BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to a printing fluid cartridge comprising a light attenuating
portion and an electrical interface.
2. Description of Related Art
[0002] A known image printing apparatus, as described in
Patent Application Publication No. JP 2009-132098 A, is configured to print an image on a sheet of printing paper. The known image printing
apparatus has an inkjet printing head and is configured to eject ink droplets selectively
from nozzles of the printing head onto the sheet of printing paper. The ink droplets
land on the sheet of printing paper and thereby a desired image is printed on the
sheet of printing paper. The known image printing apparatus has an ink cartridge,
and the ink cartridge is configured to store ink to be supplied to the printing head.
The ink cartridge is configured to be mounted to and removed from a mounting portion
provided in the known image printing apparatus.
[0003] Another known ink cartridge, as described in
Patent Application Publication No. JP 2000-37880, has an electronic component such as a memory module for storing data about the information
of the ink cartridge, e.g., the color of ink, the ingredients of ink, the remaining
amount of ink, a maintenance status, and etc. When the ink cartridge is mounted to
a mounting portion, the memory module contacts and is electrically connected to electrical
contacts provided in the mounting portion, such that the data stored in the memory
module can be read out.
[0004] Similarly, another known ink cartridge has a light attenuating portion configured
to be detected by an optical sensor for obtaining the information of the ink cartridge.
SUMMARY OF THE INVENTION
[0005] According to an embodiment of the present invention, a new printing fluid cartridge
is provided, which comprises a light attenuating portion and an electrical interface.
The printing fluid cartridge comprises a front side, a rear side positioned opposite
the front side with respect to a front-rear direction, an upper side, a lower side
positioned opposite the upper side with respect to an up-down direction which is perpendicular
to the front-rear direction, a tubular fluid supply portion positioned at the lower
side of the front side, a pivotable member configured to pivot about a pivot point
and comprising an end portion. The pivot point is positioned at the upper side and
the end portion is positioned at the rear side. The printing fluid cartridge also
comprises a light attenuating portion protruding from the upper side of the front
side and configured to attenuate light traveling in a left-right direction which is
perpendicular to the front-rear direction and the up-down direction, and an electrical
interface positioned between the pivotable member and the light attenuating portion
with respect to the front-rear direction and comprising a surface extending in the
front-rear direction and the left-right direction. An upper end of the light attenuating
portion is positioned below the electrical interface with respect to the up-down direction.
[0006] The printing fluid cartridge may comprise a first front wall positioned at the front
side and a top wall positioned at the upper side.
[0007] The printing fluid cartridge may comprise a main body comprising the first front
wall and a sub frame comprising a second front wall positioned at the front side and
facing the first front wall in the front-rear direction.
[0008] A front end of the light attenuating portion may be positioned further away from
the rear side than a front end of the fluid supply portion is positioned away from
the rear side with respect to the front-rear direction.
[0009] The printing fluid cartridge may further comprise a stopper comprising a surface
extending in the up-down direction and the left-right direction. The pivotable member
may be positioned in rear of the electrical interface with respect to the front-rear
direction and is configured to pivot about a shaft extending in the left-right direction.
The shaft may comprise the pivot point, and the stopper may be positioned between
the pivotable member and the electrical interface with respect to the front-rear direction.
[0010] The main body may further comprise a first guide portion extending in the front-rear
direction and comprising a pair of outer surfaces. Each of the first front wall and
the first guide portion may have a dimension in the left-right direction, and the
dimension of the first guide portion between the pair of outer surfaces of the first
guide portion in the left-right direction may be less than the dimension of the first
front wall in the left-right direction. The main body may further comprise a second
guide portion extending in the front-rear direction and comprising a pair of outer
surfaces. The second guide portion may have a dimension between the pair of outer
surfaces of the second guide portion in the left-right direction, which is less than
the dimension of the first front wall in the left-right direction. The sub frame may
comprise a third guide portion and a fourth guide portion, each extending in the front-rear
direction. The third guide portion may comprise a pair of outer surfaces which is
aligned with the pair of outer surfaces of first guide portion in the front-rear direction
and the fourth guide portion may comprise a pair of outer surfaces which is aligned
with the pair of outer surfaces of the second guide portion in the front-rear direction.
[0011] The third guide portion may comprise a pair of boards defining the pair of outer
surfaces of the third guide, respectively. The electrical interface may be positioned
between the pair of boards of the third guide portion.
[0012] The electrical interface may be positioned on an interface board, and the interface
board may be attached to the sub frame at attachment position. Each of the pair of
boards of the third guide portion may comprise a first portion positioned in line
with the attachment position in the left-right direction when viewed from the up-down
direction and a second portion, and an upper end of the first portion may be positioned
below an upper end of the second portion.
[0013] The second front wall may have a circular opening or a circular recess formed therein
below the light attenuating portion with respect to the up-down direction.
[0014] The sub frame may comprise a protrusion positioned at or adjacent to a lower end
of the second wall and protruding forward, and the sub frame may have an opening formed
therein positioned above the protrusion with respect to the up-down direction. The
fluid supply portion may be configured to pass through the opening of the sub frame.
[0015] The printing fluid cartridge may further comprise a fluid chamber configured to store
printing fluid therein and a protruding portion positioned at a middle portion of
the front side with respect to the up-down direction and protruding forward. The protruding
portion may have an inner space formed therein, and the inner space may be in fluid
communication with fluid chamber.
[0016] The printing fluid cartridge may further comprise a further light attenuating portion
positioned away from and in front of the protruding portion with respect to the front-rear
direction.
[0017] The main body may comprise a first resin configured to allow light traveling in the
left-right direction to pass therethrough, and the sub frame may comprise a second
resin configured to prevent light traveling in the left-right direction from passing
therethrough.
[0018] The sub frame may be configured to move relative to the main body in the up-down
direction.
[0019] The sub frame may be configured not to move relative to the main body in the left-right
direction.
[0020] The printing fluid cartridge may further comprise a rear wall positioned at the rear
side and away from the first front wall in the front-rear direction and a fluid chamber
configured to store printing fluid therein. The fluid supply portion may be positioned
at the first front wall and configured to establish communication between an interior
and an exterior of the fluid chamber. The rear wall may comprise a first surface extending
in parallel with the first front wall and a second surface extending in a direction
intersecting the first front wall, and at least a portion of the second surface may
be positioned closer to the first front wall than the first surface is positioned
to the first front wall.
[0021] Objects, features, and advantages will be apparent to persons of ordinary skill in
the art from the following detailed description of the invention and the accompanying
drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022] For a more complete understanding of the present invention, needs satisfied thereby,
and the objects, features, and advantages thereof, reference now is made to the following
description taken in connection with the accompanying drawings.
Fig. 1 is a schematic, cross-sectional view of a printer comprising a cartridge mounting
portion and an ink cartridge, according to an embodiment of the present invention.
Fig. 2 is a perspective view of the ink cartridge.
Fig. 3 is a vertical, cross-sectional view of the ink cartridge.
Fig. 4 is a perspective view of the cartridge mounting portion and the ink cartridge.
Fig. 5 is a vertical, cross-sectional view of the cartridge mounting portion.
Fig. 6 is a vertical, partial cross-sectional view of the cartridge mounting portion and
the ink cartridge during mounting of the ink cartridge to the cartridge mounting portion.
Fig. 7 is another vertical, partial cross-sectional view of the cartridge mounting portion
and the ink cartridge during mounting of the ink cartridge to the cartridge mounting
portion.
Fig. 8 is a vertical, partial cross-sectional view of the cartridge mounting portion and
the ink cartridge, in which the mounting of the ink cartridge to the cartridge mounting
portion is completed.
Fig. 9 is a perspective view of an ink cartridge, according to a modified embodiment.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[0023] Embodiments of the present invention, and their features and advantages, may be understood
by referring to Figs 1-9, like numerals being used for like corresponding parts in
the various drawings.
[Printer 10]
[0024] Referring to Fig. 1, a printing apparatus, e.g., a printer 10 is an inkjet printer
configured to print an image on a sheet of printing paper by ejecting ink droplets
selectively on the sheet of printing paper. The printer 10 comprises an ink supply
device 100. The ink supply device 100 comprises a cartridge mounting portion 110.
The cartridge mounting portion 110 is configured to allow a printing fluid cartridge,
e.g., an ink cartridge 30 to be mounted therein. The cartridge mounting portion 110
has an opening 112 and the interior of the cartridge mounting portion 110 is exposed
to the exterior of the cartridge mounting portion 110 via opening 112. The ink cartridge
30 is configured to be inserted into the cartridge mounting portion 110 via the opening
112, such that the ink cartridge 30 is mounted to the cartridge mounting portion 110.
The ink cartridge 30 is configured to be removed from the cartridge mounting portion
110 via the opening 112.
[0025] The ink cartridge 30 is configured to store ink, which is used by printer 10. The
printer 10 comprises a print head 21 and an ink tube 20. The ink cartridge 30 and
the print head 21 are fluidically connected via the ink tube 20 when the ink cartridge
30 is mounted to the cartridge mounting portion 110. The print head 21 comprises a
sub tank 28. The sub tank 28 is configured to temporarily store ink supplied via the
ink tube 20 from the ink cartridge 30. The print head 21 comprises nozzles 29 and
is configured to selectively eject ink supplied from the sub tank 28 through the nozzles
29.
[0026] The printer 10 comprises a paper feed tray 15, a paper feed roller 23, a conveying
roller pair 25, a platen 26, a discharge roller pair 22, and a discharge tray 16.
A conveying path 24 is formed from the paper feed tray 15 up to the discharge tray
16 via the conveying roller pair 25, the platen 26, and the discharge roller pair
22. The paper feed roller 23 is configured to feed a sheet of printing paper from
the paper feed tray 15 to the conveying path 24. The conveying roller pair 25 is configured
to convey the sheet of printing paper fed from the paper feed tray 15 onto the platen
26. The print head 21 is configured to selectively eject ink onto the sheet of printing
paper passing over the platen 26. Accordingly, an image is printed on the sheet of
printing paper. The sheet of printing paper having passed over the platen 26 is discharged
by the discharge roller pair 22 to the paper discharge tray 16 disposed at the most
downstream side of the conveying path 24.
[Ink cartridge 30]
[0027] Referring to Figs. 2 and 5, the ink cartridge 30 is configured to be inserted into
and removed from the cartridge mounting portion 110 in an insertion/removal direction
50, while the ink cartridge 30 is in an upright position, as shown in Fig. 2, with
a top face of the ink cartridge 30 facing upward and a bottom face of the ink cartridge
30 facing downward. The insertion/removal direction 50 extends in a horizontal direction.
The ink cartridge 30 is in the upright position when the ink cartridge 30 is mounted
to the cartridge mounting portion 110 in a mounted position. The ink cartridge 30
is configured to be inserted into the cartridge mounting portion 110 in an insertion
direction 56 and removed from the cartridge mounting portion 110 in a removal direction
55. The insertion/removal direction 50 is a combination of the insertion direction
56 and the removal direction 55. The insertion direction 56 extends in a horizontal
direction and the removal direction 55 extends in a horizontal direction. When the
ink cartridge 30 is in the upright position, a height direction (up-down direction)
52 corresponds to the gravitational direction (vertical direction). In another embodiment,
the insertion/removal direction 50 may not extend exactly in a horizontal direction
but may extend in a direction intersecting a horizontal direction and the gravitational
direction (vertical direction).
[0028] The ink cartridge 30 has a substantially parallelepiped shape and comprises a main
body 31 and a sub frame 90. The main body 31 and the sub frame 90 form the exterior
of the ink cartridge 30. The ink cartridge 30 is a container configured to store ink
therein. The ink cartridge 30 comprises an ink chamber 36, which is a space formed
in the interior of ink cartridge 30. More specifically, the main body 31 comprises
the ink chamber 36 formed therein, e.g., the main body 31 comprises an inner frame
35, and the ink chamber 36 is formed in the inner frame 35. The ink cartridge 30 has
a width in a width direction (left-right direction) 51, a height in the height direction
(up-down direction) 52, and a depth in a depth direction (front-rear direction) 53.
The width direction (left-right direction) 51, the height direction (up-down direction)
52, and the depth direction (front-rear direction) 53 are perpendicular to each other.
The width of the ink cartridge 30 is less than the height and the depth of the ink
cartridge 30. When ink cartridge 30 is in the mounted position (upright position),
the width direction (left-right direction) 51 is parallel with a horizontal plane,
the depth direction (front-rear direction) 53 is also parallel with the horizontal
plane, and the height direction (up-down direction) 52 is parallel with the gravitational
direction (vertical direction). When the ink cartridge 30 is inserted into/removed
from the cartridge mounting portion 110, the depth direction (front-rear direction)
53 is parallel with the insertion/removal direction 50, and the width direction (left-right
direction) 51 and the height direction (up-down direction) 52 are perpendicular to
the insertion/removal direction 50. The height direction (up-down direction) 52 is
parallel with an upward direction and a downward direction and is a combination of
the upward direction and the downward direction.
[0029] The ink cartridge 30 comprises a front side and a rear side opposite the front side
with respect to the depth direction (front-rear direction) 53. The front side of the
ink cartridge is positioned in front of the rear side of the ink cartridge with respect
to the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge
mounting portion 110. The front area of the ink cartridge 30 from the center of the
ink cartridge with respect to the depth direction (front-rear direction) 53 is the
front side of the ink cartridge 30, and the rear area of the ink cartridge 30 from
the center of the ink cartridge with respect to the depth direction (front-rear direction)
53 is the rear side of the ink cartridge 30. The ink cartridge 30 comprises an upper
side and a lower side opposite the upper side with respect to the height direction
(up-down direction) 52. The upper side of the ink cartridge 30 is positioned above
the lower side of the ink cartridge 30 when the ink cartridge 30 is inserted into
the cartridge mounting portion 110 and when the ink cartridge 30 is in the mounted
position (upright position). The upper area of the ink cartridge 30 from the center
of the ink cartridge 30 with respect to the height direction (up-down direction) 52
is the upper side of the ink cartridge 30, and the lower area of the ink cartridge
30 from the center of the ink cartridge 30 with respect to the height direction (up-down
direction) 52 is the lower side of the ink cartridge 30. The front side of the ink
cartridge 30 and the upper side of the ink cartridge 30 can occupy the same area.
For example, a front area of the upper side of the ink cartridge 30 is an upper area
of the front side of the ink cartridge 30. The rear side of the ink cartridge 30 and
the upper side of the ink cartridge 30 can occupy the same area. For example, a rear
area of the upper side of the ink cartridge 30 is an upper area of the rear side of
the ink cartridge 30. The front side of the ink cartridge 30 and the lower side of
the ink cartridge 30 can occupy the same area. For example, a front area of the lower
side of the ink cartridge 30 is a lower area of the front side of the ink cartridge
30. The rear side of the ink cartridge 30 and the lower side of the ink cartridge
30 can occupy the same area. For example, a rear area of the lower side of the ink
cartridge 30 is a lower area of the rear side of the ink cartridge 30.
[Main body 31]
[0030] The main body 31 comprises a front wall 40 and a rear wall 42 opposite the front
wall 40 with respect to the insertion direction 56. The front wall 40 is positioned
at a front side of the main body 31 or the ink cartridge 30 with respect to the insertion
direction 56 when the ink cartridge 30 is inserted into the cartridge mounting portion
110. More specifically, the front wall 40 faces in the insertion direction 56, in
other words, the front wall 40 is oriented toward the insertion direction 56, when
the ink cartridge 30 is inserted into the cartridge mounting portion 110. The rear
wall 42 is positioned at a rear side of the main body 31 or the ink cartridge 30 with
respect to the insertion direction 56 when the ink cartridge 30 is inserted into the
cartridge mounting portion 110. More specifically, the rear wall 42 faces in the removal
direction 55, in other words, the rear wall 42 is oriented toward the removal direction
55, when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
The font wall 40 and the rear wall 42 are aligned in depth direction (front-rear direction)
53. The front wall 40 and the rear wall 42 are aligned in the insertion/removal direction
50 when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
The main body 31 comprises side walls 37, 38, each extending in the insertion/removal
direction 50 and connected to the front wall 40 and the rear wall 42. The side walls
37 and 38 are aligned in the width direction (left-right direction) 51. The main body
31 comprises a top wall 39 connected to upper ends of the front wall 40, the rear
wall 42, and the side walls 37 and 38. The main body 31 comprises a bottom wall 41
connected to lower ends of the front wall 40, the rear wall 42, and the side walls
37, 38. The top wall 39 and the bottom wall 41 are aligned in the height direction
(up-down direction) 52. The top wall 39 is positioned at the upper side of the ink
cartridge 30. An outer face of the front wall 40 is a front face of the main body
31, and an outer face of the rear wall 42 is a rear face of the main body 31, and
also of the ink cartridge 30. Therefore, the front face of the main body 31 is oriented
toward the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge
mounting portion 110 in the upright position, and the rear face of the main body 31
or the ink cartridge 30 is oriented toward the removal direction 55 when the ink cartridge
30 is inserted into the cartridge mounting portion 110 in the upright position. An
outer face of the top wall 39 is a top face of the main body 31, and also of the ink
cartridge 30, and an outer face of the bottom wall 31 is a bottom face of the main
body 31, and also of the ink cartridge 30. Therefore, the top face of the main body
31 or the ink cartridge 30 is oriented in the upward direction when the ink cartridge
30 is inserted into the cartridge mounting portion110 in the upright position, and
the bottom face of the main body 31 or the ink cartridge 30 is oriented in the downward
direction when the ink cartridge 30 is mounted to the cartridge mounting portion 110
in the upright position. The top face is connected to upper ends of the front face
and the rear face, and the bottom face is connected to lower ends of the front face
and the rear face. Similarly, outer faces of the side walls 37, 38 are side faces
of the main body 31, and also of the ink cartridge 30.
[0031] Referring to Figs. 2 to 4, the main body 31 comprises a detection portion 33 at a
middle portion of the main body 31 with respect to the height direction (up-down direction)
52. The detection portion 33 is positioned at a middle portion of the front side of
the ink cartridge 30 with respect to the height direction (up-down direction) 52.
The detection portion 33 protrudes forward from the front wall 40 of the main body
31 in the insertion direction 56. More specifically, the detection portion 33 is positioned
at the front face of the main body 31. The sub frame 90 comprises a first protrusion
85 which comprises a detection portion, e.g., a board 88. The first protrusion 85
comprises a front end with respect to the insertion direction 56. The board 88 comprises
a front end with respect to the insertion direction 56. The sub frame 90 comprises
a second protrusion 86. The second protrusion 86 comprises a front end with respect
to the insertion direction 56. The sub frame 90 comprises another detection portion
89. The detection portion 33 is positioned more rearward than the front end of the
first protrusion 85, the front end of the board 88, the front end of the second protrusion
86, and the detection portion 89 with respect to the insertion direction 56. The detection
portion 33 has a box shape having an opening facing the ink chamber 36, such that
the inner space of the detection portion 36 is in fluid communication with the ink
chamber 36. The detection portion 33 comprises a pair of walls made of a translucent,
e.g., transparent or semi-transparent material, e.g., transparent or semi-transparent
resin, configured to allow light, e.g., visible or infrared light, traveling in a
direction perpendicular to the insertion/removal direction 50 to pass therethrough.
In this embodiment, the direction perpendicular to the insertion/removal direction
50 is the width direction (left-right direction) 51. The detection portion 33 is exposed
to the exterior of the ink cartridge 30 via an opening 95 formed through the sub frame
90. When the ink cartridge 30 is mounted to the cartridge mounting portion 110, an
optical sensor 114 (see Fig. 6) emits light in the direction perpendicular to the
insertion/removal direction 50. The detection portion 33 may allow the light which
is emitted from the optical sensor 114 and reaches the detection portion 33 via the
opening 95 to pass therethrough.
[0032] The pair of walls of the detection portion 33 is aligned in the width direction (left-right
direction) 51, and a space is formed between the pair of walls of the detection portion
33. Ink stored in the ink chamber 36 can reach this space. Referring to Fig. 3, the
main body 31 comprises a sensor arm 60 disposed in the ink chamber 36. The sensor
arm 60 comprises an arm body 61 extending mainly in the depth direction (front-rear
direction) 53, an indicator 62 positioned at one end of the arm body 61, and a float
63 positioned at the other end of the arm body 61. The indicator 62 is positioned
in the space formed between the pair of walls of the detection portion 33. The main
body 31 comprises a support shaft 64 extending in the width direction (left-right
direction) 51, and the sensor arm 60 is supported by the support shaft 64, such that
the sensor arm 60 can pivot about the support shaft 64. The sensor arm 60 is configured
to pivot based on the amount of ink stored in the ink chamber 36, and therefore the
indicator 62 is configured to pivot based on the amount of ink stored in the ink chamber
36. The sensor arm 60 is configured to move between an upper position and a lower
position. When the sensor arm 60 is in the upper position, the indicator 62 is positioned
at an upper side of the detection portion 33 with respect to the gravitational direction
(vertical direction). When the sensor arm 60 is in the lower position, the indicator
62 is positioned at a lower side of the detection portion 33 with respect to the gravitational
direction. Fig. 3 depicts the sensor arm 60 positioned in the lower position when
the ink chamber 36 has a predetermined amount or more of ink stored therein.
[0033] When the ink cartridge 30 is mounted to the cartridge mounting portion 110, the detection
portion 33 is positioned between a light emitter and a light receiver of the optical
sensor 114, which are aligned in a horizontal direction (the width direction or left-right
direction 51) perpendicular to the insertion/removal direction 50, and the detection
portion 33 is configured to change its state between a first state and a second state.
When the detection portion 33 is in the first state, the detection portion 33 allows
light, which is emitted from the light emitter of the optical sensor 114 and travels
in the direction (the width direction or left-right direction 51) perpendicular to
the insertion/removal direction 50, to pass therethrough. When the detection portion
33 is in the second state, the detection portion 33 attenuates the light. More specifically,
when the detection portion 33 is in the first state and the light reaches one side
of the detection portion 33 in the direction (width direction or left-right direction
51) perpendicular to the insertion/removal direction 50, a predetermined amount or
more of the light comes out of the other side of the detection portion 33 in the direction
(the width direction or left-right direction 51) perpendicular to the insertion/removal
direction 50 and reaches the light receiver of the optical sensor 114. When the detection
portion 33 is in the second state and the light reaches one side of the detection
portion 33 in the direction (the width direction or left-right direction 51) perpendicular
to the insertion/removal direction 50, the amount of light coming out of the other
side of the detection portion 33 and reaching the light receiver of the optical sensor
114 is less than the predetermined amount, e.g., zero. When the sensor arm 60 is in
the upper position, the detection portion 33 is in the first state to allow the light
to pass therethrough. When the sensor arm 60 is in the in the lower position, the
detection portion 33 is in the second state to attenuate the light. The attenuation
of the light is caused by the indicator 62 completely preventing the light from passing
therethrough in the direction (the width direction or left-right direction 51) perpendicular
to the insertion/removal direction 50, by the indicator 62 absorbing some amount of
the light, by the indicator 62 deflecting the light, by the indicator 62 totally reflecting
the light, and etc. As such, the amount (intensity) of the light reaching the light
receiver of the optical sensor 114 depends on the state of the detection portion 33.
By detecting the state of the detection portion 33 with the optical sensor 114, it
is determined whether the ink chamber 36 has the predetermined amount or more of ink
stored therein.
[0034] In another embodiment, the ink cartridge 30 may not comprise the sensor arm 60, and
therefore the indicator 62 may not be positioned in the detection portion 33. In such
a case, when the detection portion 33 stores ink therein, the detection portion 33
may attenuate the light. When the detection portion 33 does not store ink therein,
the detection portion 33 may allow the light to pass therethrough. More specifically,
when the detection portion 33 does not store ink therein and the light reaches one
side of the detection portion 33 in the direction (the width direction or left-right
direction 51) perpendicular to the insertion/removal direction 50, the predetermined
amount or more of the light may come out of the other side of the detection portion
33 in the direction (the width direction or left-right direction 51) perpendicular
to the insertion/removal direction 50 and reaches the light receiver of the optical
sensor 114. When the detection portion 33 stores ink therein and the light reaches
one side of the detection portion 33 in the direction (the width direction or left-right
direction 51) perpendicular to the insertion/removal direction 50, the amount of light
coming out of the other side of the detection portion 33 and reaching the light receiver
of the optical sensor 114 is less than the predetermined amount, e.g., zero. The attenuation
of the light may be caused by the ink absorbing some amount of the light. In yet another
embodiment, the detection portion 33 may comprise a flexible film forming a space
therein. When ink is stored in the space formed by the flexible film, the flexible
film bulges. The ink cartridge 30 may comprise a pivotable lever contacting the flexible
film, and the lever may attenuate the light by completely preventing the light from
passing therethrough in the direction (the width direction or left-right direction
51) perpendicular to the insertion/removal direction 50, by absorbing some amount
of the light, by deflecting the light, by totally reflecting the light, and etc. When
the ink moves out of the space formed by the flexible film and the flexible film shrinks,
the lever contacting the flexible film may move to a position in which the lever no
longer attenuates the light. In still another embodiment, the detection portion 33
comprises a prism-like structure. In such a case, when ink contacts the prism-like
structure, the prism-like structure may reflect light such that the light does not
reach the light receiver of the optical sensor 114. When ink does not contact the
prism-like structure, the prism-like structure may reflect light such that the light
reaches the light receiver of the optical sensor 114.
[0035] The main body 31 has an air communication opening 32 at the front wall 40 of the
main body 31 above the detection portion 33. The air communication opening 32 is formed
through the front wall 40 defining the ink chamber 36 in the depth direction (front-rear
direction) 53. An air layer formed in the ink chamber 36 and the atmosphere outside
of the ink chamber 36 can be brought into fluid communication via the air communication
opening 32. The sub frame 90 has a circular opening 96 formed through a wall of the
first protrusion 85 in the depth direction (front-rear direction) 53, and the air
communication opening 32 is accessible via the opening 96 from the exterior of the
ink cartridge 30 in the removal direction 55. The opening 96 is positioned below the
board 88 with respect to the height direction (up-down direction) 52.
[0036] The main body 31 comprises an air communication valve 73 configured to selectively
open and close the air communication opening 32. When the air communication opening
32 is opened, the pressure in the ink chamber 36 maintained in a negative pressure
becomes equal to the atmospheric pressure. In another embodiment, the air communication
opening 32 may not be positioned at the front wall 40 of the main body 31 and may
be positioned anywhere as long as the interior and the exterior of the ink chamber
36 can be brought into fluid communication. In yet another embodiment, the ink cartridge
30 may be configured to be used in the printer 10 with the ink chamber 36 maintained
in negative pressure. In such a case, the ink cartridge 30 may not have the air communication
opening 32, and the sub frame 90 may have a circular recess formed therein instead
of the opening 96. The recess may extend from the front end of the first protrusion
85 rearward.
[0037] The main body 31 comprises a tubular fluid supply portion, e.g., an ink supply portion
34 at the front wall 40 of the main body 31 below the detection portion 33. The ink
supply portion 34 is positioned at a lower portion of the front wall 40 of the main
body 31, i.e., at a bottom-wall 41 side of the front wall 40 of the main body 31.
Therefore, the ink supply portion 34 is positioned at the lower side of the front
side of the ink cartridge 30. The sub frame 90 has a circular opening 97 formed through
a front wall 140 in the depth direction (front-rear direction) 53. The ink supply
portion 34 has a cylindrical shape and extends through the opening 97 of the front
wall 140 in the insertion/removal direction 50. Therefore, the ink supply portion
34 is positioned at the front wall 140 of the sub frame 90. The ink supply portion
34 has an ink supply opening 71 formed at the distal end of the ink supply portion
34.
[0038] The ink supply portion 34 has an ink path 72 formed therein. The ink path 72 extends
from the ink supply opening 71 up to the ink chamber 36 in the depth direction (front-rear
direction) 53. The main body 31 comprises an ink supply valve 70 configured to selectively
open and close the ink supply opening 71. When the ink cartridge 30 is mounted to
the cartridge mounting portion 110, an ink pipe 122 provided in the cartridge mounting
portion 110 is inserted through the ink supply opening 71 and pushes the ink supply
valve 70 such that the ink supply opening 71 is opened. When this occurs, ink is flowed
out of the ink chamber 36 into the ink pipe 122 via the ink path 72 in the insertion
direction 56.
[0039] In another embodiment, the ink cartridge 30 may not comprise the ink supply valve
70. In such a case, the ink supply opening 71 may be covered and closed by a film.
When the ink cartridge 30 is mounted to the cartridge mounting portion 110, the ink
pipe 122 may break through the film, such that the ink supply opening 71 is opened.
[0040] Referring to Figs. 2 and 3, the main body 31 comprises an engagement hook 43 at a
bottom-wall 41 side and a front-wall 40 side of the main body 31. The engagement hook
43 extends forward in the depth direction (front-rear direction) 53 from a lower portion
of the front wall 40 of the main body 31. The front end of the engagement hook 43
comprises two protrusions extending outward in opposite directions in the width direction
(left-right direction) 51. The engagement hook 43 has a cut-out formed therein. The
cut-out is positioned at a middle portion of the engagement hook 43 with respect to
the width direction (left-right direction) 51 and extends in the depth direction (front-rear
direction) 53. With this cut-out, the engagement hook 43 is configured to resiliently
deform such that a dimension thereof in the width direction (left-right direction)
51 decreases. The protrusions of the front end of the engagement hook 43 are positioned
in elongated openings 91, 92 formed through the sub frame 90, respectively, and contact
inner surfaces of the walls defining the elongated openings 91, 92, respectively.
[0041] The main body 31 comprises a stopper 45 positioned at the top wall 39 of the main
body 31. More specifically, the stopper 45 is positioned at a middle portion of the
top wall 39 with respect to the depth direction (front-rear direction) 53. The stopper
45 extends upward from the top wall 39 and away from the ink chamber 36 and comprises
an engagement surface 46 which extends in the width direction (left-right direction)
51 and the height direction (up-down direction) 52. The engagement surface 46 faces
rearward with respect to the insertion direction 56, in other wards, faces in the
removal direction 55, when the ink cartridge 30 is inserted into the cartridge mounting
portion 110. In another embodiment, the engagement surface 46 may not extend vertically
from the top wall 39, but may be inclined with respect to the height direction (left-right
direction) 51, and may face rearward with respect to the insertion direction 56, in
other wards, face in the removal direction 55, and also face in the upward direction
when the ink cartridge 30 is inserted into the cartridge mounting portion 110. When
the ink cartridge 30 is mounted to the cartridge mounting portion 110, the engagement
surface 46 contacts an engagement member 145 of the cartridge mounting portion 110,
and receives an external force. More specifically, when the ink cartridge 30 is mounted
to and retained in the cartridge mounting portion 110, the ink cartridge 30 is pushed
in the removal direction 55, and therefore, the engagement surface 46 pushes the engagement
member 145 in the removal direction 55. As a consequence, the engagement surface 46
receives a reaction force from the engagement member 145 in the insertion direction
56.
[0042] The main body 31 comprises a pivotable member 80 positioned at an upper side of the
main body 31 with respect to the height direction (up-down direction) 52 and at a
rear-wall 42 side of the main body 31. More specifically, the pivotable member 80
is positioned at a rear portion of the top wall 39. The pivotable member 80 has a
bent flat-plate shape and its longer dimension extends in a direction substantially
parallel with the depth direction (front-rear direction) 53. The pivotable member
80 comprises a shaft 83 at its bent point. The bent point is positioned at a middle
portion of the pivotable member 80 with respect to the depth direction (front-rear
direction) 53. The shaft 83 extends in the width direction (left-right direction)
51. The shaft 83 is supported by the other portion of the main body 31 at a position
spaced away from the engagement surface 46 toward the rear wall 42, such that the
pivotable member 80 can pivot about the shaft 83. In other words, the shaft 83 comprises
a pivot point about which the pivotable member 80 pivots. The pivotable member 80
comprises a front end portion 81 and a rear end portion 82. The front end portion
81 extends from the shaft 83 toward the engagement surface 46. The rear end portion
82 extends from the shaft 83 toward the rear wall 42. The shaft 83 is positioned at
the upper side of the ink cartridge 30, and the rear end portion positioned at the
rear side of the ink cartridge 30.
[0043] When no external force is applied to the pivotable member 80, the pivotable member
80 is positioned, such that the front end portion 81 is positioned farthest from the
top wall 39, i.e., the front end portion 81 is in the upper most position relative
to the top wall 39, due to its own weight, i.e., the rear end portion 82 is heavier
than the front end portion 81. When the pivotable member 80 is in this position, the
front end portion 81 may extend outside beyond an upper end of the other portion of
the main body 31. In another embodiment, the front end portion 81 may not extend outside
beyond the upper end of the other portion of the main body 31 and may be positioned
more inside than the upper end of the other portion of the main body 31, i.e., positioned
below the upper end of the other portion of the main body 31. When the front end portion
81 is pushed down, the pivotable member 80 pivots in the clockwise direction in Fig.
3 against its own weight. When the pivotable member 80 pivots in the clockwise direction
to the extent possible, the front end portion 81 is positioned below an upper end
of the engagement surface 46. Fig. 2 illustrates the pivotable member 80 which has
pivoted, such that the front end portion 81 is positioned below the upper end of the
engagement surface 46. In another embodiment, the pivotable member 80 may be integrally
formed with the other portion of the main body 31. In yet another embodiment, the
pivotable member 80 may be biased by a spring in the clockwise direction. In such
a case, when the rear end portion 82 is pushed down, the pivotable member 80 pivots
in the counterclockwise direction against the biasing force of the spring.
[0044] As mentioned above, the main body 31 comprises the side walls 37, 38. Rear portions
of the side walls 37, 38 extends from the rear wall 42 up to a middle portion of the
main body 31 with respect to the depth direction (front-rear direction) 53. Each of
the rear portions of the side walls 37, 38 comprises a flat plate portion, and a tapered
portion at the front of the flat plate portion with respect to the depth direction
(front-rear direction) 53. More specifically, each of the flat plate portion comprises
a planar outer surface extending in the depth direction (front-rear direction) 53
and the height direction (up-down direction) 52 and a planar inner surface extending
in the depth direction (front-rear direction) 53 and the height direction (up-down
direction) 52. The tapered portion comprises a planar inner surface extending in the
depth direction (front-rear direction) 53 and the height direction (up-down direction)
52 and an inclined outer surface 47, 48 extending in a direction inclined to the depth
direction (front-rear direction) 53 and extending in the height direction (up-down
direction) 52. The side wall 37 comprises the inclined inner surface 47 and the side
wall 38 comprises the inclined inner surface 48. When the sub frame 90 is not attached
to the main body 31 before the ink cartridge 30 is assembled, a front portion of the
inner frame 35 defining the ink chamber 36 is not covered by the sub frame 90 and
is exposed. Therefore, the front portion of the inner frame 35 comprises front portions
of the side walls 37, 38.
[0045] The main body 31 comprises a guide portion 65 at the top wall 39. The guide portion
65 is a pair of boards 57 extending upward from the top wall 39 and extending in the
depth direction (front-rear direction) 53 from a middle portion of the main body 31
with respect to the depth direction (front-rear direction) 53 toward the rear wall
42. The width of the guide portion 65 between the pair of outer surfaces of the boards
57 in the width direction (left-right direction) is less than the width of the main
body 31 between the outer surfaces of the side walls 37, 38 of the main body 31 in
the width direction (left-right direction). The width of the guide portion 65 between
the pair of outer surfaces of the boards 57 in the width direction (left-right direction)
is less than the width of the front wall 40 in the width direction (left-right direction).
The inner gap of the guide portion 65 between the pair of inner surfaces of the boards
57 in the width direction (left-right direction) is greater than the width of the
engagement member 145 in the width direction (left-right direction). The guide portion
65 comprises a front end in the insertion direction 56. The guide portion 65 is positioned
between a groove 87 of the first protrusion 85 and the rear wall 42. More specifically,
the guide portion 65 is positioned in rear of the groove 87 with respect to the insertion
direction 56. The shaft 83 of the pivotable member 80 is pivotably supported by the
boards 57, such that the front end portion 81 pivots between the boards 57.
[0046] The main body 31 comprises a guide portion 66 at the bottom wall 41. The guide portion
66 is a protrusion extending downward from the bottom wall 41 and extending in the
depth direction (front-rear direction) 53 from a middle portion of the main body 31
with respect to the depth direction (front-rear direction) 53 toward the rear wall
42. The width of the guide portion 66 between the pair of outer surfaces of the guide
portion 66 in the width direction (left-right direction) is less than the width of
the main body 31 between the outer surfaces of the side walls 37, 38 of the main body
31 in the width direction (left-right direction). The width of the guide portion 66
between the pair of outer surfaces of the guide portion 66 in the width direction
(left-right direction) is less than the width of the front wall 40 in the width direction
(left-right direction). When the ink cartridge 30 is inserted into and removed from
the cartridge mounting portion 110, the guide portions 65, 66 are inserted in guide
grooves 109 of the cartridge mounting portion 110.
[Sub frame 90]
[0047] The sub frame 90 is attached to the main body 31. The sub frame 90 covers a front
portion of the main body 31 extending from around the inner inclined surfaces 47,
48 to the front wall 40 of the main body 31 facing in the insertion direction 56.
More specifically, the sub frame 90 comprises the front wall 140 facing and covering
the front wall 40 of the main body 31 in the depth direction (front-rear direction)
53, a top wall 141 facing and covering a front portion of the top wall 39 in the height
direction (up-down direction) 52, a bottom wall 142 facing and covering a front portion
of the bottom wall 41 in the height direction (up-down direction) 52, and side walls
143, 144 facing and covering the front portions of the side walls 37, 38, respectively,
in the width direction (left-right direction) 51. The front wall 140 is positioned
at the front side of the ink cartridge 30, and the top wall 141 is positioned at the
upper side of the ink cartridge 30. The sub frame 90 has an opening formed therethough,
and the opening is defined by rear ends of the top wall 141, the bottom wall 142,
and the side walls 143, 144 and is positioned opposite the front wall 140 with respect
to the depth direction (front-rear direction) 53.
[0048] The side walls 143, 144 have the elongated openings 91, 92 formed therethrough, respectively.
The elongated openings 91, 92, are positioned at bottom-wall 142 sides of the side
walls 143, 144, respectively. In other words, the elongated openings 91, 92 are positioned
at lower portions of the side walls 143, 144. Each of the elongated openings 91, 92
has a longer dimension in the height direction (up-down direction) 52. The protrusions
of the front end of the engagement hook 43 are positioned in the elongated openings
91, 92, respectively, and contact inner surfaces of the walls defining the elongated
openings 91, 92, respectively. If the sub frame 90 is attempted to be removed from
the main body 31 by pulling the sub frame 90 in the depth direction (front-rear direction)
53, the protrusions of the front end of the engagement hook 43 are hooked on the inner
surfaces of the walls defining the elongated openings 91, 92, such that the sub frame
90 cannot be removed from the main body 31. The dimension of each of the protrusions
of the front end of the engagement hook 43 in the height direction (up-down direction)
52 is less than the dimension of each of the elongated openings 91, 92 in the height
direction (up-down direction) 52. The side walls 143, 144 comprise end portions 67,
68 at the rear thereof, respectively. The end portions 67, 68 extend in the height
direction (up-down direction) 52 and covers the tapered portions of the rear portions
of the side walls 37, 38 of the main body 31, respectively. The end portions 67, 68
face the inclined outer surfaces 47, 48 of the tapered portions, respectively, i.e.,
the end portions 67, 68 overlap the inclined outer surfaces 47, 48 in the width direction
(left-right direction) 51. The sub frame 90 is configured to move relative to the
main body 31 in the height direction (up-down direction) 52 within a range defined
by the dimension of the elongated openings 91, 92 in the height direction (up-down
direction) 52 allowing the protrusions of the front end of the engagement hook 43
to slide within the elongated openings 91, 92 in the height direction (up-down direction)
52. In other words, there is a space between each one of the protrusions of the front
end of the engagement hook 43 and an end of a corresponding one of the elongated openings
91, 92 in the height direction (up-down direction) 52, such that the sub frame 90
can slide on the main body 31 in the height direction (up-down direction) 52. When
the sub frame 90 moves relative to the main body 31, the end portions 67, 68 of the
sub frame 90 slides on the inclined outer surfaces 47, 48, respectively. In other
words, the inclined outer surfaces 47, 48 function as guides when the sub frame 90
moves relative to the main body 31. The sub frame 90 is supported by the top wall
39 of the front portion of the main body 31 from below in a normal state. The sub
frame 90 is configured not to move relative to the main body in the width direction
(left-right direction) 51.
[0049] The sub frame 90 has the opening 95 formed through the front wall 140 in the width
direction (left-right direction) 51. The opening 95 is positioned at a middle portion
of the top wall 140 with respect to the height direction (left-right direction) 52.
In this embodiment, the opening 95 has a rectangular shape, but can have any other
suitable shape according to modified embodiments. The opening 95 has dimensions and
size corresponding to the detection portion 33 of the main body 31 and is in a position
corresponding to the detection portion 33, such that the detection portion 33 is exposed
to the exterior of the ink cartridge 30 via the opening 95 in the width direction
(left-right direction) 51. A portion of the sub frame 90 defining the opening 95 comprises
the detection portion 89 extending in the height direction (up-down direction) 52,
and a support portion 79 extending from the lower end of the detection portion 89
in the depth direction (front-rear direction) 53 toward the main body 31 and configured
to support the detection portion 33 from below. When the sub frame 90 is supported
by the top wall 39 of the main body 31 from below, there is a space between the detection
portion 33 and the support portion 79. When the sub frame 90 moves in the upward direction
relative to the main body 31, the support portion 79 contacts a lower end of the detection
portion 33. The range within which the sub frame 90 moves relative to the main body
31 in the height direction (up-down direction) 52 can be defined by the dimension
of the elongated openings 91, 92 in the height direction (up-down direction) 52 allowing
the protrusions of the front end of the engagement hook 43 to slide within the elongated
openings 91, 92 in the height direction (up-down direction) 52 or can be defined by
the space between the detection portion 33 and the support portion 79 formed when
the sub frame 90 is supported by the upper surface of the front portion of the main
body 31 from below.
[0050] The sub frame 90 has the opening 96 formed through a wall of the first protrusion
85 in the depth direction (front-rear direction) 53. In this embodiment, the opening
96 has a circular shape, but any other shapes are possible as well according to modified
embodiments. The opening 96 has a dimension and size corresponding to the air communication
opening 32 of the main body 31 and is in a position corresponding to the air communication
opening 32, such that the air communication opening 32 is accessible via the opening
96 from the exterior of the ink cartridge 30 in the removal direction 55.
[0051] The sub frame 90 has the opening 97 formed through the front wall 140 in the depth
direction (front-rear direction) 53, and the opening 97 is positioned at a lower portion
of the front wall 140 with respect to the height direction 52. In this embodiment,
the opening 97 has a circular shape, but any other shapes are possible as well according
to modified embodiments. The opening 97 has a dimension and size corresponding to
the ink supply portion 34 of the main body 31 and is in a position corresponding to
the ink supply portion 34, such that the ink supply portion 34 extends through the
opening 37 in the depth direction (front-rear direction) 53.
[0052] The sub frame 90 comprises the first protrusion 85 and the second protrusion 86 at
the front wall 140. The first protrusion 85 extends from the upper end of the front
wall 140 in the insertion direction 56 away from the rear wall 42. The width of the
first protrusion 85 in the width direction (left-right direction) 51 is the same as
the width of the front wall 140 in the width direction (left-right direction) 51.
In another embodiment, the width of first protrusion 85 may be less than the width
of the front wall 140. The front end of the first protrusion 85 is positioned more
forward than the ink supply opening 71 formed at the distal end of the ink supply
portion 34 in the insertion direction 56 away from the rear wall 42. The first protrusion
85 has a recess, e.g., a groove 87 formed in a middle portion of the first protrusion
85 with respect to the width direction (left-right direction) 52. The groove 87 extends
in the depth direction (front-rear direction) 53. The groove 87 is opened forward
in the insertion direction 56 and opened upward in the height direction (up-down direction)
52. The both sides of the groove 87 with respect to the width direction (left-right
direction) 51 are defined and closed by a pair of surfaces of the first protrusion
85, and the bottom of groove 87 is defined and closed by a surface of the first protrusion
85. The cross section of the groove 87 taken along the height direction (up-down direction)
52 and the width direction (left-right direction) 51 is rectangular.
[0053] The first protrusion 85 comprises the board 88 disposed in a middle portion of the
groove 87 with respect to the width direction (left-right direction) 51. The board
88 extends in the depth direction (front-rear direction) 53 and the height direction
(up-down direction) 52. The board 88 extends in the upward direction from the surface
of the first protrusion 85 defining the bottom of the groove 87. The board 88 extends
from the front wall 140 of the sub frame 90 in the depth direction 53 or insertion
direction 56 at a boundary between the top wall 141 and the front wall 140. The board
88 protrudes from the upper side of the front side of the ink cartridge 30. The front
end of the board 88 is positioned further away from the rear side of the ink cartridge
30 than the front end of the ink supply portion 30 is positioned away from the rear
side of the ink cartridge 30 with respect to the depth direction (front-rear direction).
Each of side surfaces of the board 88 with respect to the width direction (left-right
direction) 51 extends in the depth direction (front-rear direction) 53 and the height
direction (up-down direction) 52 in parallel with the pair of surfaces of the first
protrusion 85 defining the both sides of the groove 87 with respect to the width direction
(left-right direction) 51. The surfaces of the first protrusion 85 defining the both
sides of the groove 87 with respect to the width direction (left-right direction)
51 are opposed to the side surfaces of the board 88 in the width direction (left-right
direction) 52, respectively. The board 88 comprises a material, e.g., a resin, configured
to attenuate light, e.g., visible or infrared light, traveling in a direction perpendicular
to the insertion/removal direction 50. In this embodiment, the direction perpendicular
to the insertion/removal direction 50 is the width direction (left-right direction)
51. More specifically, when the ink cartridge 30 is mounted to the cartridge mounting
portion 110, the board 88 is positioned between a light emitter and a light receiver
of an optical sensor 116, which are aligned in a horizontal direction (the width direction
or left-right direction 51) perpendicular to the insertion/removal direction 50. The
board 88 is configured to attenuate light, which is emitted from the light emitter
of the optical sensor 116 and travels in the direction (the width direction or left-right
direction 51) perpendicular to the insertion/removal direction 50. When the light
reaches one side of the board 88 in the direction (the width direction or left-right
direction 51) perpendicular to the insertion/removal direction 50, the amount of light
coming out of the other side of the board 88 and reaching the light receiver of the
optical sensor 116 is less than a predetermined amount, e.g., zero. In other words,
the board 88 is configured to attenuate the amount or the intensity of light to a
level sufficient to be detected by the optical sensor 116. The attenuation of the
light is caused by the board 88 completely preventing the light from passing therethrough
in the direction (the width direction or left-right direction 51) perpendicular to
the insertion/removal direction 50, by the board 88 absorbing some amount of the light,
by the board 88 deflecting the light, by the board 88 totally reflecting the light,
and etc. As such, the board 88 can be detected by the optical sensor 116. The dimension
of the board 88 from the front wall 40 up to the front end of the board 88 in the
insertion direction 56 away from the rear wall 42 varies from one type of the ink
cartridge 30 to another type of the ink cartridge 30. Different types of the ink cartridges
30 may comprise different colors of ink, different ingredients of ink such as dye
and pigment, different initial amounts of ink stored in the ink chamber 36, and etc.
[0054] In another embodiment, the first protrusion 85 may have a recess 87 formed therein.
The recess 87 may be opened forward in the insertion direction 56, opened upward in
the height direction (up-down direction) 52, and opened on one side or the both sides
of the first protrusion 85 in the width direction (left-right direction) 51
[0055] The second protrusion 86 extends from the lower end of the front wall 140 in the
insertion direction 56 away from the rear wall 42. The second protrusion 86 is positioned
below the ink supply portion 34. The width of the second protrusion 86 in the width
direction (left-right direction) 51 is the same as the width of the front wall 140
in the width direction (left-right direction) 51. In another embodiment, the width
of second protrusion 86 may be less than the width of the front wall 140. The front
end of the second protrusion 86 is positioned more forward than the ink supply opening
71 formed at the distal end of the ink supply portion 34 in the insertion direction
56 away from the rear wall 42. The dimension of the second protrusion 86 from the
front wall 140 up to the front end of the second protrusion 86 in the insertion direction
56 away from the rear wall 42 varies from one type of the ink cartridge 30 to another
type of the ink cartridge 30. Different types of the ink cartridges 30 may comprise
different colors of ink, different ingredients of ink such as dye and pigment, different
initial amounts of ink stored in the ink chamber 36, and etc. In this embodiment,
the second protrusion 86 is indirectly detected by an optical sensor 117 (see Fig.
1). In another embodiment, the second protrusion 86 may be directly detected by the
optical sensor 117.
[0056] The sub frame 90 comprises the detection portion 89 at or adjacent to the front wall
140 between the first protrusion 85 and the second protrusion 86 with respect to the
height direction (up-down direction) 52. The detection portion 89 is positioned more
forward than the detection portion 33 in the insertion direction 56 away from the
rear wall 42. The detection portion 33 and the detection portion 89 are aligned and
space away in the insertion direction 56. The width of the detection portion 89 in
the width direction (left-right direction) 51 is the same as the width of the detection
portion 33 in the width direction (left-right direction) 51, but other larger or smaller
widths are possible as well according to modified embodiments. The detection portion
89 is configured to attenuate light, e.g., visible or infrared light, traveling in
the direction (the width direction or left-right direction 51) perpendicular to the
insertion/removal direction 50 to pass therethrough. More specifically, during mounting
of the ink cartridge 30 to the cartridge mounting portion 110, the detection portion
89 passes between the light emitter and the light receiver of the optical sensor 114.
When this occurs, the detection portion 89 attenuates light, which is emitted from
the light emitter of the optical sensor 114 and travels in the direction (the width
direction or left-right direction 51) perpendicular to the insertion/removal direction
50. When the light reaches one side of the detection portion 89 in the direction (the
width direction or left-right direction 51) perpendicular to the insertion/removal
direction 50, the amount of light coming out of the other side of the detection portion
89 and reaching the light receiver of the optical sensor 114 is less than the predetermined
amount, e.g., zero. In other words, the detection portion 89 is configured to attenuate
the amount or the intensity of light to a level sufficient to be detected by the optical
sensor 114. The attenuation of the light is caused by the detection portion 89 completely
preventing the light from passing therethrough in the direction (the width direction
or left-right direction 51) perpendicular to the insertion/removal direction 50, by
the detection portion 89 absorbing some amount of the light, by the detection portion
89 deflecting the light, by the detection portion 89 totally reflecting the light,
and etc. As such, the detection portion 89 can be detected by the optical sensor 114.
[0057] There is a gap between the detection portion 89 and the detection portion 33 in the
depth direction (front-rear direction) 53. During mounting of the ink cartridge 30
to the cartridge mounting portion 110, the light, which is emitted from the light
emitter of the optical sensor 114 and travels in the direction (the width direction
or left-right direction 51) perpendicular to the insertion/removal direction 50, passes
through the gap and reaches the light receiver of the optical sensor 114. The amount
of light coming out of the gap and reaching the light receiver of the optical sensor
114 is greater than or equal to the predetermined amount. The dimension of the detection
portion 89 in the depth direction (front-rear direction) 53 varies from one type of
the ink cartridge 30 to another type of the ink cartridge 30. Different types of the
ink cartridges 30 may comprise different colors of ink, different ingredients of ink
such as dye and pigment, different initial amounts of ink stored in the ink chamber
36, and etc.
[0058] The front end of the first protrusion 85, the front end of the second protrusion
86, and the detection portion 89 are positioned more forward than the detection portion
33 with respect to the insertion direction 56. In other words, the detection portion
33 is positioned more rearward than the front end of the first protrusion 85, the
front end of the second protrusion 86, and the detection portion 89 with respect to
the insertion direction 56. Each of the detection portion 33 and the ink supply opening
71 is positioned between the first protrusion 85 and the second protrusion 86 with
respect to the height direction 52.
[0059] The sub frame 90 comprises a guide portion 93 at the top wall 141. The guide portion
93 is a pair of boards 94 extending upward from the top wall 141 and extending in
the depth direction (front-rear direction) 53 from a middle portion of the sub frame
90 to the rear end of the sub frame 90. The width of the guide portion 93 between
the pair of outer surfaces of the boards 94 in the width direction (left-right direction)
is less than the width of the sub frame 90 between the outer surfaces of the side
walls 143, 144 of the sub frame 90 in the width direction (left-right direction).
The guide portion 93 comprises a front end in the insertion direction 56. The guide
portion 93 is positioned between the groove 87 of the first protrusion 85 and the
rear wall 42. More specifically, the guide portion 93 is positioned in rear of the
groove 87 with respect to the insertion direction 56. The width of the guide portion
93 between the pair of outer surfaces of the boards 94 in the width direction (left-right
direction) is equal to the width of the guide portion 65 between the pair of outer
surfaces of the boards 57 in the width direction (left-right direction). The guide
portion 93 is aligned with the guide portion 65 in the depth direction (front-rear
direction) 53, i.e., the boards 94 are aligned with the boards 57 in the depth direction
(front-rear direction) 53, respectively. Therefore, the outer surfaces of the boards
94 are aligned with the outer surfaces of the boards 57 in the depth direction (front-rear
direction) 53, respectively.
[0060] The sub frame 90 comprises a guide portion 99 at the bottom wall 142. The guide portion
99 is a protrusion extending downward from the bottom wall 142 and extending in the
depth direction (front-rear direction) 53 from the front end of the second protrusion
86 to the rear end of the sub frame 90. The width of the guide portion 99 between
the outer surfaces of the guide portion 99 in the width direction (left-right direction)
is less than the width of the sub frame 90 between the outer surfaces of the side
walls 143, 144 of the sub frame 90 in the width direction (left-right direction).
The width of the guide portion 99 between the outer surfaces of the guide portion
99 in the width direction (left-right direction) is equal to the width of the guide
portion 66 between the outer surfaces of the guide portion 66 in the width direction
(left-right direction). The guide portion 99 is aligned with the guide portion 66
in the depth direction (front-rear direction) 53. Therefore, the outer surfaces of
the guide portion 99 are aligned with the outer surfaces of the guide portion 66 in
the depth direction (front-rear direction) 53, respectively. When the ink cartridge
30 is inserted into and removed from the cartridge mounting portion 110, the guide
portions 93, 99 are inserted in guide grooves 109 of the cartridge mounting portion
110.
[0061] The ink cartridge 30 comprises an IC board 74 disposed at the sub frame 90 between
the pair of boards 94 of the guide portion 90. The IC board 74 is positioned between
the groove 87 of the first protrusion 85 and the rear wall 42 and between the stopper
45 and the front wall 140. The IC board 74 is positioned at the top-wall 141 side
of the sub frame 90 between the front wall 140 and the rear wall 42. The IC board
74 is positioned more rearward than the front wall 140 and the groove 87 with respect
to the insertion direction 56. The IC board 74 and the ink supply opening 71 are shifted
with respect to the insertion direction 56. More specifically, the IC board 74 is
positioned more rearward than the ink supply opening 71 with respect to the insertion
direction 56.
[0062] The sub frame 90 comprises a platform on which the IC board 74 is disposed. The platform
is positioned between the pair of boards 94 of the guide portion 93. The platform
is a planar surface extending in the width direction (left-right direction) 51 and
the depth direction (front-rear direction) 53, and extending in the insertion/removal
direction 50 when the ink cartridge 30 is in the mounted position (upright position).
A plane on which the platform extends, i.e., a plane extending in the depth direction
(front-rear direction) 53 and the width direction (left-right direction) 51, intersects
a plane on which the engagement surface 46 extends, i.e., a plane extending in the
height direction (up-down direction) 52 and the width direction (left-right direction)
51. In this embodiment, the plane on which the platform extends is perpendicular to
the plane on which the engagement surface 46 extends. The IC board 74 comprises an
upper surface extending in the width direction (left-right direction) 51 and the depth
direction (front-rear direction) 53. When the ink cartridge 30 is in the mounted position
(upright position), the upper surface of the IC board 74 extends horizontally and
faces upward. A plane on which the upper surface of the IC board 74 extends, i.e.,
a plane extending in the depth direction (front-rear direction) 53 and the width direction
(left-right direction) 51, intersects the plane on which the engagement surface 46
extends, i.e., a plane extending in the height direction (up-down direction) 52 and
the width direction (left-right direction) 51. In this embodiment, the plane on which
the upper surface of the IC board 74 extends is perpendicular to the plane on which
the engagement surface 46 extends. Because the platform is positioned more forward
than the engagement surface 46 with respect to the insertion direction 56, the IC
board 74 is positioned more forward than the engagement surface 46 with respect to
the insertion direction 56. The IC board 74 is positioned above (higher than) the
board 88 and the groove 87 of the first protrusion 85 with respect to the height direction
(up-down direction) 52. In other word, the IC board 74 is positioned more outside
than the board 88 and the groove 87. The IC board 74 is positioned above (higher than)
at least a portion of the stopper 45 with respect to the height direction (up-down
direction) 52. In other words, the IC board 74 is positioned more outside than at
least a portion of the stopper 45. The upper end of the board 88 is positioned below
the IC board 74 with respect to the height direction (up-down direction) 52. The cartridge
mounting portion 110 comprises three contacts 106 aligned in the direction (width
direction or left-right direction 51) perpendicular to the insertion/removal direction
50. During mounting of the ink cartridge 30 to the cartridge mounting portion 110,
the IC board 74 contacts and is electrically connected to the three contacts 106 (see
Fig. 6). When the mounting of the ink cartridge 30 to the cartridge mounting portion
110 is completed, the IC board 74 still contacts and is electrically connected to
the three contacts 106.
[0063] Referring to Figs. 2 and 3, the IC board 74 comprises an IC (not shown), and electrical
interfaces, e.g., a HOT electrode 75, a GND electrode 76, and a signal electrode 77.
The IC is a semiconductor integrated circuit and stores data about the information
of the ink cartridge 30, e.g., the lot number of the ink cartridge 30, the manufacturing
date of the ink cartridge 30, the color of ink stored in the ink cartridge 30, and
etc. When the ink cartridge 30 is mounted to the cartridge mounting portion 110, the
data stored in the IC can be read out by the printer 10.
[0064] Each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is
electrically connected to the IC. Each of the HOT electrode 75, the GND electrode
76, and the signal electrode 77 has a surface extending in the depth direction (front-rear
direction) 53 and the width direction (left-right direction) 51. The HOT electrode
75, the GND electrode 76, and the signal electrode 77 are aligned and spaced apart
from each other in the width direction (left-right direction) 51. The GND electrode
76 is positioned between the HOT electrode 75 and the signal electrode 77. The IC
board 74 has a width in the width direction (left-right direction) 51 and the board
88 of the first protrusion 85 has a width in the width direction (left-right direction)
51, and the width of the IC board 74 is greater than the width of the board 88. Each
of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 has a width
in the width direction (left-right direction) 51, and the width of each of the HOT
electrode 75, the GND electrode 76, and the signal electrode 77 is greater than the
width of the board 88. The center of the IC board 74 in the width direction (left-right
direction) 51 and the center of the board 88 of the first protrusion 85 in the width
direction (left-right direction) is positioned on a plane which is parallel with the
height direction (up-down direction) 52 and the depth direction (front-rear direction)
53. Therefore, the IC board 74 and the board 88 intersect the plane which is parallel
with the height direction (up-down direction) 52 and the depth direction (front-rear
direction) 53. In other words, the IC board 74 and the board 88 are not offset in
the width direction (left-right direction) 51. More specifically, the center of the
GND electrode 76 in the width direction (left-right direction) 51 and the center of
the board 88 is positioned on the plane which is parallel with the height direction
(up-down direction) 52 and the depth direction (front-rear direction) 53. In other
words, the center of the GND electrode 76 in the width direction (left-right direction)
51 and the center of the board 88 are not offset in the width direction (left-right
direction) 51. Therefore, the GND electrode 76 and the board 88 intersect the plane
which is parallel with the height direction (up-down direction) 52 and the depth direction
(front-rear direction) 53. In other words, the GND electrode 76 and the rib 86 are
not offset in the width direction (left-right direction) 51. The HOT electrode 75,
the GND electrode 76, the signal electrode 77, and the board 88 are symmetrically
arranged with respect to the plane which is parallel with the height direction (up-down
direction) 52 and the depth direction (front-rear direction) 53. The engagement surface
46, the IC board 74, and the groove 87 intersect the plane which is parallel with
the height direction (up-down direction) 52 and the depth direction (front-rear direction)
53. In other words, the engagement surface 46, the IC board 74, and the groove 87
are not offset in the width direction (left-right direction) 51. More specifically,
the engagement surface 46, the GND electrode 76, and the groove 87 intersect the plane
which is parallel with the height direction (up-down direction) 52 and the depth direction
(front-rear direction) 53, the engagement surface 46, the HOT electrode 75, and the
groove 87 intersect another plane which is parallel with the height direction (up-down
direction) 52 and the depth direction (front-rear direction) 53, and the engagement
surface 46, the signal electrode 77, and the groove 87 intersect yet another plane
which is parallel with the height direction (up-down direction) 52 and the depth direction
(front-rear direction) 53. In other words, the engagement surface 46, each one of
the HOT electrode 75, the GND electrode 76, and the signal electrode 77, and the groove
87 are not offset in the width direction (left-right direction) 51. During mounting
of the ink cartridge 30 to the cartridge mounting portion 110, the HOT electrode 75,
the GND electrode 76, and the signal electrode 77 contact and are electrically connected
to the three contacts 106 (see Fig. 6), respectively. When the mounting of the ink
cartridge 30 to the cartridge mounting portion 110 is completed, the HOT electrode
75, the GND electrode 76, and the signal electrode 77 still contact and are electrically
connected to the three contacts 106, respectively.
[0065] The engagement surface 46, the IC board 74, and the groove 87 are exposed upward
with respect to the height direction 52 to the exterior of the ink cartridge 30 at
the top-wall 39 side of the main body 30 and the top-wall 141 side of the sub frame
90. The HOT electrode 75, the GND electrode 76, and the signal electrode 77 are exposed
upward to the exterior of the ink cartridge 30 at the upper surface of the IC board
74, such that the HOT electrode 75, the GND electrode 76, and the signal electrode
77 are accessible from above when the ink cartridge 30 is in the mounted position.
In other words, the HOT electrode 75, the GND electrode 76, and the signal electrode
77 are accessible in the downward direction which is perpendicular to the width direction
(left-right direction) 51 and the insertion/removal direction 50. The engagement surface
46 is accessible from above when the ink cartridge 30 is in the mounted position.
In other words, the engagement surface 46 is accessible in the downward direction
which is perpendicular to the width direction (left-right direction) 51 and the insertion/removal
direction 50.
[0066] The IC board 74 is attached to the top wall 141 of the sub frame 90 at at least one
attachment position. A boss extends upward from each of the at least one attachment
position of the sub frame 90 and the boss extends through an opening formed through
the IC board 74. An upper portion of the boss is melted by heat and contacts the upper
surface of the IC board 74. The at least one attachment position is positioned in
rear of the HOT electrode 75, the GND electrode, and the signal electrode 77. Each
of the pair of boards 94 comprises a first portion positioned in line with the attachment
position in the width direction (left-right direction) 51 when viewed from the height
direction (up-down direction) 52 and a second portion. The upper end of the first
portion is positioned below the second portion. With the first portion of the boards
94, a heater, which has a wider width than the width of the guide portion 93 in the
width direction (left-right direction) 51 can contact the upper portion of the boss,
such that the upper portion of the boss is melted.
[0067] The pair of boards 94 of the guide portion 93 extends beyond the IC board 74 upward
and forward in the insertion direction 56. In other words, the pair of boards 94 of
the guide portion 65 extend outward beyond the IC board 74. The sub frame 90 comprises
a ramp 49 connecting the pair of boards 94 of the guide portion 65. The ramp 49 is
positioned between the groove 87 of the first protrusion 85 and the rear wall 42 and
between the IC board 74 and the front wall 140. The ramp 49 is positioned between
the groove 87 of the first protrusion 85 and the IC board 74. The ramp 49 is inclined
downward with respect to the insertion direction 56, such that a front portion of
the ramp 49 is positioned lower than a rear portion of the ramp 49. When the ink cartridge
30 is inserted into and/or removed from the cartridge mounting portion 110, the engagement
member 145 slides on the ramp 49.
[0068] A recess 78 is formed between the stopper 45 and the sub frame 90 at a boundary between
the stopper 45 and the sub frame 90 at an upper portion of the ink cartridge 30. When
the main body 31 and the sub frame 90 are positioned relative to the cartridge mounting
portion 110, respectively, as described below, there is no level difference between
the stopper 45 and the sub frame 90 in the height direction (up-down direction) 50
on both sides of the recess 78. Therefore, when the ink cartridge 30 is inserted into
or removed from the cartridge mounting portion 110, the engagement member 145 is not
caught in the recess 78.
[0069] In this embodiment, the sub frame 90 covers the front wall 40 of the main body 31,
the side-wall 37 side of the front portion of the main body 31, the side-wall 38 side
of the front portion of the main body 31, the top-wall 39 side of the front portion
of the main body 31, and the bottom-wall 41 side of the front portion of the main
body 31. However, the sub frame 90 may cover the front portion of the main body 31
differently. In a modified embodiment, the sub frame 90 may not cover the side-wall
37 side of the front portion of the main body 31. In another modified embodiment,
the sub frame 90 may not cover the bottom-wall 41 side of the front portion of the
main body 31.
[Ink supply device 100]
[0070] Referring to Fig. 1, the printer 10 comprises the ink supply device 100. The ink
supply device 100 is configured to supply ink to the print head 21. The ink supply
device 100 comprises the cartridge mounting portion 110 to which the ink cartridge
30 is mountable. In Fig. 1, the ink cartridge 30 is mounted to the cartridge mounting
portion 110.
[Cartridge mounting portion 110]
[0071] Referring to Figs. 4 and 5, the cartridge mounting portion 110 comprises a case 101,
and the case 101 has the opening 112 formed through one face of the case 101. The
ink cartridge 30 is configured to be inserted into or removed from the case 101 through
the opening 112. The case 101 has the groove 109 formed in a top surface defining
the upper end of the inner space of the case 101 and also has the groove 109 formed
in a bottom surface defining the lower end of the inner space of the case 101. The
grooves 109 extend in the insertion/removal direction 50. The ink cartridge 30 is
guided in the insertion/removal direction 50 with the guide portions 65, 93 inserted
in the groove 109 formed in the top surface of the case 101 and the guide portions
66, 99 inserted in the groove 109 formed in the bottom surface of the case 101. The
case 101 is configured to receive four ink cartridges 30 storing cyan ink, magenta
ink, yellow ink, and black ink, respectively.
[0072] The case 101 comprises three partition plates 102 extending in the vertical direction
and the insertion/removal direction 50. The three partition plates 102 partition the
inner space of the case 101 into four spaces. The four ink cartridges 30 are configured
to be mounted in the four spaces, respectively.
[0073] Referring to Fig. 5, the case 101 comprises an end surface opposite the opening 112
in the insertion/removal direction 50. The cartridge mounting portion 110 comprises
a connection portion 103 provided at a lower portion of the end surface of the case
101 at a position corresponding to the ink supply portion 34 of the ink cartridge
30 mounted to the case 101. In this embodiment, four connection portions 103 are provided
for the four ink cartridges 30 mountable to the case 101.
[0074] The connection portion 103 comprises a printing fluid supply pipe, e.g., the ink
pipe 122, and a holding portion 121. The ink pipe 122 is a cylindrical pipe made of
a synthetic resin. The ink pipe 122 is connected to the ink tube 20 at the exterior
of the case 101. The ink tube 20 connected to the ink pipe 20 extends to the printing
head 21 to supply ink to the printing head 21. In Fig. 4 and 5, the ink tube 20 is
not depicted.
[0075] The holding portion 121 has a cylindrical shape. The ink pipe 122 is positioned at
the center of the holding portion 121. Referring to Fig. 8, when the ink cartridge
30 is mounted to the cartridge mounting portion 110, the ink supply portion 34 is
inserted into the holding portion 121. When this occurs, the ink supply portion 34
is positioned relative to the holding portion 121 with respect to the height direction
(up-down direction) 52 by an outer surface of the ink supply portion 34 contacting
an inner surface of the holding portion 121. When the ink supply portion 34 is inserted
into the holding portion 121, the ink pipe 122 is inserted into the ink supply opening
71. This allows ink stored in the ink chamber 36 to flow out into the ink pipe 122.
[0076] Referring to Fig. 5, the cartridge mounting portion 110 comprises a senor unit 104
above the connection portion 103. The sensor unit 104 comprises a board 113 and the
optical senor 114 mounted to the board 113. More specifically, the sensor unit 104
comprises one board 113 and four optical sensors 114 mounted to the one board 113,
corresponding to the four ink cartridges 30 mountable to the case 101.
[0077] As described above, the optical sensor 114 comprises the light emitter, e.g., a light
emitting diode, and the light receiver, e.g., a photo-transistor. The light emitter
and the light receiver are housed in a housing, and the housing extends from the board
113 in the insertion/removal direction 50 toward the opening 112. The housing has
substantially a U-shape when view from the above. The light emitter and the light
receiver of the optical sensor 114 are aligned in a horizontal direction (the width
direction or left-right direction 51) perpendicular to the insertion/removal direction
50 with a space formed therebetween. The light emitter is configured to emit light,
e.g., infrared or visible light, toward the light receiver in the horizontal direction
(the width direction or left-right direction 51) perpendicular to the insertion/removal
direction 50, and the light receiver is configured to receive the light emitted from
the light emitter. The detection portion 33 and the detection portion 89 can be inserted
into the space between the light emitter and the light receiver. The optical sensor
114 is configured to detect the change in the amount (intensity) of the light when
the detection portion 33 or the detection portion 89 enters an optical path (detection
point) formed between the light emitter and the light receiver. The optical sensor
114 is electrically connected to a controller (described later) of the printer 10,
and when the optical sensor 114 detects the detection portion 33 or the detection
portion 89, a signal output from the optical sensor 114 to the controller changes.
[0078] Referring to Fig. 5, the cartridge mounting portion 110 comprises a senor unit 105
positioned at the top surface of the case 101 adjacent to the end surface of the case
101. The sensor unit 105 comprises a board 115 and the optical sensor 116 mounted
to the board 115. More specifically, the sensor unit 105 comprises one board 115 and
four optical sensors 116 mounted to the one board 115, corresponding to the four ink
cartridges 30 mountable to the case 101.
[0079] As described above, the optical sensor 116 comprises the light emitter, e.g., a light
emitting diode, and the light receiver, e.g., a photo-transistor. The light emitter
and the light receiver are housed in a housing, and the housing extends from the board
115 downward in the vertical direction. The housing has substantially an up-side-down
U-Shape when viewed in the insertion/removal direction 50.
[0080] The light emitter and the light receiver of the optical sensor 116 are aligned in
the horizontal direction (the width direction or left-right direction 51) perpendicular
to the insertion/removal direction 50 with a space formed therebetween. The light
emitter is configured to emit light, e.g., infrared or visible light, toward the light
receiver in the horizontal direction (the width direction or left-right direction
51) perpendicular to the insertion/removal direction 50, and the light receiver is
configured to receive the light emitted from the light emitter. When the ink cartridge
30 is mounted to the cartridge mounting portion 110, the board 88 of the first protrusion
85 is inserted into the space between the light emitter and the light receiver. The
optical sensor 116 is configured to detect the change in the amount (intensity) of
the light when the board 88 enters an optical path (detection point) formed between
the light emitter and the light receiver. The optical sensor 116 is electrically connected
to the controller of the printer 10, and when the optical sensor 116 detects the board
88, a signal output from the optical sensor 116 to the controller changes. Based on
the signal change, whether the ink cartridge 30 is mounted to the cartridge mounting
portion 110 can be determined by the controller. In other words, the board 88 is configured
to provide information as to the presence of the ink cartridge 30 in the cartridge
mounting portion 110 by attenuating the light of the optical sensor 116.
[0081] The cartridge mounting portion 110 comprises electrical contacts 106 positioned at
the top surface of the case 101 between the end surface of the case 101 and the opening
112. Three contacts 106 are provided and aligned in the direction (width direction
or left-right direction 51) perpendicular to the insertion/removal direction 50. Three
contacts 106 are arranged at positions corresponding to the HOT electrode 75, the
GND electrode 76, the signal electrode 77 of the ink cartridge 30. The contacts 106
have electrical conductivity and resiliency. The contacts 106 are configured to be
resiliently deformed in the upward direction. Four sets of three contacts 106 are
provided, corresponding to the four ink cartridges 30 mountable to the case 101.
[0082] The printer 10 comprises the controller, and the contacts 106 are electrically connected
to the controller via an electrical circuit. The controller may comprise a CPU, a
ROM, a RAM, and etc. When the HOT electrode 75 contacts and is electrically connected
to a corresponding one of the contacts 106, a voltage Vc is applied to the HOT electrode
75. When the GND electrode 76 contacts and is electrically connected to a corresponding
one of the contacts 106, the GND electrode 76 is grounded. When the HOT electrode
75 and the GND electrode 76 contact and are electrically connected to the corresponding
contacts 106, respectively, power is supplied to the IC. When the signal electrode
77 contacts and is electrically connected to a corresponding one of the contacts 106,
data stored in the IC is accessible. Outputs from the electrical circuit are input
to the controller.
[0083] Referring to Fig. 1, the case 101 has a space 130 formed at the lower end of the
end surface of the case 101. The cartridge mounting portion 110 comprises a slider
135 disposed in the space 130. Four sliders 135 are provided corresponding to the
four ink cartridges 30 mountable to the case 101. The space 130 is contiguous with
the inner space of the case 101. The slider 135 is configured to move in the space
130 in the insertion/removal direction 50. The slider 135 has substantially a rectangular
parallelepiped shape. The slider 135 is positioned in the line of travel of the second
protrusion 86 of the ink cartridge 30 and is configured to contact the second protrusion
86.
[0084] The cartridge mounting portion 110 comprises a coil spring 139 disposed in the space
130. The coil spring 139 is configured to bias the slider 135 toward the opening 112,
i.e., in the removal direction 55. When the coil spring 139 is in a normal length,
i.e., when no external force is applied to the slider 135, the slider 135 is positioned
at an opening 112 side of the space 130. When the ink cartridge 30 is inserted into
the case 101, the second protrusion 86 of the ink cartridge 30 contacts the slider
135 and pushes the slider 135 in the insertion direction 56. When this occurs, the
coil spring 139 contracts and the slider 135 slides in the insertion direction 56.
The coil spring 139 in a contracted state biases the ink cartridge 30 in the removal
direction 55 via the slider 135.
[0085] The cartridge mounting portion 110 comprises the optical sensor 117 at an upper portion
of the space 130. Four optical sensors 117 are provided corresponding to the four
ink cartridges 30 mountable to the case 101. In other words, the four optical sensors
117 are provided corresponding to the four sliders 135. The four optical sensors 117
are aligned in the direction (width direction or left-right direction 51) perpendicular
to the insertion/removal direction 50. The optical sensor 117 has the same structure
as the optical sensor 116.
[0086] When the ink cartridge 30 is mounted to the case 101, the slider 135 is pushed and
inserted into a space between a light emitter and a light receiver of the optical
sensor 117. The optical sensor 117 is configured to detect the change in the amount
(intensity) of light when the slider 135 enters an optical path (detection point)
formed between the light emitter and the light receiver of the optical sensor 117.
The optical sensor 117 is electrically connected to the controller of the printer
10, and when the optical sensor 117 detects the slider 135, a signal output from the
optical sensor 117 to the controller changes. In Figs. 5 to 8, the slider 135, the
coil spring 139, and the optical sensor 117 are not depicted.
[0087] In the cartridge mounting portion 110, the detection point (optical path) of the
optical sensor 114 is positioned more rearward than the detection point (optical path)
of the optical sensor 116 and the detection point (optical path) of the optical sensor
117 in the insertion direction 56.
[0088] Referring to Fig. 5, the cartridge mounting portion 110 comprises a rod 125 at the
end surface of the case 101. The position of the rod 125 with respect to the height
direction (up-down direction) 52 corresponds to the position of the air communication
valve 73 of the ink cartridge 30 mounted to the cartridge mounting portion 110 with
respect to the height direction (up-down direction) 52. Four rods 125 are provided
corresponding to the four ink cartridges 30 mountable to the case 101. The rod 125
has a cylindrical shape and extends from the end surface of the case 101 in the insertion/removal
direction 50 toward the opening 112. During the mounting of the ink cartridge 30 to
the cartridge mounting portion 110, the rod 125 is inserted through the opening 96
of the sub frame 90, and the distal end of the rod 125 contacts the air communication
valve 73. The air communication valve 73 is pushed by the rod 125, such that the air
communication opening 32 is opened. An outer surface of the rod 125 contacts an inner
surface 98 of the sub frame 90 defining the opening 96, and thereby the sub frame
90 is positioned relative to the cartridge mounting portion 110 with respect to the
height direction (up-down direction) 52.
[0089] Referring to Fig. 5, the cartridge mounting portion 110 comprises the engagement
member 145 positioned at an upper portion of the case 101. The engagement member 145
is configured to retain the ink cartridge 30 in the mounted position. The engagement
member 145 is positioned adjacent to the upper end of the opening 112. The engagement
member 145 is positioned between the opening 112 and the contacts 106. Each of the
contacts 106 and the engagement member 145 intersect a plane which is parallel with
the insertion/removal direction 50 and the vertical (gravitational) direction. In
other words, each of the contacts 106 and the engagement member 145 are not offset
in the width direction (left-right direction) 51. Four engagement members 145 are
provided corresponding to the four ink cartridges 30 mountable to the case 101.
[0090] The cartridge mounting portion 110 comprises a shaft 147 positioned adjacent to the
upper end of the opening 112. The shaft 147 is attached to the case 101 and extends
in the direction (width direction or left-right direction 51) perpendicular to the
insertion/removal direction 50. The shaft 147 extends through an end of the engagement
member 145 adjacent to the opening 112, in other words, a rear end of the engagement
member 145 with respect to the insertion direction 56. The engagement member 145 is
supported by the shaft 147, such that the engagement member 145 can pivot about the
shaft 147 selectively toward and away from the inner space of the case 101. The engagement
member 145 comprises an engagement end 146 opposite the end of the engagement member
145 through which the shaft 147 extends. In other words, the engagement end 146 is
positioned at a front end of the engagement member 145 with respect to the insertion
direction 56. The engagement end 146 is configured to contact the stopper 45 of the
ink cartridge 30. By the contact between the engagement end 146 and the engagement
surface 46 of the stopper 45, the ink cartridge 30 is retained in the mounted position
in the case 101 against the biasing force from the slider 135. When the engagement
end 146 contacts the engagement surface 46, the engagement end 146 extends substantially
in the width direction (left-right direction) 51 and the height direction (up-down
direction) 52. The engagement member 145 is configured to move between a lock position
and an unlock position. When the engagement member 145 is in the lock position, the
engagement end 146 can contact the stopper 45. When the engagement member 145 is in
the unlock position, the engagement end 146 cannot contact the stopper 45.
[0091] The engagement member 145 comprises a slide surface 148 extending from the engagement
end 146 toward the shaft 147. When the engagement end 146 contacts the engagement
surface 46, the slide surface 148 extends substantially in the width direction (left-right
direction) 51 and the depth direction (front-rear direction) 53. The slide surface
148 has a width in the width direction (left-right direction) 51, such that the slide
surface 148 contacts and slides on all the HOT electrode 75, the GND electrode 76,
and the signal electrode 77 at the same time when the ink cartridge 30 is inserted
into and/or removed from the cartridge mounting portion 110.
[0092] The engagement member 145 is configured to pivot downward due to its own weight or
biased by a spring (not shown). When the ink cartridge 30 is mounted to the cartridge
mounting portion 110, the engagement end 146 contacting the stopper 45 is positioned
above the front end portion 81 of the pivotable member 80. When the front end portion
81 moves upward and pushes up the engagement end 146, the engagement member 145 pivots
upward about the shaft 147 from the lock position to the unlock position. The movable
range of the engagement member 145 is limited, such that the engagement member 145
does not pivot downward beyond the lock position.
[Mounting of ink cartridge 30 to cartridge mounting portion 110]
[0093] Referring to Figs. 6 to 8, it is described how the ink cartridge 30 is mounted to
the cartridge mounting portion 110. In Figs. 6 to 8, the cartridge mounting portion
110 is depicted in cross-section, but only a top-wall 39 side portion of the main
body 31 and a top-wall 141 side portion of the sub frame 90 is depicted in cross-section.
[0094] As described above, because the sub frame 90 is supported by the top wall 39 of the
front portion of the main body 31 from below, the sub frame 90 is movable in the upward
direction relative to the main body 31 before the ink cartridge 30 is mounted to the
cartridge mounting portion 110. Referring to Fig. 6, when the ink cartridge 30 is
inserted into the cartridge mounting portion 110 in the insertion direction 56, the
guide portions 65, 66, 93, 99 of the ink cartridge 30 are inserted into the grooves
109 of the case 101, and thereby the ink cartridge 30 is roughly positioned relative
to the cartridge mounting portion 110 with respect to the width direction (left-right
direction) 51 and the height direction (up-down direction) 52. The ink cartridge 30
is configured to slide toward the end surface of the case 101 while the guide portions
65, 66, 93, 99 are inserted in the grooves 109.
[0095] Referring to Figs. 6 and 7, when the ink cartridge 30 is inserted into the case 101,
the front end of the first protrusion 85 contacts the slide surface 148 of the engagement
member 145. When the ink cartridge 30 is further inserted, the slide surface 148 climbs
onto the first protrusion 85 and the ramp 49. When this occurs, the engagement member
145 pivots upward in the counterclockwise direction in Fig. 6 from the lock position
to the unlock position. When the ink cartridge 30 is further inserted, the slide surface
148 of the engagement member 145 slides on the ramp 49 and the IC board 74 and passes
over the recess 78. When the slide surface 148 slides on the HOT electrode 75, the
GND electrode 76, and the signal electrode 77, dust is wiped off the HOT electrode
75, the GND electrode 76, and the signal electrode 77.
[0096] Referring to Fig. 1, when the ink cartridge 30 is inserted into the case 101, the
second protrusion 86 contacts the slider 135. When the ink cartridge 30 is further
inserted, the slider 135 is pushed in the insertion direction 56 against the biasing
force from the coil spring 139 into the detection point (optical path) of the optical
sensor 117. When the optical sensor 117 detects the slider 135, the signal output
from the optical sensor 117 to the controller changes from a HI level signal to a
LOW level signal.
[0097] Referring to Fig. 7, after the second protrusion 86 starts to push the slider 135,
the detection portion 89 enters the detection point (optical path) of the optical
sensor 114. When the optical sensor 114 detects the detection portion 89, the signal
output from the optical sensor 114 to the controller changes from a HI level signal
to a LOW level signal.
[0098] Referring to Fig. 7, after the detection portion 89 enters the detection point (optical
path) of the optical sensor 114, the board 88 of the first protrusion 85 enters the
detection point (optical path) of the optical sensor 116. When the optical sensor
116 detects the board 88, the signal output from the optical sensor 116 to the controller
changes from a HI level signal to a LOW level signal. After the detection portion
89 passes the detection point (optical path) of the optical sensor 114, the gap between
the detection portion 89 and the detection portion 33 passes the detection point (optical
path) of the optical sensor 114. When this occurs, the signal output from the optical
sensor 114 to the controller changes from the LOW level signal to the HI level signal.
And then, when the detection portion 33 enters the detection point (optical path)
of the optical sensor 114, the signal output from the optical sensor 114 to the controller
changes from the HI level signal to the LOW level signal if the sensor arm 60 is in
the lower position.
[0099] If the detection portion 89 is longer in the depth direction (front-rear direction)
53 in one type of the ink cartridge 30, the detection portion 89 is still in the detection
point (optical path) of the optical sensor 114 when the board 88 starts to enter the
detection point (optical path) of the optical sensor 116, and therefore, the signal
output from the optical sensor 114 is the LOW level signal at a time that the signal
output from the optical sensor 116 changes from the HI level signal to the LOW level
signal. If the detection portion 89 is shorter in the depth direction (front-rear
direction) 53 in another type of the ink cartridge 30, the detection portion 89 is
no longer in the detection point (optical path) of the optical sensor 114 when the
board 88 starts to enter the detection point (optical path) of the optical sensor
116, and therefore, the signal output from the optical sensor 114 is the HI level
signal at a time that the signal output from the optical sensor 116 changes from the
HI level signal to the LOW level signal. In other words, the board 88 and the detection
portion 89 are configured to provide information as to the type of the ink cartridge
30 by attenuating the light of the optical sensor 116 and the optical sensor 114.
[0100] If the second protrusion 86 is longer in the depth direction (front-rear direction)
53 in one type of the ink cartridge 30, the slider 135 is already in the detection
point (optical path) of the optical sensor 117 when the board 88 starts to enter the
detection point (optical path) of the optical sensor 116, and therefore, the signal
output from the optical sensor 117 is the LOW level signal at a time that the signal
output from the optical sensor 116 changes from the HI level signal to the LOW level
signal. If the second protrusion 86 is shorter in the depth direction (front-rear
direction) 53 in another type of the ink cartridge 30, the slider 135 is not yet in
the detection point (optical path) of the optical sensor 117 when the board 88 starts
to enter the detection point (optical path) of the optical sensor 116, and therefore,
the signal output from the optical sensor 117 is the HI level signal at a time that
the signal output from the optical sensor 116 changes from the HI level signal to
the LOW level signal. In other words, the board 88 and the second protrusion 86 are
configured to provide information as to the type of the ink cartridge 30 by attenuating
the light of the optical sensor 116 and the optical sensor 117.
[0101] Referring to Fig. 7, during the insertion of the ink cartridge 30 into the case 101,
the ink supply portion 34 of the ink cartridge 30 is inserted into the holding portion
121 and the ink pipe 122 is inserted into the ink supply opening 71. When this occurs,
the ink supply portion 34 is positioned relative to the holding portion 121 with respect
to the height direction (up-down direction) 52 by the outer surface of the ink supply
portion 34 contacting the inner surface of the holding portion 121, i.e., the main
body 31 is positioned relative to the cartridge mounting portion 110 with respect
to the height direction (up-down direction) 52. The ink supply valve 70 is pushed
by the ink pipe 122, such that the ink supply opening 71 is opened. The ink pipe 122
has an ink introduction opening formed in the distal end thereof, and ink stored in
the ink chamber 36 flows into the ink pipe 122 via the ink introduction opening in
the insertion direction 56.
[0102] Referring to Fig. 7, during the insertion of the ink cartridge 30 into the case 101,
the rod 125 enters the opening 96 of the sub frame 90. The sub frame 90 is movable
in the upward direction relative to the main body 31. When the rod 125 enters the
opening 96, an upper portion of the outer surface of the rod 125 contact an upper
portion of the inner surface 98 of the sub frame 90 defining the opening 96, and pushes
up the sub frame 90, such that the sub frame 90 slides on the main body 31 in the
upward direction. The sub frame 90 cannot move in the downward direction relative
to the cartridge mounting portion 110 because the upper portion of the outer surface
of the rod 125 contacts the upper portion of the inner surface 98 of the sub frame
90 defining the opening 96 from below. Referring to Fig. 8, the rod 125 contacts and
pushes the air communication valve 73. The air communication valve 73 moves away from
the air communication opening 32, such that air flows into the ink chamber 36 via
the air communication opening 32.
[0103] Meanwhile, referring to Figs, 7 and 8, the contacts 106 contact the ramp 49 of the
sub frame 90. Because the ramp 49 is inclined upward when the contact 106 moves toward
the rear wall 42 of the ink cartridge 30 and because the sub frame 90 cannot move
in the downward direction with the upper portion of the outer surface of the rod 125
contacting the upper portion of the inner surface 98 of the sub frame 90 defining
the opening 96, the contacts 106 are resiliently deformed in the upward direction
when the contacts 106 slides on the ramp 49 and the IC board 74. The resiliently-deformed
contacts 106 bias the IC board 74 in the downward direction. When the contacts 106
reach the IC board 74, the sub frame 90 is positioned relative to the cartridge mounting
portion 110 with respect to the height direction (up-down direction) 52 by the contacts
106 and rod 125 sandwiching the sub frame 90 from above and from below, respectively.
[0104] When the ink cartridge 30 is further inserted toward the end surface of the case
101, referring to Fig. 9, the contacts 106 contact and are electrically connected
to the HOT electrode 75, the GND electrode 76, the signal electrode 77 of the IC board
74, respectively. When the mounting of the ink cartridge 30 reaches the mounted position,
the HOT electrode 75, the GND electrode 76, and the signal electrode 77 still contact
and are electrically connected to the three contacts 106, respectively.
[0105] When the ink cartridge 30 reaches the mounted position, the engagement surface 46
of the stopper 45 of the ink cartridge 30 has passed the engagement end 146 of the
engagement member 145 in the insertion direction 56. The engagement member 145 pivots
in the clockwise direction in Fig. 8 to the lock position, and the engagement end
146 contacts the engagement surface 46. With this contact between the engagement member
145 and the stopper 45, the ink cartridge 30 is retained in the mounted position against
the biasing force from the coil spring 139. In other words, the ink cartridge 30 is
positioned relative to the cartridge mounting portion 110 with respect to the insertion/removal
direction 50. As such, the mounting of the ink cartridge 30 to the cartridge mounting
portion 110 is completed.
[0106] When the ink cartridge 30 is in the mounted position in the cartridge mounting portion
110, the main body 31 is positioned with the ink supply portion 34 inserted into the
holding portion 121 and the ink pipe 122 inserted into the ink supply opening 71,
and the sub frame 90 is positioned sandwiched by the contacts 106 and the rod 125
in a position between the ends of its movable range.
[0107] When the ink cartridge 30 is in the mounted position in the cartridge mounting portion
110, the front end portion 81 of the pivotable member 80 is positioned below the engagement
end 146 of the engagement member 145. The rear end portion 82 of the pivotable member
80 is positioned away from the top wall 39.
[0108] Based on the level of the output signal from the optical sensor 116, whether the
ink cartridge 30 is mounted to the cartridge mounting portion 110 is determined by
the controller. In other words, the board 88 is configured to provide information
as to the presence of the ink cartridge 30 in the cartridge mounting portion 110 by
attenuating the light of the optical sensor 116. Based on the level of the output
signal from the optical sensor 114 and/or based on the level of the output signal
from the optical sensor 117 at the time that the signal output from the optical sensor
116 changes from the HI level signal to the LOW level signal, the type of the ink
cartridge 30 is determined by the controller. In other words, the board 88, and the
detection portion 89 or the second protrusion 86 are configured to provide information
as to the type of the ink cartridge 30 by attenuating the light of the optical sensor
116 and the optical sensor 114 or the optical sensor 117. By periodically checking
the level of the output signal from the optical sensor 114, the amount of ink stored
in the ink chamber 36 is determined by the controller, i.e., whether the ink chamber
36 has the predetermined amount or more of ink stored therein is determined. In other
words, the detection portion 33 is configured to indicate the presence or absence
of ink within the ink chamber 36 by attenuating or not attenuating the light of the
optical sensor 114. Based on the data read out from the IC board 74, the information
of the ink cartridge 30, e.g., the lot number of the ink cartridge 30, the manufacturing
date of the ink cartridge 30, the color of ink stored in the ink cartridge 30, and
etc. is determined.
[0109] In another embodiment, the sub frame 90 may be movable in the downward direction
relative to the main body 31 in the initial position before the ink cartridge 30 is
mounted to the cartridge mounting portion 110. In such a case, the sub frame 90 is
supported by static friction between the end portions 67, 68 of the sub frame 90 and
the inclined outer surfaces 47, 48 of the main body 31. When the ink cartridge 30
is inserted into the case 101 and the rod 125 is inserted into the opening 96 of the
sub frame 90, the outer surface of the rod 125 may not contact the inner surface 98
of the sub frame 90 defining the opening 96 initially. When the ink cartridge 30 is
further inserted, the contacts 106 contacts the ramp 49 and the IC board 74 and pushes
down the sub frame 90, such that the upper portion of the outer surface of the rod
125 contacts the upper portion of the inner surface 98 of the sub frame 90 defining
the opening 96. When the contacts 106 reach the IC board 74, the sub frame 90 is positioned
relative to the cartridge mounting portion 110 with respect to the height direction
(up-down direction) 52 by the contacts 106 and rod 125 sandwiching the sub frame 90
from above and from below, respectively.
[0110] The time profile of the evens which occur during the insertion of the ink cartridge
30 to the cartridge mounting portion 110 is described in more detail here. When the
insertion is started, the slide surface 148 of the engagement portion 145 starts to
slide on the IC board 74. The second protrusion 86 then contacts the slider 135 and
starts to push the slider 135. The detection portion 89 then starts to enter the detection
point (optical path) of the optical sensor 114. The board 88 then starts to enter
the detection point (optical path) of the optical sensor 116. The rod 125 then contacts
the air communication valve 73 and starts to push the air communication valve 73.
The contacts 106 then starts to contact the IC board 74. The gap between the detection
portion 89 and the detection portion 33 then starts to enter the detection point (optical
path) of the optical sensor 114. The ink pike 122 then contacts the ink supply valve
70 and starts to push the ink supply valve 70. The detection portion 33 then starts
to enter the detection point (optical path) of the optical sensor 114. The engagement
end 146 then contacts the engagement surface 46.
[0111] After the mounting of the ink cartridge 30 to the cartridge mounting portion 110
is completed. The printer 10 starts printing. When the ink stored in the ink chamber
36 is used up by the printer 10, the used ink cartridge 30 is removed from the cartridge
mounting portion 110, and a new ink cartridge 30 is mounted to the cartridge mounting
portion 110.
[Removal of ink cartridge 30 from cartridge mounting portion 110]
[0112] When the ink cartridge 30 is intended to be removed from the cartridge mounting portion
110, the rear end portion 82 of the pivotable member 80 is pushed down by a user.
Accordingly, the front end portion 81 of the pivotable member 80 moves up and separates
from the top wall 39. When this occurs, the engagement member 145 is pushed up by
the front end portion 81 of the pivotable member 80, and the engagement end 146 of
the engagement member 145 moves to a position above the engagement surface 46, i.e.,
to a position separated from the engagement surface 46. As such, the engagement member
145 moves from the lock position to the unlock position, and the ink cartridge 30
is released from the state held by the engagement member 145.
[0113] When the engagement end 146 separates away from the engagement surface 46, an external
force applied to the ink cartridge 30 e.g., the biasing force of the coil spring 139
moves the ink cartridge 30 in the removal direction 55. Nevertheless, because a finger
of the user still contacts the pushed-down rear end portion 82 of the pivotable member
80, the ink cartridge 30 moving in the removal direction 55 is stopped by the user.
The biasing force of the coil spring 139 is received by the user's finger via the
pivotable member 80.
[0114] When the user moves his/her finger in the removal direction 55, the ink cartridge
30 moves following the finger, pushed by the slider 135 and the coil spring 139. When
this occurs, the IC board 74 disposed on the sub frame 90 is released from the downward
biasing force of the contacts 106 of the cartridge mounting portion 110. While the
ink cartridge 30 moves in the removal direction 55 following the user's finger, the
slide surface 148 of the engagement member 145 passes over the recess 78 and slides
on the IC board 74 and the ramp 49. When the slide surface 148 slides on the HOT electrode
75, the GND electrode 76, and the signal electrode 77, dust is wiped off the HOT electrode
75, the GND electrode 76, and the signal electrode 77. After sliding on the ramp 49,
the slide surface 148 passes over the groove 87. When this occurs, the dust wiped
off by the slide surface 148 falls into the groove 87. Accordingly, a likelihood that
the dust falls down and adheres to a portion of the ink supply portion 34 surrounding
the ink supply opening 71 is reduced.
[0115] Meanwhile, the outer surface of the rod 125 separates away from the inner surface
98 of the sub frame 90 defining the opening 96, such that the sub frame 90 moves down
relative to the main body 31 to the initial position in which the sub frame 90 is
supported by the upper surface of the front portion of the main body 31. The ink pipe
122 is pulled out of the ink supply portion 34. As such, the ink cartridge 30 is removed
from the cartridge mounting portion 110.
[Advantages]
[0116] In this embodiment, because the ink cartridge 30 comprises the detection portion
89 and the board 88 configured to be detected by the optical sensors 114, 116 independent
of the IC board 74, even if the electrical connection between the IC board 74 and
the contacts 106 fails to be established or the data fails to be read out from the
IC via the signal electrode 77, it can be determined that the ink cartridge 30 is
mounted to the printer 10 based on the information obtained from the detection portion
89 and the board 88. Therefore , the ink cartridge 30 can be used even if the electrical
connection between the IC board 74 and the contacts 106 fails to be established or
the data fails to be read out from the IC via the signal electrode 77.
[0117] In this embodiment, because the light emitted from the optical sensor 114, 116 travels
in the direction (width direction, left-right direction) perpendicular to the insertion
direction 50, the detection portion 89 and the board 88 can enter the detection point
(optical path) of the optical sensor 114, 116 in the insertion direction 50 at desired
timings. Moreover, because the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 are accessible in the downward direction perpendicular to the insertion
direction 50 and the direction in which the light travels, even if the HOT electrode
75, the GND electrode 76, and the signal electrode 77 are accessed by the contacts
106 in the downward direction, such that the ink cartridge 30 moves in the downward
direction, such movement does not affect the timings of the detection portion 89 and
the board 88 entering the detection point (optical path) of the optical sensor 114,
116 in the insertion direction 56. This is because the timings are determined by the
movement of the ink cartridge 30 in the insertion direction 56, and not determined
by the downward movement of the ink cartridge 30. Generally speaking, when events
occur in directions perpendicular to each other, such events can be independent events
and cannot be mutually affected.
[0118] In this embodiment, because the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 are positioned between the front wall 40 and the rear wall 42, the biasing
force from the slider 135 and the coil spring 139 in the removal direction 55 is not
directly received by the HOT electrode 75, the GND electrode 76, and the signal electrode
77. Therefore, a likelihood that excessive load is applied to t the HOT electrode
75, the GND electrode 76, and the signal electrode 77 is reduced. Moreover, a likelihood
that ink leaks from the ink supply portion 34 and the HOT electrode 75, the GND electrode
76, and the signal electrode 77 are contaminated with ink is reduced.
[0119] If the IC board 74 were disposed at the front wall 40 facing the insertion direction
56, the contact between the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 and the contacts 106 might be unstable because the ink cartridge 30 is
biased in the removal direction 55, i.e., a direction that the HOT electrode 75, the
GND electrode 76, and the signal electrode 77 separate away from the contacts 106.
Consequently, in such a case, the deformation range of the contacts 106 and the resiliency
of the contacts 106 would have to be set greater in order to secure the contact between
the HOT electrode 75, the GND electrode 76, and the signal electrode 77 and the contacts
106 even when the HOT electrode 75, the GND electrode 76, and the signal electrode
77 move away from the contacts 106 by the biasing force biasing the ink cartridge
30. Nevertheless, the greater deformation range and greater resiliency of the contacts
106 might apply a great biasing force to the HOT electrode 75, the GND electrode 76,
and the signal electrode 77, i.e., excessive load might be applied to the HOT electrode
75, the GND electrode 76, and the signal electrode 77. Moreover, if the IC board 74
were disposed at the front wall 40, ink which has leaked from the ink supply portion
34 might reach the HOT electrode 75, the GND electrode 76, and the signal electrode
77 and cause shortcircuit between the HOT electrode 75, the GND electrode 76, and
the signal electrode 77.
[0120] In this embodiment, because the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 and the stopper 45 are provided at the same side, e.g., the top-wall
39 side, of the ink cartridge 30, the HOT electrode 75, the GND electrode 76, and
the signal electrode 77 are positioned adjacent to the stopper 45. Because the stopper
45 determines the position of the ink cartridge 30 relative to the cartridge mounting
portion 110 with respect to the insertion/removal direction 50 when the stopper 45
contacts the engagement member 145, the HOT electrode 75, the GND electrode 76, and
the signal electrode 77, which are positioned adjacent to the stopper 45, can be accurately
positioned relative to the contacts 106 with respect to the insertion/removal direction
50.
[0121] In this embodiment, because the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 are positioned more forward than the engagement surface 46 with respect
to the insertion direction 56, and the engagement surface 46 and each of the HOT electrode
75, the GND electrode 76, and the signal electrode 77 intersect the respective plane
which is parallel with the height direction (up-down direction) 52 and the depth direction
(front-rear direction) 53, the engagement member 145 slides on the HOT electrode 75,
the GND electrode 76, and the signal electrode 77during the insertion of the ink cartridge
30 into the cartridge mounting portion 110. Therefore dust on the HOT electrode 75,
the GND electrode 76, and the signal electrode 77 is wiped off and a likelihood that
the electrical connection between the HOT electrode 75, the GND electrode 76, and
the signal electrode 77 and the contacts 106 becomes unstable is reduced.
[0122] In this embodiment, the HOT electrode 75, the GND electrode 76, and the signal electrode
77 are positioned above at least a portion of the engagement surface 46 of the stopper
45. Because the engagement member 145 is configured to pivot downward due to its own
weight or biased by a spring, dust on the HOT electrode 75, the GND electrode 76,
and the signal electrode 77 can be wiped off by the engagement member 145 with stronger
downward force. Moreover, the movable range of the engagement member 145 is limited,
such that the engagement member 145 does not pivot downward beyond the lock position,
if the HOT electrode 75, the GND electrode 76, and the signal electrode 77 were positioned
below the engagement surface 46, the engagement member 145 could not contact the HOT
electrode 75, the GND electrode 76, and the signal electrode 77.. The position of
the HOT electrode 75, the GND electrode 76, and the signal electrode 77 above at least
a portion of the engagement surface 46 thus facilitates the wiping function of the
engagement member 145.
[0123] In this embodiment, because the HOT electrode 75, the GND electrode 76, and the signal
electrode 77 are positioned more rearward than the ink supply opening 71 of the ink
supply portion 34 with respect to the insertion direction 56, even if dust on the
HOT electrode 75, the GND electrode 76, and the signal electrode 77 is wiped off when
the ink cartridge 30 is inserted into and/or removed from the cartridge mounting portion
110, a likelihood that such dust adheres to the portion of the ink supply portion
34 surrounding the ink supply opening 71 is reduced. Therefore, a likelihood that
ink is contaminated by the dust is reduced.
[0124] In this embodiment, because the recess, e.g., groove 87 is positioned more forward
than the HOT electrode 75, the GND electrode 76, and the signal electrode 77 with
respect to the insertion direction 56, the groove 87 and each of the HOT electrode
75, the GND electrode 76, and the signal electrode 77 intersect the respective plane
which is parallel with the height direction (up-down direction) 52 and the depth direction
(front-rear direction) 53, and the HOT electrode 75, the GND electrode 76, and the
signal electrode 77 are positioned above the groove 87, dust wiped off of the HOT
electrode 75, the GND electrode 76, and the signal electrode 77 falls into the groove
87. Accordingly, a likelihood that the dust falls down and adheres to the portion
of the ink supply portion 34 surrounding the ink supply opening 71 is reduced.
[0125] In this embodiment, because the ink supply portion 34 is positioned at the front
wall 40 and the HOT electrode 75, the GND electrode 76, and the signal electrode 77
are positioned at the top wall 39, a likelihood that ink spattered from the ink supply
portion 34 reaches and contaminates the HOT electrode 75, the GND electrode 76, and
the signal electrode 77 is reduced.
[0126] In this embodiment, because the sub frame 90 is movable relative to the main body
31 in the height direction (up-down direction) 52, the sub frame 90 and the main body
31 can be independently positioned relative to the cartridge mounting portion 110
with respect to the height direction (up-down direction) 52. Therefore, elements provided
at the sub frame 90, e.g., the IC board 74, the board 88, and the detection portion
89, and elements provided at the main body 31, e.g., the ink supply portion 34, can
be independently positioned relative to corresponding elements provided at the cartridge
mounting portion 110, e.g., the contacts 106, the optical sensors 114, 116, and the
ink pipe 122.
[0127] Because the ink cartridge 30 is assembled from a plurality of elements, the dimensional
tolerance of each element generally needs to be set small, which requires high accuracy
in designing and manufacturing each element. If the dimensional tolerance of each
element is relatively big, the accumulated dimensional error of the ink cartridge
30 generally becomes big. In such a case, the ink pipe 122 may not be inserted into
the ink supply opening 71 and may contact the distal end of the ink supply portion
34 and be broken, the contacts 106 may contact the IC board 74 with high pressure
and may be broken, on the contrary the contacts 106 may fail to contact the IC board
74, or the board 88 and the detection portion 89 may fail to enter between the light
emitter and the light receiver of the optical sensor 114, 116. In this embodiment,
however, because the sub frame 90 is movable relative to the main body 31, the sub
frame 90 and the main body 31 can be independently positioned relative to the cartridge
mounting portion 110, elements provided at the sub frame 90, e.g., the IC board 74,
the board 88, and the detection portion 89, and elements provided at the main body
31, e.g., the ink supply portion 34, can be independently positioned relative to corresponding
elements provided at the cartridge mounting portion 110, e.g., the contacts 106, the
optical sensors 114, 116, and the ink pipe 122, with moderate dimensional tolerances
of the elements.
[0128] In this embodiment, because the width of each of the HOT electrode 75, the GND electrode
76, and the signal electrode 77 is greater than the width of the board 88, in other
words, the width of the board 88 is less than the width of each of the HOT electrode
75, the GND electrode 76, and the signal electrode 77, the board 88 is suitable for
non-contact detection by the optical sensor 116 while the HOT electrode 75, the GND
electrode 76, and the signal electrode 77 are suitable for physical contact with the
contacts 106.
[0129] In another embodiment, the second protrusion 86 may comprise a rib, which is similar
to the board 88 of the first protrusion 85, and the optical sensor 117 may be configured
to directly detect the rib of the second protrusion 86.
[0130] In another embodiment, the range within which the sub frame 90 moves relative to
the main body 31 may be determined by a known structure, e.g., guide grooves formed
in the main body 31 or the sub frame 90, other than the elongated openings 91, 92
or the detection portion 33 and the support portion 79. Moreover, the movement of
the sub frame 90 may be guided by a known structure, e.g., guide rails formed at the
main body 31 or the sub frame 90, other than the inclined inner surfaces 47, 48.
[0131] In another embodiment, the inner surface 98 of the sub frame 90 defining the opening
96 may not contact the outer surface of the rod 125 to move the sub frame 90 relative
to the main body 31. In such a case, the sub frame 90 may comprise a surface extending
in a direction intersecting the insertion/removal direction 50 at the top face or
the bottom face, and when the ink cartridge 30 is inserted into the cartridge mounting
portion 110, the surface may contact and slide on a protrusion provided in the cartridge
mounting portion 110, such that the sub frame 90 moves relative to the main body 31
[0132] In another embodiment, the cartridge mounting portion 110 may not comprise the slider
135, the coil spring 139, and the optical sensor 117. In such a case, the ink cartridge
30 may be biased in the removal direction 55 by springs coupled to the ink supply
valve 70 and/or the air communication valve 73.
[0133] In another embodiment, the IC may not be disposed on the same board on which the
HOT electrode 75, the GND electrode 75, and the signal electrode 77 are disposed.
For example, the IC may be disposed at or adjacent to the rear wall 42 and may be
wired to the HOT electrode 75, the GND electrode 75, and the signal electrode 77 which
are disposed at or adjacent to the top wall 39.
[0134] In another embodiment, the ink cartridge 30 may not comprise the sub frame 90 and
the detection portion 89, the board 88, and the IC board 74 may be disposed on the
main body 31.
[0135] Referring to Fig. 9, in another embodiment, the width of the ink cartridge 30 in
the width direction (left-right direction) 51 may be greater than the width of the
ink cartridge 30 of Fig. 2, and the guide portions 65, 66, 93, 99 may be offset from
the center of the ink cartridge 30 in the width direction (left-right direction) 51.
The rear wall 42 may comprise a first surface 58 extending in parallel with the front
wall 40 and the front wall 140, and a second surface 59 extending in a direction intersecting
the front wall 40 and the front wall 140. The second surface 59 is contiguous with
the first surface 58 and is inclined, such that a front portion of the second surface
59 is positioned closer to the front wall 40 and the front wall 140 than a rear portion
of the second surface 59 is positioned to the front wall 40 and the front wall 140.
At least a portion of the second surface 59 is positioned closer to the front wall
40 and the front wall 140 than the first surface 58 is positioned to the front wall
40 and the front wall 140.
[0136] While the invention has been described in connection with various example structures
and illustrative embodiments, it will be understood by those skilled in the art that
other variations and modifications of the structures and embodiments described above
may be made without departing from the scope of the invention. Other structures and
embodiments will be understood by those skilled in the art from a consideration of
the specification or practice of the invention disclosed herein. It is intended that
the specification and the described examples are merely illustrative and that the
scope of the invention is defined by the following claims.
[0137] Furthermore, according to an aspect, a printing fluid cartridge 30 is disclosed,
comprising:
a front side;
a rear side positioned opposite the front side with respect to a front-rear direction;
an upper side;
a lower side positioned opposite the upper side with respect to an up-down direction
which is perpendicular to the front-rear direction;
a tubular fluid supply portion 34 positioned at the lower side of the front side;
a pivotable member 80 configured to pivot about a pivot point and comprising an end
portion, wherein the pivot point is positioned at the upper side and the end portion
is positioned at the rear side;
a light attenuating portion 88 protruding from the upper side of the front side and
configured to attenuate light traveling in a left-right direction which is perpendicular
to the front-rear direction and the up-down direction; and
an electrical interface 75, 76, 77 positioned between the pivotable member and the
light attenuating portion with respect to the front-rear direction and comprising
a surface extending in the front-rear direction and the left-right direction,
wherein an upper end of the light attenuating portion is positioned below the electrical
interface with respect to the up-down direction.
[0138] According to a further aspect, the printing fluid cartridge 30 comprises:
a first front wall 40, 140 positioned at the front side; and
a top wall 39, 141 positioned at the upper side.
[0139] According to a further aspect, the printing fluid cartridge 30 comprises:
a main body comprising the first front wall 40; and
a sub frame comprising a second front wall 140 positioned at the front side and facing
the first front wall in the front-rear direction.
[0140] According to a further aspect, a front end of the light attenuating portion is positioned
further away from the rear side than a front end of the fluid supply portion is positioned
away from the rear side with respect to the front-rear direction.
[0141] According to a further aspect, the printing fluid cartridge 30 further comprises
a stopper 45 comprising a surface 46 extending in the up-down direction and the left-right
direction, wherein the pivotable member is positioned in rear of the electrical interface
with respect to the front-rear direction and is configured to pivot about a shaft
extending in the left-right direction, wherein the shaft comprising the pivot point,
wherein the stopper is positioned between the pivotable member and the electrical
interface with respect to the front-rear direction.
[0142] According to a further aspect, the main body further comprises a first guide portion
65 extending in the front-rear direction and comprising a pair of outer surfaces,
wherein each of the first front wall and the first guide portion has a dimension in
the left-right direction, and the dimension of the first guide portion between the
pair of outer surfaces of the first guide portion in the left-right direction is less
than the dimension of the first front wall in the left-right direction, wherein the
main body further comprises a second guide portion 66 extending in the front-rear
direction and comprising a pair of outer surfaces, wherein the second guide portion
has a dimension between the pair of outer surfaces of the second guide portion in
the left-right direction, which is less than the dimension of the first front wall
in the left-right direction, wherein the sub frame comprises a third guide portion
93 and a fourth guide portion 99, each extending in the front-rear direction, wherein
the third guide portion comprises a pair of outer surfaces which is aligned with the
pair of outer surfaces of first guide portion in the front-rear direction and the
fourth guide portion comprises a pair of outer surfaces which is aligned with the
pair of outer surfaces of the second guide portion in the front-rear direction.
[0143] According to a further aspect, the third guide portion comprises a pair of boards
94 defining the pair of outer surfaces of the third guide, respectively, wherein the
electrical interface is positioned between the pair of boards of the third guide portion.
[0144] According to a further aspect, the electrical interface is positioned on an interface
board, and the interface board is attached to the sub frame at attachment position,
wherein each of the pair of boards of the third guide portion comprises a first portion
positioned in line with the attachment position in the left-right direction when viewed
from the up-down direction and a second portion, and an upper end of the first portion
is positioned below an upper end of the second portion.
[0145] According to a further aspect, the second front wall has a circular opening 96 or
a circular recess formed therein below the light attenuating portion with respect
to the up-down direction.
[0146] According to a further aspect, the sub frame comprises a protrusion 86 positioned
at or adjacent to a lower end of the second wall and protruding forward, and the sub
frame has an opening 97 formed therein positioned above the protrusion with respect
to the up-down direction, wherein the fluid supply portion is configured to pass through
the opening of the sub frame.
[0147] According to a further aspect, the printing fluid cartridge 30 further comprises:
a fluid chamber 36 configured to store printing fluid therein;
a protruding portion 33 positioned at a middle portion of the front side with respect
to the up-down direction and protruding forward, wherein the protruding portion has
an inner space formed therein, and the inner space is in fluid communication with
fluid chamber.
[0148] According to a further aspect, the printing fluid cartridge 30 further comprises
a further light attenuating portion 89 positioned away from and in front of the protruding
portion with respect to the front-rear direction.
[0149] According to a further aspect, the main body comprises a first resin configured to
allow light traveling in the left-right direction to pass therethrough, and the sub
frame comprises a second resin configured to prevent light traveling in the left-right
direction from passing therethrough.
[0150] According to a further aspect, the sub frame is configured to move relative to the
main body in the up-down direction.
[0151] According to a further aspect, the sub frame is configured not to move relative to
the main body in the left-right direction.
[0152] According to a further aspect, the printing fluid cartridge 30 further comprises:
a rear wall 42 positioned at the rear side and away from the first front wall in the
front-rear direction; and
a fluid chamber 36 configured to store printing fluid therein,
wherein the fluid supply portion is positioned at the first front wall and configured
to establish communication between an interior and an exterior of the fluid chamber,
the rear wall comprises a first surface 58 extending in parallel with the first front
wall and a second surface 59 extending in a direction intersecting the first front
wall, and at least a portion of the second surface is positioned closer to the first
front wall than the first surface is positioned to the first front wall.