléculaires aluminophosphates à substitution métallique.
     
    3. Système d'échappement selon la revendication 1 ou la revendication 2, dans lequel le tamis moléculaire à petits pores est choisi dans le groupe de Framework Type [« Type de Structure »] constitué par : ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, et les mélanges ou intercroissances de ceux-ci.
     
    4. Système d'échappement selon la revendication 3, dans lequel le tamis moléculaire à petits pores est choisi dans le groupe de Framework Type [« Type de Structure »] constitué par AEI et CHA.
     
    5. Système d'échappement selon la revendication 3 dans lequel les intercroissances des tamis moléculaires à petits pores comprennent KFI-SIV, ITE-RTH, AEW-UEI, AEI-CHA, et AEI-SAV.
     
    6. Système d'échappement selon l'une quelconque des revendications 1 à 5 dans lequel l'adsorbeur passif de NOx est appliqué sur un substrat à écoulement continu ou à filtre.
     
    7. Système d'échappement selon la revendication 6 dans lequel le substrat à écoulement continu est un monolithe en nid d'abeille.
     
    8. Système d'échappement selon l'une quelconque des revendications 1 à 5 dans lequel l'adsorbeur passif de NOx est extrudé pour former un substrat à écoulement continu ou à filtre.
     
    9. Système d'échappement selon l'une quelconque des revendications 1 à 8 dans lequel plus de 5 % de la quantité totale de métal noble se trouve à l'intérieur des pores du tamis moléculaire à petits pores.
     
    10. Procédé de réduction des NOx dans un gaz d'échappement, ledit procédé comprenant
    l'adsorption des NOx sur un adsorbeur passif de NOx efficace pour adsorber les NOX à ou en dessous d'une basse température et libérer les NOx adsorbés à des températures supérieures à la basse température, ledit adsorbeur passif de NOx consistant en du palladium et en un tamis moléculaire à petits pores ayant une taille de cycle maximale de huit atomes tétraédriques à une température inférieure ou égale à une température basse,
    la désorption thermique des NOx de l'adsorbeur passif de NOx à une température supérieure à la basse température, et l'élimination catalytique des NOx désorbés sur un composant catalytique choisi dans le groupe constitué par un catalyseur de réduction catalytique sélective (SCR, « Selective Catalytic reduction »), un filtre à particules, un filtre SCR, un catalyseur d'adsorption de NOx, un catalyseur à trois voies, un catalyseur d'oxydation, et les combinaisons de ceux-ci,
    le(s) composant(s) catalytique(s) étant situés en aval de l'adsorbeur passif de NOx;
    l'adsorbeur passif de NOx étant un composant distinct du composant catalytique ;
    et la basse température étant de 200 °C.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description