BACKGROUND
[0001] Depending upon the application, dual band or dual polarization concentric feeds are
advantageous in illuminating lens or reflector antennas. For these types of antennas,
concentric feeds are used so the system focal point is shared by both of the frequency
bands or both of the polarizations. For high performance, the inner-conductive tube
and the outer-conductive tube that make up the concentric feed require good electrical
connection (electrical short) to each other in the region near the base of the feed.
At high frequencies, where the feed parts are small, this important electrical connection
is difficult to achieve in a consistent manner. If the electrical connection is not
robust and repeatable, from a manufacturing standpoint, then the feed will have poor
return loss resulting in increased mismatch loss and reduced antenna gain.
[0002] Patent document number
US2011/037534A1 describes an ortho-mode transducer may include an annular common waveguide defined
by an outside surface of an inner conductor and an inside surface of an outer conductor,
the outside surface and the inside surface concentric about a waveguide axis. A first
port may couple a first TE11 mode to the annular common waveguide. A second port may
couple a second TE11 mode to the annular common waveguide, the second TE11 mode orthogonal
to the first TE11 mode. A TEM probe may suppress resonance of a TEM mode within the
annular common waveguide.
[0003] Patent document number
US2009/284327A1 describes a feed network including a circular common waveguide having an axis and
terminating in a common port and a first port for coupling a first linearly polarized
mode to the circular common waveguide. A phase shifting element may be disposed within
the circular waveguide. The phase shifting element may be adapted to cause a predetermined
phase shift between a first signal and a second signal propagating in the common waveguide.
The phase shifting element may be rotatable about the axis of the common waveguide.
SUMMARY
[0004] The present invention in its various aspects is as set out in the appended claims.
The present application relates to a concentric feed. The concentric feed includes
an outer-conductive tube electrically connected at a base of an inner-conductive tube
to an outer-conductive tube by a process comprising the steps of: configuring the
outer-conductive tube; configuring the inner-conductive tube; and positioning the
outer-conductive tube to contact the inner-conductive tube at the base wherein the
outer-conductive tube and the inner-conductive tube are co-aligned to the central
axis. The outer-conductive tube is configured to include: a side-port; a first-edge
surface; a first-interior surface sharing an edge with and perpendicular to the first-edge
surface; a second-edge surface; and a second-interior surface sharing an edge with
and perpendicular to the second-edge surface. The inner-conductive tube is configured
to include: the base at a base-end of the inner-conductive tube, the base including
a first lip and a second lip protruding orthogonal to a first surface and a second
surface, respectively, and a central-port centered on the central axis and parallel
to the central axis; and a main-body extending in the axial direction from the base.
DRAWINGS
[0005]
Figures 1A and 1B are opposing oblique views of a concentric feed in accordance with
an example of the present application;
Figure 2 is a view of an inner-conductive tube of the concentric feed of Figures 1A
and 1B;
Figures 3A and 3B are views of an outer-conductive tube of the concentric feed of
Figures 1A and 1B;
Figure 4 is an exploded view of the interface between the inner-conductive tube and
the outer-conductive tube of the concentric feed of Figures 1A and 1B;
Figure 5 is a top view of the concentric feed of Figures 1A and 1B;
Figure 6 is a cross-sectional view of the concentric feed of Figure 5;
Figure 7 is a flow diagram of a method to form a concentric feed in accordance with
the present application;
Figure 8 is an exploded view of the interface between the inner-conductive tube and
the outer-conductive tube of an embodiment of a concentric feed in accordance with
an embodiment of the present application;
Figure 9 is an exploded view of the interface between the inner-conductive tube and
the outer-conductive tube of an embodiment of a concentric feed in accordance with
an embodiment of the present application;
Figures 10A and 10B are opposing oblique views of a concentric feed in accordance
with an embodiment of the present application;
Figures 11 and 12 are views of an inner-conductive tube of the concentric feed of
Figures 10A and 10B;
Figures 13 and 14 are views of an outer-conductive tube of the concentric feed of
Figures 10A and 10B;
Figure 15 is an exploded view of the interface between the inner-conductive tube and
the outer-conductive tube of the concentric feed of Figures 10A and 10B;
Figure 16 is a view of the outer-conductive tube being mated with the inner-conductive
tube to form the concentric feed of Figures 10A and 10B;
Figure 17 is an exploded view of the components of the concentric feed of Figures
10A and 10B;
Figure 18 is a top view of the concentric feed of Figures 10A and 10B;
Figure 19 is a cross-sectional view of the concentric feed of Figure 18; and
Figure 20 is a view of a dual-band switch tree with a plurality of the concentric
feed of Figures 10A and 10B.
[0006] In accordance with common practice, the various described features are not drawn
to scale but are drawn to emphasize features relevant to the present invention. Like
reference characters denote like elements throughout figures and text.
DETAILED DESCRIPTION
[0007] In the following detailed description, reference is made to the accompanying drawings
that form a part hereof, and in which is shown by way of illustration specific illustrative
embodiments in which the invention may be practiced. These embodiments are described
in sufficient detail to enable those skilled in the art to practice the invention,
and it is to be understood that other embodiments may be utilized and that logical,
mechanical and electrical changes may be made without departing from the scope of
the present invention. The following detailed description is, therefore, not to be
taken in a limiting sense.
[0008] This application describes various geometries and connection methods required to
achieve consistently high performance in dual band and/or dual polarization concentric
feeds. The concentric feeds are made up of inner and outer-conductive tubes that are
axially aligned and are thus also referred to in the art as "coaxial feeds". Often
dual band and/or dual polarization concentric feeds are designed for the radio frequency
(RF) spectral range. In that case, the concentric feeds are referred to as concentric
RF feeds.
[0009] A concentric feed includes two conductors: an inner-conductive tube and outer-conductive
tube, which are formed from metal or metal alloys. One electromagnetic wave propagates
within the circular waveguide inside the inner tube. A second electromagnetic wave
propagates within the coaxial waveguide formed and bounded by the outer surface of
the inner conductor and the inner surface of the outer conductor. The coaxial waveguide
requires an electrically-conductive connection between the inner-conductive tube and
outer-conductive tube at the base of the concentric feed that is consistently the
same. If the manufacturing process to conductively attach the inner-conductive tube
to the outer-conductive tube is not repeatable, the impedance matching of the coaxial
portion of the concentric feed is not consistently the same. For example, air gaps
at the connection point between the inner and outer-conductive tubes change the impedance
and the concentric feed has a poor return loss. If the manufacturing of the connection
of the concentric feeds is not robust or repeatable, the resultant antenna gains are
not optimum. The embodiments of concentric RF feeds described herein reduce or eliminate
the variations between multiple concentric feeds used to create a multi-beam antenna.
It is understood that the area of concern for the electrical connection in this application
is the coaxial region of the concentric feed. In that case, concentric feeds are coaxial
regions of the concentric feeds.
[0010] Examples shown in Figures 1A-6. Figures 1A and 1B are opposing oblique views of a
concentric feed 100 in accordance with an example of the present application. Figure
2 is a view of an inner-conductive tube 110 of the concentric feed 100 of Figures
1A and 1B. Figures 3A and 3B are views of an outer-conductive tube 120 of the concentric
feed of Figures 1A and 1B. Figure 4 is an example of an exploded view of the interface
between the inner-conductive tube 110 and the outer-conductive tube 120 of the concentric
feed 100 of Figures 1A and 1B. Figure 5 is a top view of the concentric feed 100 of
Figures 1A and 1B. Figure 6 is a cross-sectional view of the concentric feed of Figure
5. The plane upon which the cross-section view of Figure 6 is taken is indicated by
section line 6-6 in Figure 5. Figure 7 is a flow diagram of a method 700 to form a
concentric feed 100 in accordance with the present application. The "outer-conductive
tube" is also referred to herein as "outer tube". The "inner-conductive tube" is also
referred to herein as "inner tube".
[0011] The concentric feed 100 includes an outer-conductive tube 120 (Figures 3A and 3B)
and an inner-conductive tube 110 (Figure 2). As shown in Figures 3B and 4, the outer-conductive
tube 120 includes a side-port 121, a first-edge surface 123, a first-interior surface
133, a second-edge surface 124, a second-interior surface 134, a third-edge surface
125, and a third-interior surface 135. The first-interior surface 133 shares an edge
143 with the first-edge surface 123 and is perpendicular to the first-edge surface
123. The second-interior surface 134 shares an edge 144 with the second-edge surface
124 and is perpendicular to the second-edge surface 124. The third-interior surface
135 shares an edge 145 (Figure 3B) with the third-edge surface 125 and is perpendicular
to the third-edge surface 125.
[0012] The inner-conductive tube 110 includes a base 115 at a base-end 102 (Figures 1A,
1B, and 2) of the inner-conductive tube 110 and a main-body 117 extending in the axial
direction from the base 115. The base 115 includes a first lip 141 that protrudes
orthogonal to a first surface 151 (Figures 2 and 4). The base 115 includes a second
lip 142 that protrudes orthogonal to a second surface 152 (Figures 2 and 4). The base
115 also include a third lip 147 that protrudes orthogonal to a third surface 153
(Figures 2). As defined herein, a lip is a projecting edge or rim protruding from
a surface. The base 115 also includes a central-port 111 (Figures 1A and 4) centered
on a central axis 105 that is aligned in the +Z direction. The axial direction is
aligned to the central axis 105. The base 115 and the main-body 117 are formed from
metal or metal alloys. As shown in Figures 4, 5, and 6, the protuberance 118 is positioned
adjacent to the side-port 121 and does not protrude into side-port 121. The shape
of the protuberance 118 is designed to improve the impedance matching of port 121.
[0013] The outer-conductive tube 120 is electrically connected to the base 115 of the inner-conductive
tube 110 at all the points of contact between them as shown in the cross-sectional
view of the concentric feed 100 of Figure 6. The most critical area for the two tubes
to be joined is indicated by dashed circle 176 (Figures 4 and 6). This area 176 of
the concentric feed 100, which is only shown in cross-section in Figures 4 and 6,
is opposite the side-port 121. It is to be noted that the critical area 176 extends
along the half diameter of the cylinders outer-conductive tube 120 and the inner-conductive
tube 110. Figure 4 shows an enlarged, exploded cross section view of the area 176
of the concentric feed 100 and the side-port 121. Figure 4 is an exploded view in
order to clearly show the various surfaces of the outer-conductive tube 120 and the
inner-conductive tube 110.
[0014] The surface 154 shown in Figure 4 is often called the "short" since, in the absence
of gaps in the critical region 176, it presents a short circuit between the inner
conductor main body 117 and the outer conductor 120. This surface 154 being a good
conductor causes the electric field on its surface and tangential to it to be zero
(or nearly zero). Thus, the x and y components of electric field on the surface 154
(Figures 2 and 4) are zero. Note that the shorting surface 154 covers a bottom half
of the base region 115 of the inner tube 110 and is opposite the protuberance 118
as shown in Figure 2. The location of the short 154 in the z direction and the dimensions
of the protuberance 118 are optimized to provide the best impedance match looking
into port 121. This is typically done using commercial full-wave electromagnetic computer
simulation software such as Ansys HFSS ™ (High Frequency Structure Simulator) or CST
(Computer Simulation Technology) Microwave Studio ®.
[0015] As shown in Figures 4 and 6, dielectric material 106 is (optionally) positioned within
the inner-conductive tube 110.
[0016] The side-port 121 spans a surface in an X-Z plane (Figures 1A, 5, and 6). The central-port
111 spans an X-Y plane orthogonal to the central axis 105 (Figure 1A, 5, and 6). Electro-magnetic
waves that propagate into the concentric feed 100 via the central-port 111 propagate
generally in the Z direction parallel to the central axis 105 within inner-conductive
tube 110. Electro-magnetic waves that propagate into the concentric feed 100 via the
side-port 121 first propagate generally in the Y direction to couple into the outer-conductive
tube 120 for propagation in the Z direction within the space between the inner-conductive
tube 110 and the outer-conductive tube 120. In one implementation of this embodiment,
energy in a first frequency range (or at a first polarization) is coupled to the side-port
121 of the concentric feed 100 to propagate through the coaxial region of the concentric
feed 100. In this case, the energy in a second frequency range (or at a second polarization
that is orthogonal to the first polarization) is coupled to the central-port 111 to
propagate through the center of the concentric feed 100.
[0017] The concentric feed 100 is manufactured according to the flow diagram shown in Figure
7. At block 702, the outer-conductive tube 120 is configured to include the side-port
21, the first-edge surface 123, the first-interior surface 133 that shares an edge
143 with and perpendicular to the first-edge surface 123, the second-edge surface
124, the second-interior surface 134 (Figure 4) that shares an edge 144 with and is
perpendicular to the second-edge surface 124. For the examples shown in Figures 1A-6,
at block 702, the outer-conductive tube 120 is also configured to include a third-edge
surface 125, and a third-interior surface 135 that shares an edge 145 (Figure 3B)
with and is perpendicular to the third-edge surface 125. In one implementation of
this embodiment, the outer-conductive tube 120 is machined from an aluminum tube or
block.
[0018] At block 704, the inner-conductive tube 110 is configured to include the base 115
and the main-body 117 extending in the axial direction from the base 115. The base
115 is at a base-end 102 of the inner-conductive tube 110 and is formed to include
the central-port 111 centered on the central axis 105 the base 111. Specifically,
the base 115 is formed with a first lip 141 and a second lip 142 protruding orthogonal
to a first surface 151 and a second surface 152, respectively. For the examples shown
in Figures 1A-6, at block 702, the base 115 of the inner-conductive tube 110 is also
configured to include a third lip 147 protruding orthogonal to a third surface 153.
A dielectric material 106 is optionally positioned within the inner-conductive tube
110 either after the inner-conductive tube 110 is machined or after the inner-conductive
tube 110 is attached to the outer-conductive tube 120.
[0019] The base 115 and the main-body 117 are formed from metal. In one implementation of
this embodiment, the base 115 and the main-body 117 are machined from a single tube
or block of metal. In one implementation of this embodiment, the base 115 and the
main-body 117 are machined from two separate tubes or blocks and then the base 115
and the main-body 117 are attached to each other by welding.
[0020] At block 706, the outer-conductive tube 120 is positioned to contact the inner-conductive
tube 110 at the base 115 so the outer-conductive tube 120 and the inner-conductive
tube 110 are co-aligned to the central axis 105. As is shown in Figure 3B, the second-edge
surface 124 and the third-edge surface 125 form a cut-out region represented generally
at 122 of a cylinder from which the outer-conductive tube 120 is formed. The seams
175 between outer-conductive tube 120 and the inner-conductive tube 110 (Figures 1A
and 1B) clearly show that the base 115 of the inner-conductive tube 110 conforms to
the cut-out region 122 in the outer-conductive tube 120.
[0021] The outer-conductive tube 120 is positioned to interlock with the inner-conductive
tube 110, shown in Figures 1A, 1B, and 4-6. The first-edge surface 123 of the outer-conductive
tube 120 is adjacent to the first surface 151 of the base, the second-edge surface
124 of the outer-conductive tube 120 is adjacent to the second surface 152 of the
base, and the third-edge surface 125 of the outer-conductive tube 120 is adjacent
to the third surface 153 of the base 115. The first-interior surface 133 is positioned
adjacent to the first lip 141, the second-interior surface 134 is positioned adjacent
to the second lip 142, and the third-interior surface 135 is positioned adjacent to
the third lip 147. As defined herein, two adjacent surfaces are either touching (at
least in part) or have a small gap between them.
[0022] In one embodiment of the concentric feed 100, the component parts are machined to
meet tolerances such that the outer tube 120 will slide over the inner tube 110 into
the interlocking positions described above. This situation is known to those skilled
in the art of machining as a "slip fit". In this embodiment, in order for the outer-conductive
tube 120 to slip fit with the inner-conductive tube 110, the inner tube tolerances
and outer tube tolerances are defined such that there is guaranteed physical contact,
and hence electrical contact, of the second-edge surface 124 of the outer tube 120
and the second surface 152 of the inner tube 110. Due to tolerances, the remaining
outer tube edge surfaces 123 and 125 are in very close proximity to but are not necessarily
electrically contacting their respective corresponding inner tube surfaces 151 and
153. The interior surfaces 133, 134, 135 of the outer tube 120 are in very close proximity
to the respective inner tube lip surfaces 141, 142, 147 such that there are areas
with unpredictable gaps and areas of unpredictable physical contact. However, since
these areas and gaps are small compared to the wavelength of the signal of interest,
they do not degrade the performance of the concentric feed 100. Additionally, the
connection of the second-edge surface 124 of the outer-conductive tube 120 and the
second surface 152 of the inner tube 110 appears, from the viewpoint of the electromagnetic
fields, as continuous metal. This configuration results in a good impedance match
looking into port 121.
[0023] In another embodiment of the concentric feed 100, the dimensions of the interior
surfaces 133, 134, 135 of the outer tube 120 are slightly oversized relative to those
of the respective inner tube lip surfaces 141, 142, 147. In this embodiment, there
exists an interference fit, also known as a press fit or friction fit, when the parts
are connected since the inner tube 110 slightly interferes with the space occupied
by the outer tube 120. A non-trivial force is required to press the outer tube 120
over the inner tube 110. In this case, the outer-conductive tube 120 is fixedly attached
to the inner-conductive tube 110 when the outer-conductive tube 120 contacts the inner-conductive
tube 110. The interior surfaces 133, 134, 135 of the outer tube 120 and the respective
inner tube lip surfaces 141, 142, 147 are effectively merged and these areas appear
from the viewpoint of the electromagnetic fields as continuous metal.
[0024] In another implementation of this embodiment, after slip fitting as described above,
the outer-conductive tube 120 is laser welded to the inner-conductive tube 110 in
order to fixedly attach the outer-conductive tube 120 to the inner-conductive tube
110. In such an embodiment, the laser welding is done at the seams 175 shown in Figures
1A and 1B to fuse the metals together so there are no gaps along the outside surfaces
of the concentric feed 100. Laser welding works very well as a technique for connecting
the inner-conductive tube 110 to the outer-conductive tube 120. The resulting bond
is excellent from an RF standpoint and also creates a solid mechanical connection.
However, laser welding can potentially create large gaps and holes (also referred
to as "blow outs") in the areas desired to be joined if there is no metal below the
seam. The configuration of the concentric feed 100 is advantageous for laser welding
since the first, second, and third lips 141, 142, and 143 provide a ledge that acts
as a backing for the laser weld seam 175 and eliminate the possibility for blow-outs.
[0025] Since the laser welding process is very precise and is mechanically repeatable, the
concentric feed 100 can be manufactured for good, repeatable RF performance. As is
known to one skilled in the art of laser welding, dissimilar metal alloys are desired
for good laser welds. The inner-conductive tube 110 and the outer-conductive tube
120 are formed from different metal alloys when laser welding is used to fixedly attach
the inner-conductive tube 110 to the outer-conductive tube 120. In one implementation
of this embodiment, the inner-conductive tube 110 is formed from aluminum alloy 6061
and the outer-conductive tube 120 is formed from aluminum alloy 4047.
[0026] Figure 8 is an exploded view of the interface between the inner-conductive tube 110'
and the outer-conductive tube 120 of an embodiment of a concentric feed 200 in accordance
with an embodiment of the present application. The concentric feed 200 differs from
the concentric feed 100 in that a groove 451 is formed in the second lip 142 of the
inner-conductive tube 110' and an electrically conductive gasket 450 is inserted in
the groove 451. The inner-conductive tube 220 is the same in structure and function
as the inner-conductive tube 120 in the concentric feed 100. In this embodiment shown
in Figure 8, when the outer-conductive tube 120 is positioned to contact the inner-conductive
tube 110', the second-interior surface 134 is positioned adjacent to the second lip
142 to contact the electrically conductive gasket 450 in the groove 451 to the second-interior
surface 134. Thus, even if there is a gap between the second-interior surface 134
and the second lip 142, the electrically conductive gasket 450 provides the electrical
contact (electrical short) between the second-interior surface 134 and the second
lip 142 at the critical area 176 (Figures 4 and 6) of the concentric feed 200 opposite
the side-port 121.
[0027] The electrically conductive gasket 450 is formed from an elastomer or other polymers
infused with microscopic silver particles (or other metal particles) to make the elastomer
or other polymer material electrically conductive. The electrically conductive gasket
450 is also referred to herein as an elastomeric gasket 450", an "RF gasket 450",
and a "gasket 450". The conductive elastomeric gasket 450 is not visible from the
outside of the concentric feed 200 when the concentric feed 200 is assembled. A conductive
elastomeric gasket is commercially available from Parker Hannifin Corporation's Chomerics
Division or Laird Technologies, Inc. The conductive elastomeric gaskets described
in this patent application are used in a different function from prior art applications,
which use these gaskets to reduce EMI (electromagnetic interference) in metal enclosures
of electronic parts.
[0028] The concentric feed 200 requires a few additional steps in manufacturing in addition
to the steps shown in method 700 of Figure 7. A trough or groove 451, as shown in
Figure 8, is cut into at least a portion of the second lip 142 of the base 115' of
the inner-conductive tube 110'. Then the electrically conductive gasket 450 is inserted
into the groove 451. The outer-conductive tube 120 slides over the inner-conductive
tube 110' with the gasket 450 in place.
[0029] Figure 9 is an exploded view of the interface between the inner-conductive tube 110
and the outer-conductive tube 120 of an embodiment of a concentric feed 300 in accordance
with an embodiment of the present application. The concentric feed 300 differs from
the concentric feed 100 in that an electrically conductive gasket 450 is inserted
between the second surface 152 of the inner-conductive tube 110 and the second-edge
surface 124 of the outer-conductive tube 120. The second-edge surface 124 of the outer-conductive
tube 120 electrically contacts the second surface 152 of the base 115 via the electrically
conductive gasket 450.
[0030] In one implementation of this embodiment, the inner-conductive tube 110 and the outer-conductive
tube 120 are the same as in the concentric feed 100. In another implementation of
this embodiment, the length of the cut-out region 122 in the outer-conductive tube
120 (shown in Figure 3B) is slightly longer to offset for the additional thickness
of the electrically conductive gasket 450 that is inserted between the second surface
152 of the inner-conductive tube 110 and the second-edge surface 124 of the outer-conductive
tube 120. In this embodiment, the conductive elastomeric gasket 450 is visible from
the outside of the concentric feed 300 when the concentric feed 300 is assembled.
[0031] The concentric feed 300 requires an additional step in manufacturing in addition
to the steps shown in Figure 7. Prior to completing the contact between the outer-conductive
tube 120 and the inner-conductive tube 110 (at block 706), as the outer-conductive
tube 120 slides over the inner-conductive tube 110, the electrically conductive gasket
450 is positioned in the corner formed by the second lip 142 and the second surface
152 of the inner-conductive tube 110.
[0032] In other embodiments of concentric feeds, the cut-out region 122 in the outer-conductive
tube 120 (shown in Figure 3B) is reduced to a relatively small tab and the base of
the inner-conductive tube is shaped with a mating indent to accept the tab. The tab
and indent are for the purpose of aligning the inner-conductive tube and outer-conductive
tube. An example of this embodiment is shown in Figures 10A-19.
[0033] Figures 10A and 10B are opposing oblique views of a concentric feed 600 in accordance
with an embodiment of the present application. Figures 11 and 12 are views of an inner-conductive
tube 610 of the concentric feed 600 of Figures 10A and 10B. Figures 13 and 14 are
views of an outer-conductive tube 620 of the concentric feed 600 of Figures 10A and
10B. Figure 15 is an exploded view of the interface between the inner-conductive tube
610 and the outer-conductive tube 620 of the concentric feed 600 of Figures 10A and
10B. Figure 16 is a view of the outer-conductive tube 620 being mated with the inner-conductive
tube 610 to form the concentric feed 600 of Figures 10A and 10B. Figure 17 is an exploded
view of the components 610, 620, 106, and 606 of the concentric feed 600 of Figures
10A and 10B. Figure 18 is a top view of the concentric feed 600 of Figures 10A and
10B. Figure 19 is a cross-sectional view of the concentric feed 600 of Figure 18.
The concentric feed 600 has the same function as the concentric feeds 100, 200, and
300 described above.
[0034] The concentric feed 600 includes an inner-conductive tube 610 that is electrically
shorted to an outer-conductive tube 620. As shown in Figure 11, the inner-conductive
tube 610 includes a central-port 611 that is similar in structure and function to
the central port 111 of the concentric feed 100. As shown in Figures 13 and 14, the
outer-conductive tube 620 includes a side-port 621 that is similar in structure and
function to the side-port 621 of the concentric feed 100.
[0035] An indent 628 is formed in the base 615 (Figure 11) of the inner-conductive tube
610. In this embodiment, the first lip 641 is an interior surface 641 (Figure 15)
of the indent 628 and the first surface 651 is a flat-external-base surface 651 (Figures
11 and 15) in which the central-port 611 is formed. A groove 451 (Figure 11, 12, and
15) is formed in the base 615. The base 615 includes a protuberance 618 and is designed
to improve the impedance matching between the outer-conductive tube 620 and the inner-conductive
tube 610. Aside from the indent 628 and the groove 451, the base 615 is similar in
structure to the base 115 of the above referenced embodiments of the concentric feeds
100 and 300. Aside from the indent 628, the base 615 is similar in structure to the
base 115' of the embodiment of the concentric feed 200 shown in Figure 8.
[0036] The outer-conductive tube 620 includes a tab 627 as shown in Figures 13, 14, and
16, which is relatively small in dimension along the Z direction. Thus, the cut-out
122 of the outer-conductive tube 120 is reduced in size to the length of the tab 627
along the axial direction.
[0037] In this embodiment, an electrically conductive gasket 450 is inserted in the groove
451 of the base 615. When the outer-conductive tube 620 is positioned to contact the
inner-conductive tube 610, the tab 627 fits into the indent 628. The first-interior
surface 633 (Figure 15) of the outer-conductive tube 620 is positioned adjacent to
the interior surface 641 (Figure 15) of the indent 628 in the base 615. The second-edge
surface 624 of the outer-conductive tube 620 contacts the second surface 652 of the
base 615. The second-interior surface 634 is positioned adjacent to the second lip
642 to contact the electrically conductive gasket 450 in the groove 451. The second
lip 642 is an extended version of the lip 142 shown in Figure 4.
[0038] The component 606 (Figure 17) is a dielectric plug 606 positioned at the radiating
end of the concentric feed 600. The radiating end opposes the base end 602 (Figures
10A, 10B, 11, 12, 15, and 17) of the concentric feed 600. The dielectric plug 606
positioned at the radiating end of the concentric feed 600 functions to maintain the
concentricity of the concentric feed 600 and to provide a seal from the external environment,
if necessary. Without the dielectric plug 606, the inner-conductive tube 610 and outer-conductive
tube 620 would almost touch at the radiating end, since the RF gasket 450 exerts a
force that tips the inner-conductive tube 110 off center. Thus, the dielectric plug
606 would be useful in the embodiment of the concentric feed 200 shown in Figure 8.
In some antenna feed designs, it is preferable to delete the dielectric plug 606.
In those antenna feeds, laser welding a slip-fit assembly or applying an interference
fit is necessary to maintain concentricity of the tubes.
[0039] The concentric feed 600 requires a few additional steps in manufacturing in addition
to the steps shown in method 700 of Figure 7. An indent 628 is formed in the base
615 and a groove 451 is formed in the base 615 as part of configuring the inner-conductive
tube 610. In this case, the first lip 641 is an interior surface 641 of the indent
628 and the first surface 651 is a flat-external-base 615 surface 651 in which the
central-port 611 is formed.
[0040] Before the outer-conductive tube 620 is positioned to contact the inner-conductive
tube 610, the electrically conductive gasket 450 is inserted in the groove 451. When
the outer-conductive tube 620 is positioned to contact the inner-conductive tube 610
(as in block 706 of Figure 7), the second-interior surface 634 is positioned adjacent
to the second lip 642 to contact the electrically conductive gasket 450 in the groove
451 to the second-interior surface 634. This connection ensures the connected region,
from the viewpoint of the electromagnetic fields, is a continuous metal piece so there
is no impedance mismatch of port 621 caused by the critical area 176 shown in Figures
15 of the concentric feed 600 opposite the side-port 621.
[0041] The embodiments of concentric feeds described herein are used to guide electromagnetic
fields coupled to the outer-conductive tube 120 (620) and the inner-conductive tube
110 (610). The electromagnetic fields in a first frequency band are coupled via a
central-port 111 (611), in the base 115 (615), to propagate through the circular waveguide
within the inner-conductive tube 110 (610) along the central axis 105. The electromagnetic
fields in a second frequency band are coupled via a side-port 121 (621) perpendicular
to the central axis 105 to propagate in the +Z direction through the coaxial waveguide
formed by the interior of the outer-conductive tube 120 (620) and exterior of the
inner-conductive tube 110 (610).
[0042] Alternatively, both the circular waveguide and coaxial waveguide could be used for
signals within the same frequency band, but having orthogonal polarizations. For example,
the circular waveguide could be used to propagate a vertical polarization, while the
coaxial waveguide could be used for a horizontal polarization. Although their description
is beyond the scope of this patent application, polarizers could be included within
the concentric feed. In that case, one polarization could be right hand circular polarization
(RHCP) and the other could be left hand circular polarization (LHCP).
[0043] A dual-band concentric antenna feed 100, 200, 300, or 600 is configured to interface
with the dual-band switch tree 50 as shown in Figure 20. Figure 20 is a view of a
dual-band switch tree 50 with a plurality of the concentric feed 600(1-5) of Figures
10A and 10B. As shown in Figure 20, the concentric feed 600-3 is positioned to be
inserted into port 51-3 of the dual-band switch tree 50 and the concentric feeds 600-1,
600-2, 600-4, and 600-5 are operationally positioned in the ports 50-1, 50-2, 50-4,
and 50-5, respectively, of the dual-band switch tree 50. In other embodiments, the
multiple switch trees 50 are loaded with multiple concentric feeds 100, 200 or 300
to create a multi-beam antenna as known in the art. The plurality of concentric feeds
100, 200, 300, or 600 in the multiple switch tree 50 operate to feed a lens, which
in turn radiates power in desired directions for communications.
Example embodiments
[0044] Example 1 includes a concentric feed including an outer-conductive tube electrically
connected at a base of an inner-conductive tube to an outer-conductive tube by a process
comprising the steps of: configuring the outer-conductive tube to include: a side-port;
a first-edge surface; a first-interior surface sharing an edge with and perpendicular
to the first-edge surface; a second-edge surface; and a second-interior surface sharing
an edge with and perpendicular to the second-edge surface; configuring the inner-conductive
tube to include: the base at a base-end of the inner-conductive tube, the base including
a first lip and a second lip protruding orthogonal to a first surface and a second
surface, respectively, and a central-port centered on the central axis and parallel
to the central axis; and a main-body extending in the axial direction from the base;
and positioning the outer-conductive tube to contact the inner-conductive tube at
the base wherein the outer-conductive tube and the inner-conductive tube are co-aligned
to the central axis.
[0045] Example 2 includes the concentric feed of Example 1, the process further comprising
the steps of: configuring the outer-conductive tube to further include: a third-edge
surface; and a third-interior surface sharing an edge with and perpendicular to the
third-edge surface; configuring the inner-conductive tube to further include a third
lip on the base protruding orthogonal to a third surface.
[0046] Example 3 includes the concentric feed of Example 2, the process further comprising
the steps of: forming a groove in the second lip; and inserting an electrically conductive
gasket in the groove, wherein the process of positioning the outer-conductive tube
to contact the inner-conductive tube comprises: contacting the first-edge surface
of the outer-conductive tube to the first surface of the base; positioning the first-interior
surface adjacent to the first lip; contacting the second-edge surface of the outer-conductive
tube to the second surface of the base; positioning the second-interior surface adjacent
to the second lip to contact the electrically conductive gasket in the groove to the
second-interior surface; contacting the third-edge surface of the outer-conductive
tube to the third surface of the base; and positioning the third-interior surface
adjacent to the third lip.
[0047] Example 4 includes the concentric feed of any of Examples 2-3, wherein the process
of positioning the outer-conductive tube to contact the inner-conductive tube comprises:
contacting the first-edge surface of the outer-conductive tube to the first surface
of the base; positioning the first-interior surface adjacent to the first lip; contacting
the second-edge surface of the outer-conductive tube to the second surface of the
base; positioning the second-interior surface adjacent to the second lip; contacting
the third-edge surface of the outer-conductive tube to the third surface of the base;
and positioning the third-interior surface adjacent to the third lip.
[0048] Example 5 includes the concentric feed of any of Examples 2-4, the process further
comprising the steps of: inserting an electrically conductive gasket between the second
surface of the inner-conductive tube and the second-edge surface of the outer-conductive
tube, wherein the process of positioning the outer-conductive tube to contact the
inner-conductive tube further comprises: contacting the first-edge surface of the
outer-conductive tube to the first surface of the base; positioning the first-interior
surface adjacent to the first lip; contacting the second-edge surface of the outer-conductive
tube to the second surface of the base via the electrically conductive gasket; positioning
the second-interior surface adjacent to the second lip; contacting the third-edge
surface of the outer-conductive tube to the third surface of the base; and positioning
the third-interior surface adjacent to the third lip.
[0049] Example 6 includes the concentric feed of any of Examples 1-5, wherein configuring
the inner-conductive tube further comprises the steps of: forming an indent in the
base, wherein the first lip is an interior surface of the indent and wherein the first
surface is a flat-external-base surface in which the central-port is formed; and forming
a groove in the base, and wherein positioning the outer-conductive tube to contact
the inner-conductive tube further comprises the steps of: inserting an electrically
conductive gasket in the groove of the base; positioning the first-interior surface
of the outer-conductive tube adjacent to the interior surface of the indent in the
base; contacting the second-edge surface of the outer-conductive tube to the second
surface of the base; and positioning the second-interior surface adjacent to the second
lip to contact the electrically conductive gasket in the groove to the second-interior
surface.
[0050] Example 7 includes the concentric feed of any of Examples 1-6, further comprising
the step of positioning dielectric material within the inner-conductive tube.
[0051] Example 8 includes the concentric feed of any of Examples 1-7, the process further
comprising the step of slip fitting the outer-conductive tube to the inner-conductive
tube.
[0052] Example 9 includes the concentric feed of any of Examples 1-8, the process further
comprising the step of laser welding the outer-conductive tube to the inner-conductive
tube.
[0053] Example 10 includes a concentric feed comprising: a outer-conductive tube including:
a side-port; a first-edge surface; a first-interior surface sharing an edge with and
perpendicular to the first-edge surface; a second-edge surface; a second-interior
surface sharing an edge with and perpendicular to the second-edge surface; an inner-conductive
tube including: a base at a base-end of the inner-conductive tube, the base including
a first lip and a second lip protruding orthogonal to a first surface and a second
surface, respectively, and a central-port centered on a central axis; a main-body
extending in an axial direction from the base, wherein the outer-conductive tube contacts
the inner-conductive tube at the base, and wherein the outer-conductive tube and the
inner-conductive tube are co-aligned to the central axis.
[0054] Example 11 includes the concentric feed of Example 10, wherein the outer-conductive
tube further comprises: a third-edge surface; and a third-interior surface sharing
an edge with and perpendicular to the third-edge surface, and wherein the inner-conductive
tube further comprises: a third lip on the base protruding orthogonal to a third surface.
[0055] Example 12 includes the concentric feed of Example 11, wherein the inner-conductive
tube further comprises: a groove formed in the second lip; and an electrically conductive
gasket inserted in the groove, wherein the first-edge surface of the outer-conductive
tube contacts the first surface of the base, the first-interior surface is positioned
adjacent to the first lip, the second-edge surface of the outer-conductive tube contacts
the second surface of the base, the second-interior surface is positioned adjacent
to the second lip to contact the electrically conductive gasket in the groove to the
second-interior surface, the third-edge surface of the outer-conductive tube contacts
the third surface of the base, and the third-interior surface is positioned adjacent
to the third lip.
[0056] Example 13 includes the concentric feed of any of Examples 11-12, wherein the first-edge
surface of the outer-conductive tube contacts the first surface of the base, the first-interior
surface is positioned adjacent to the first lip, the second-edge surface of the outer-conductive
tube contacts the second surface of the base, the second-interior surface is positioned
adjacent to the second lip, the third-edge surface of the outer-conductive tube contacts
the third surface of the base, and the third-interior surface is positioned adjacent
to the third lip.
[0057] Example 14 includes the concentric feed of any of Examples 11-13, further comprising:
an electrically conductive gasket inserted between the second surface of the inner-conductive
tube and the second-edge surface of the outer-conductive tube, wherein the first-edge
surface of the outer-conductive tube contacts the first surface of the base, the first-interior
surface is positioned adjacent to the first lip, the second-edge surface of the outer-conductive
tube contacts the second surface of the base via the electrically conductive gasket,
the second-interior surface is positioned adjacent to the second lip; the third-edge
surface of the outer-conductive tube contacts the third surface of the base, and the
third-interior surface is positioned adjacent to the third lip.
[0058] Example 15 includes the concentric feed of any of Examples 10-14, wherein the inner-conductive
tube further comprises: an indent formed in the base, wherein the first lip is an
interior surface of the indent and wherein the first surface is a flat-external-base
surface; a groove formed in the base; and an electrically conductive gasket inserted
in the groove of the base, wherein the first-interior surface of the outer-conductive
tube is positioned adjacent to the interior surface of the indent in the base; the
second-edge surface of the outer-conductive tube contacts the second surface of the
base; and the second-interior surface is positioned adjacent to the second lip to
contact the electrically conductive gasket in the groove to the second-interior surface.
[0059] Example 16 includes a process of forming a concentric feed including an outer-conductive
tube electrically connected to a base of an inner-conductive tube, the process comprising:
configuring the outer-conductive tube to include: a side-port; a first-edge surface;
a first-interior surface sharing an edge with and perpendicular to the first-edge
surface; a second-edge surface; a second-interior surface sharing an edge with and
perpendicular to the second-edge surface; configuring the inner-conductive tube to
include: a base at a base-end of the inner-conductive tube, the base including a first
lip and a second lip protruding orthogonal to a first surface and a second surface,
respectively, and a central-port centered on a central axis; and a main-body extending
in an axial direction from the base; and positioning the outer-conductive tube to
contact the inner-conductive tube at the base wherein the outer-conductive tube and
the inner-conductive tube are co-aligned to the central axis.
[0060] Example 17 includes the process of Example 16, further comprising: configuring the
outer-conductive tube to further include: a third-edge surface; and a third-interior
surface sharing an edge with and perpendicular to the third-edge surface; configuring
the inner-conductive tube to further include a third lip on the base protruding orthogonal
to a third surface.
[0061] Example 18 includes the process of any of Examples 16-17, further comprising: forming
a groove in the second lip; and inserting an electrically conductive gasket in the
groove, wherein the process of positioning the outer-conductive tube to contact the
inner-conductive tube comprises: contacting the first-edge surface of the outer-conductive
tube to the first surface of the base; positioning the first-interior surface adjacent
to the first lip; contacting the second-edge surface of the outer-conductive tube
to the second surface of the base; positioning the second-interior surface adjacent
to the second lip to contact the electrically conductive gasket in the groove to the
second-interior surface; contacting the third-edge surface of the outer-conductive
tube to the third surface of the base; and positioning the third-interior surface
adjacent to the third lip.
[0062] Example 19 includes the concentric feed of any of Examples 16-18, wherein configuring
the inner-conductive tube further comprises the steps of: forming an indent in the
base, wherein the first lip is an interior surface of the indent and wherein the first
surface is a flat-external-base surface in which the central-port is formed; and forming
a groove in the base, and wherein positioning the outer-conductive tube to contact
the inner-conductive tube further comprises the steps of: inserting an electrically
conductive gasket in the groove of the base; positioning the first-interior surface
of the outer-conductive tube adjacent to the interior surface of the indent in the
base; contacting the second-edge surface of the outer-conductive tube to the second
surface of the base; and positioning the second-interior surface adjacent to the second
lip to contact the electrically conductive gasket in the groove to the second-interior
surface.
[0063] Example 20 includes the concentric feed of any of Examples 16-19, the process further
comprising the step of laser welding the outer-conductive tube to the inner-conductive
tube.
1. A concentric feed (100) comprising:
an outer-conductive tube (120) including:
a side-port (121);
a first-edge surface (123);
a first-interior surface (133) sharing an edge (143) with and perpendicular to the
first-edge surface;
a second-edge surface (124);
a second-interior surface (134) sharing an edge (144) with and perpendicular to the
second-edge surface;
a third-edge surface (125); and
a third-interior surface (135) sharing an edge (145) with and perpendicular to the
third-edge surface,
an inner-conductive tube (110) including:
a base (115) at a base-end (102) of the inner-conductive tube, the base including
a first lip (141) protruding orthogonal to a first surface (151) of the base, a second
lip (142) protruding orthogonal to a second surface (152) of the base, and a third
lip (147) protruding orthogonal to a third surface (153) of the base and a central-port
(111) centered on a central axis (105), wherein each lip (141, 142, 147) is a projecting
edge or rim protruding from a respective surface (151, 152, 153);
a main-body (117) extending in an axial direction (Z) from the base, wherein the outer-conductive
tube contacts the inner-conductive tube at the base, and wherein the outer-conductive
tube and the inner-conductive tube are co-aligned to the central axis; a groove (451),
an electrically conductive gasket (450) formed from an elastomer or other polymer
infused with metal particles, wherein one of:
the electrically conductive gasket (450) is inserted in the groove (451) which is
formed in the second lip (142), the second-interior surface (134) being positioned
adjacent to the second lip (142) to contact the electrically conductive gasket in
the groove to the second-interior surface (134);
the electrically conductive gasket (450) is inserted between the second surface (152)
of the inner-conductive tube (110) and the second-edge surface (124) of the outer-conductive
tube (120), the second-edge surface (124) of the outer-conductive tube contacting
the second surface (152) of the base via the electrically conductive gasket; or
the electrically conductive gasket (450) is inserted in the groove (451) which is
formed in the base (615), the second-interior surface (634) being positioned adjacent
to the second lip (642) to contact the electrically conductive gasket in the groove
(451) to the second-interior surface (634).
2. The concentric feed (200) of claim 1, wherein
the first-edge surface (123) of the outer-conductive tube (120) contacts the first
surface (151) of the base (115), the first-interior surface (133) is positioned adjacent
to the first lip (141), the second-edge surface (124) of the outer-conductive tube
contacts the second surface (152) of the base, the third-edge surface (125) of the
outer-conductive tube contacts the third surface (153) of the base, and the third-interior
surface (135) is positioned adjacent to the third lip (147).
3. The concentric feed (600) of claim 1, wherein the inner-conductive tube (610) further
comprises:
an indent (628) formed in the base (115), wherein the first lip (641) is an interior
surface (641) of the indent and wherein the first surface (651) is a flat-external-base
surface (651);
wherein
the first-interior surface (633) of the outer-conductive tube is positioned adjacent
to the interior surface (641) of the indent in the base;
the second-edge surface (624) of the outer-conductive tube contacts the second surface
(652) of the base.
4. A process of forming a concentric feed (100) including an outer-conductive tube (120)
electrically connected to a base (115) of an inner-conductive tube (110), the process
comprising:
configuring the outer-conductive tube to include:
a side-port (121);
a first-edge surface (123);
a first-interior surface (133) sharing an edge (143) with and perpendicular to the
first-edge surface;
a second-edge surface (124);
a second-interior surface (134) sharing an edge (144) with and perpendicular to the
second-edge surface;
a third-edge surface (125); and
a third-interior surface (135) sharing an edge (145) with and perpendicular to the
third-edge surface;
configuring the inner-conductive tube to include:
a base (115) at a base-end (102) of the inner-conductive tube, the base including
a first lip (141) protruding orthogonal to a first surface(151), a second lip (142)
protruding orthogonal to a second surface (152), and a third lip (147) protruding
orthogonal to a third surface (153), and a central-port (111) centered on a central
axis (105), wherein each lip (141, 142, 147) is a projecting edge or rim protruding
from a respective surface (151, 152, 153); and
a main-body (117) extending in an axial direction (Z) from the base; and
positioning the outer-conductive tube to contact the inner-conductive tube at the
base wherein the outer-conductive tube and the inner-conductive tube are co-aligned
to the central axis; and
positioning an electrically conductive gasket (450) formed from an elastomer or other
polymer infused with metal particles, comprising one of:
inserting the electrically conductive gasket (450) in a groove (451) in the second
lip (142), the second-interior surface (134) being positioned adjacent to the second
lip (142) to contact the electrically conductive gasket in the groove to the second-interior
surface;
inserting the electrically conductive gasket (450) between the second surface (152)
of the inner-conductive tube (110) and the second-edge surface (124) of the outer-conductive
tube (120), the second-edge surface (124) of the outer-conductive tube contacting
the second surface (152) of the base via the electrically conductive gasket; or
inserting the electrically conductive gasket (450) in a groove (451) formed in the
base, the second-interior surface (624) being positioned adjacent to the second lip
(642) to contact the electrically conductive gasket in the groove to the second-interior
surface (634).
5. The process of claim 4, wherein the process of positioning the outer-conductive tube
(120) to contact the inner-conductive tube (110) comprises:
contacting the first-edge surface (123) of the outer-conductive tube to the first
surface (151) of the base (115);
positioning the first-interior surface (133) adjacent to the first lip (141);
contacting the second-edge surface (124) of the outer-conductive tube to the second
surface (152) of the base;
contacting the third-edge surface (125) of the outer-conductive tube to the third
surface (153) of the base; and
positioning the third-interior surface (135) adjacent to the third lip (147).
6. The process of claim 4, wherein configuring the inner-conductive tube (610) further
comprises the steps of:
forming an indent (628) in the base (615), wherein the first lip (641) is an interior
surface of the indent (641) and wherein the first surface (651) is a flat-external-base
surface (651) in which the central-port (611) is formed; and
wherein positioning the outer-conductive tube (620) to contact the inner-conductive
tube further comprises the steps of:
positioning the first-interior surface (633) of the outer-conductive tube adjacent
to the interior surface (641) of the indent in the base;
contacting the second-edge surface of the outer-conductive tube to the second surface
of the base.
7. The concentric feed (100) of claim 1, wherein the second-edge surface (124) and the
third-edge surface (125) form a cut-out region (122) of the outer-conductive tube
(110) that the base (115) of the inner-conductive tube (110) conforms to.
8. The process of claim 4, wherein the second-edge surface (124) and the third-edge surface
(125) form a cut-out region (122) of the outer-conductive tube (110) that the base
(115) of the inner-conductive tube (110) conforms to.
1. Konzentrische Einspeisung (100), umfassend:
ein Außenleitrohr (120), das beinhaltet:
eine Seitenöffnung (121);
eine Erstkantenfläche (123);
eine Erstinnenfläche (133), die eine Kante (143) mit der Erstkantenfläche teilt und
senkrecht zu dieser steht;
eine Zweitkantenfläche (124);
eine Zweitinnenfläche (134), die eine Kante (144) mit der Zweitkantenfläche teilt
und senkrecht zu dieser steht;
eine Drittkantenfläche (125); und
eine Drittinnenfläche (135), die eine Kante (145) mit der Drittkantenfläche teilt
und senkrecht zu dieser steht,
ein Innenleitrohr (110), das beinhaltet:
eine Basis (115) an einem Basisende (102) des Innenleitrohres, wobei die Basis eine
erste Lippe (141), die orthogonal zu einer ersten Fläche (151) der Basis vorsteht,
eine zweite Lippe (142), die orthogonal zu einer zweiten Fläche (152) der Basis vorsteht,
und eine dritte Lippe (147), die orthogonal zu einer dritten Fläche (153) der Basis
vorsteht, und eine Zentralöffnung (111), die auf einer zentralen Achse (105) zentriert
ist, beinhaltet, wobei jede Lippe (141, 142, 147) eine vorstehende Kante oder ein
vorstehender Rand ist, die/der von einer jeweiligen Fläche (151, 152, 153) vorsteht;
einen Hauptkörper (117), der sich von der Basis aus in einer axialen Richtung (Z)
erstreckt, wobei das Außenleitrohr das Innenleitrohr an der Basis berührt und wobei
das Außenleitrohr und das Innenleitrohr gemeinsam an der zentralen Achse ausgerichtet
sind; eine Nut (451),
eine elektrisch leitende Dichtung (450), die aus einem Elastomer oder einem anderen
Polymer ausgebildet ist, das mit Metallpartikeln infundiert ist, wobei entweder:
die elektrisch leitende Dichtung (450) in die Nut (451) eingesetzt ist, die in der
zweiten Lippe (142) ausgebildet ist, wobei die Zweitinnenfläche (134) benachbart zu
der zweiten Lippe (142) positioniert ist, um die elektrisch leitende Dichtung in der
Nut mit der Zweitinnenfläche (134) in Kontakt zu bringen;
die elektrisch leitende Dichtung (450) zwischen der zweiten Fläche (152) des Innenleitrohres
(110) und der Zweitkantenfläche (124) des Außenleitrohres (120) eingesetzt ist, wobei
die Zweitkantenfläche (124) des Außenleitrohres über die elektrisch leitende Dichtung
die zweite Fläche (152) der Basis berührt; oder
die elektrisch leitende Dichtung (450) in die Nut (451) eingesetzt ist, die in der
Basis (615) ausgebildet ist, wobei die Zweitinnenfläche (634) benachbart zu der zweiten
Lippe (642) positioniert ist, um die elektrisch leitende Dichtung in der Nut (451)
mit der Zweitinnenfläche (634) in Kontakt zu bringen.
2. Konzentrische Einspeisung (200) nach Anspruch 1, wobei
die Erstkantenfläche (123) des Außenleitrohres (120) die erste Fläche (151) der Basis
(115) berührt, die Erstinnenfläche (133) benachbart zu der ersten Lippe (141) positioniert
ist, die Zweitkantenfläche (124) des Außenleitrohres die zweite Fläche (152) der Basis
berührt, die Drittkantenfläche (125) des Außenleitrohres die dritte Fläche (153) der
Basis berührt und die Drittinnenfläche (135) benachbart zu der dritten Lippe (147)
positioniert ist.
3. Konzentrische Einspeisung (600) nach Anspruch 1, wobei das Innenleitrohr (610) ferner
umfasst:
eine Einbuchtung (628), die in der Basis (115) ausgebildet ist, wobei die erste Lippe
(641) eine Innenfläche (641) der Einbuchtung ist und wobei die erste Fläche (651)
eine ebene Außenbasisfläche (651) ist;
wobei
die Erstinnenfläche (633) des Außenleitrohres benachbart zu der Innenfläche (641)
der Einbuchtung in der Basis positioniert ist;
die Zweitkantenfläche (624) des Außenleitrohres die zweite Fläche (652) der Basis
berührt.
4. Verfahren zum Ausbilden einer konzentrischen Einspeisung (100), die ein Außenleitrohr
(120) beinhaltet, das elektrisch mit einer Basis (115) eines Innenleitrohres (110)
verbunden ist, wobei das Verfahren umfasst:
Konfigurieren des Außenleitrohres, so dass es beinhaltet:
eine Seitenöffnung (121);
eine Erstkantenfläche (123);
eine Erstinnenfläche (133), die eine Kante (143) mit der Erstkantenfläche teilt und
senkrecht zu dieser steht;
eine Zweitkantenfläche (124);
eine Zweitinnenfläche (134), die eine Kante (144) mit der Zweitkantenfläche teilt
und senkrecht zu dieser steht;
eine Drittkantenfläche (125); und
eine Drittinnenfläche (135), die eine Kante (145) mit der Drittkantenfläche teilt
und senkrecht zu dieser steht;
Konfigurieren des Innenleitrohres, so dass es beinhaltet:
eine Basis (115) an einem Basisende (102) des Innenleitrohres, wobei die Basis eine
erste Lippe (141), die orthogonal zu einer ersten Fläche (151) vorsteht, eine zweite
Lippe (142), die orthogonal zu einer zweiten Fläche (152) vorsteht, und eine dritte
Lippe (147), die orthogonal zu einer dritten Fläche (153) vorsteht, und eine Zentralöffnung
(111), die auf einer zentralen Achse (105) zentriert ist, beinhaltet, wobei jede Lippe
(141, 142, 147) eine vorstehende Kante oder ein vorstehender Rand ist, die/der von
einer jeweiligen Fläche (151, 152, 153) vorsteht; und
einen Hauptkörper (117), der sich der sich von der Basis aus in einer axialen Richtung
(Z) erstreckt; und Positionieren des Außenleitrohres, so dass es das Innenleitrohr
an der Basis berührt, wobei das Außenleitrohr und das Innenleitrohr gemeinsam an der
zentralen Achse ausgerichtet sind; und
Positionieren einer elektrisch leitenden Dichtung (450), die aus einem Elastomer oder
einem anderen Polymer ausgebildet ist, das mit Metallpartikeln infundiert ist, umfassend
entweder:
Einsetzen der elektrisch leitenden Dichtung (450) in eine Nut (451) in der zweiten
Lippe (142), wobei die Zweitinnenfläche (134) benachbart zu der zweiten Lippe (142)
positioniert ist, um die elektrisch leitende Dichtung in der Nut mit der Zweitinnenfläche
in Kontakt zu bringen;
Einsetzen der elektrisch leitenden Dichtung (450) zwischen der zweiten Fläche (152)
des Innenleitrohres (110) und der Zweitkantenfläche (124) des Außenleitrohres (120),
wobei die Zweitkantenfläche (124) des Außenleitrohres über die elektrisch leitende
Dichtung die zweite Fläche (152) der Basis berührt; oder
Einsetzen der elektrisch leitenden Dichtung (450) in eine Nut (451), die in der Basis
ausgebildet ist, wobei die Zweitinnenfläche (624) benachbart zu der zweiten Lippe
(642) positioniert ist, um die elektrisch leitende Dichtung in der Nut mit der Zweitinnenfläche
(634) in Kontakt zu bringen.
5. Verfahren nach Anspruch 4, wobei das Verfahren zum Positionieren des Außenleitrohres
(120), so dass es das Innenleitrohr (110) berührt, umfasst:
Inkontaktbringen der Erstkantenfläche (123) des Außenleitrohres mit der ersten Fläche
(151) der Basis (115);
Positionieren der Erstinnenfläche (133) benachbart zu der ersten Lippe (141);
Inkontaktbringen der Zweitkantenfläche (124) des Außenleitrohres mit der zweiten Fläche
(152) der Basis;
Inkontaktbringen der Drittkantenfläche (125) des Außenleitrohres mit der dritten Fläche
(153) der Basis; und
Positionieren der Drittinnenfläche (135) benachbart zu der dritten Lippe (147).
6. Verfahren nach Anspruch 4, wobei das Konfigurieren des Innenleitrohres (610) ferner
die Schritte umfasst:
Ausbilden einer Einbuchtung (628) in der Basis (615), wobei die erste Lippe (641)
eine innere Fläche der Einbuchtung (641) ist und wobei die erste Fläche (651) eine
ebene Außenbasisfläche (651) ist, in der die Zentralöffnung (611) ausgebildet ist;
und
wobei das Positionieren des Außenleitrohres (620), sodass es das Innenleitrohr berührt,
ferner die Schritte umfasst:
Positionieren der Erstinnenfläche (633) des Außenleitrohres benachbart zu der Innenfläche
(641) der Einbuchung in der Basis;
Inkontaktbringen der Zweitkantenfläche des Außenleitrohres mit der zweiten Fläche
der Basis.
7. Konzentrische Einspeisung (100) nach Anspruch 1, wobei die Zweitkantenfläche (124)
und die Drittkantenfläche (125) einen ausgeschnittenen Bereich (122) des Außenleitrohres
(110) bilden, dem die Basis (115) des Innenleitrohres (110) entspricht.
8. Verfahren nach Anspruch 4, wobei die Zweitkantenfläche (124) und die Drittkantenfläche
(125) einen ausgeschnittenen Bereich (122) des Außenleitrohres (110) bilden, dem die
Basis (115) des Innenleitrohres (110) entspricht.
1. Alimentation concentrique (100) comprenant :
un tube conducteur extérieur (120) comprenant :
un orifice latéral (121) ;
une surface de premier bord (123) ;
une première surface intérieure (133) partageant un bord (143) avec la surface de
premier bord et perpendiculaire à celle-ci ;
une surface de deuxième bord (124) ;
une deuxième surface intérieure (134), partageant un bord (144) avec la surface de
deuxième bord et perpendiculaire à celle-ci ;
une surface de troisième bord (125) ; et
une troisième surface intérieure (135) partageant un bord (145) avec la surface de
troisième bord et perpendiculaire à celle-ci,
un tube conducteur intérieur (110) comprenant :
une base (115) à une extrémité de base (102) du tube conducteur intérieur, la base
comprenant une première lèvre (141) faisant saillie orthogonalement à une première
surface (151) de la base, une deuxième lèvre (142) faisant saillie orthogonalement
à une deuxième surface (152) de la base et une troisième lèvre (147) faisant saillie
orthogonalement à une troisième surface (153) de la base et un orifice central (111)
centré sur un axe central (105), chaque lèvre (141, 142, 147) étant un bord en saillie
ou un contour dépassant d'une surface respective (151, 152, 153) ;
un corps principal (117) partant de la base dans une direction axiale (Z), le tube
conducteur extérieur entrant en contact avec le tube conducteur intérieur au niveau
de la base et le tube conducteur extérieur et le tube conducteur intérieur étant co-alignés
sur l'axe central ; une rainure (451),
un joint électro-conducteur (450) formé à partir d'un élastomère ou d'un autre polymère
infusé avec des particules métalliques :
le joint électro-conducteur (450) étant inséré dans la rainure (451) qui est formée
dans la deuxième lèvre (142), la deuxième surface intérieure (134) étant positionnée
à côté de la deuxième lèvre (142) pour venir en contact avec le joint électro-conducteur
dans la rainure jusqu'à la deuxième surface intérieure (134) ; ou
le joint électro-conducteur (450) étant inséré entre la deuxième surface (152) du
tube conducteur intérieur (110) et la surface de deuxième bord (124) du tube conducteur
extérieur (120), la surface de deuxième bord (124) du tube conducteur extérieur étant
en contact avec la deuxième surface (152) de la base par le biais du joint électro-conducteur
; ou
le joint électro-conducteur (450) est inséré dans la rainure (451) qui est formée
dans la base (615), la deuxième surface intérieure (634) étant positionnée à côté
de la deuxième lèvre (642) pour venir en contact avec le joint électro-conducteur
dans la rainure (451) jusqu'à la deuxième surface intérieure (634).
2. Alimentation concentrique (200) selon la revendication 1,
la surface de premier bord (123) du tube conducteur extérieur (120) venant en contact
avec la première surface (151) de la base (115), la première surface intérieure (133)
étant positionnée à côté de la première lèvre (141), la surface du deuxième bord (124)
du tube conducteur extérieur étant en contact avec la deuxième surface (152) de la
base, la surface du troisième bord (125) du tube conducteur extérieur étant en contact
avec la troisième surface (153) de la base et la troisième surface intérieure (135)
étant positionnée à côté de la troisième lèvre (147).
3. Alimentation concentrique (600) selon la revendication 1, le tube conducteur intérieur
(610) comprenant en outre :
un retrait (628) formé dans la base (115), la première lèvre (641) étant une surface
intérieure (641) du retrait et dans la première surface (651) étant une surface plate
de base externe (651) ;
la première surface intérieure (633) du tube conducteur extérieur étant positionnée
à côté de la surface intérieure (641) du retrait dans la base ;
la surface de deuxième bord (624) du tube conducteur extérieur venant en contact avec
la deuxième surface (652) de la base.
4. Procédé de formation d'une alimentation concentrique (100) comprenant un tube conducteur
extérieur (120) connecté électriquement à une base (115) d'un tube conducteur intérieur
(110), le procédé comprenant :
la configuration du tube conducteur extérieur pour qu'il comprenne :
un orifice latéral (121) ;
une surface de premier bord (123) ;
une première surface intérieure (133) partageant un bord (143) avec la surface de
premier bord et perpendiculaire à celle-ci ;
une surface de deuxième bord (124) ;
une deuxième surface intérieure (134), partageant un bord (144) avec la surface de
deuxième bord et perpendiculaire à celle-ci ;
une surface de troisième bord (125) ; et
une troisième surface intérieure (135) partageant un bord (145) avec la surface de
troisième bord et perpendiculaire à celle-ci ;
la configuration du tube conducteur intérieur pour qu'il comprenne :
une base (115) à une extrémité de base (102) du tube conducteur intérieur, la base
comprenant une première lèvre (141) faisant saillie orthogonalement à une première
surface (151), une deuxième lèvre (142) faisant saillie orthogonalement à une deuxième
surface (152) et une troisième lèvre (147) faisant saillie orthogonalement à une troisième
surface (153) et un orifice central (111) centré sur un axe central (105), chaque
lèvre (141, 142, 147) étant un bord en saillie ou un contour dépassant d'une surface
respective (151, 152, 153) ; et
un corps principal (117) partant de la base dans une direction axiale (Z) ; et le
positionnement du tube conducteur extérieur pour venir en contact avec le tube conducteur
intérieur à la base, le tube conducteur extérieur et le tube conducteur intérieur
étant co-alignés avec l'axe central ; et
le positionnement d'un joint électro-conducteur (450) formé d'un élastomère ou d'un
autre polymère imprégné de particules métalliques, comprenant l'une des étapes suivantes
:
l'insertion du joint électro-conducteur (450) dans une rainure (451) dans la deuxième
lèvre (142), la deuxième surface intérieure (134) étant positionnée à côté de la deuxième
lèvre (142) pour mettre en contact le joint électro-conducteur dans la rainure avec
la deuxième surface intérieure ;
l'insertion du joint électro-conducteur (450) entre la deuxième surface (152) du tube
conducteur intérieur (110) et la deuxième surface de bord (124) du tube conducteur
extérieur (120), la surface de deuxième bord (124) du tube conducteur extérieur étant
en contact avec la deuxième surface (152) de la base par le biais du joint électro-conducteur
; ou
l'insertion du joint électro-conducteur (450) dans une rainure (451) formée dans la
base, la deuxième surface intérieure (624) étant positionnée à côté de la deuxième
lèvre (642) pour mettre en contact avec le joint électro-conducteur dans la rainure
avec la deuxième surface intérieure (634).
5. Procédé selon la revendication 4, le processus de positionnement du tube conducteur
extérieur (120) pour mettre en contact le tube conducteur intérieur (110) consistant
à :
mettre en contact la surface de premier bord (123) du tube conducteur extérieur avec
la première surface (151) de la base (115) ;
positionner la première surface intérieure (133) à côté de la première lèvre (141)
;
mettre en contact la surface de deuxième bord (124) du tube conducteur extérieur avec
la deuxième surface (152) de la base ;
mettre en contact de la surface de troisième bord (125) du tube conducteur extérieur
avec la troisième surface (153) de la base ; et
positionner la troisième surface intérieure (135) à côté de la troisième lèvre (147).
6. Procédé selon la revendication 4, la configuration du tube conducteur intérieur (610)
comprenant en outre les étapes suivantes :
former un retrait (628) dans la base (615), la première lèvre (641) étant une surface
intérieure du retrait (641) et la première surface (651) étant une surface plate de
base externe (651) dans laquelle est formé l'orifice central (611) ; et
le positionnement du tube conducteur extérieur (620) pour venir en contact avec le
tube conducteur intérieur comprend en outre les étapes suivantes :
le positionnement de la première surface intérieure (633) du tube conducteur extérieur
à côté de la surface intérieure (641) du retrait dans la base ;
la mise en contact de la surface du deuxième bord du tube conducteur extérieur avec
la deuxième surface de la base.
7. Alimentation concentrique (100) selon la revendication 1, la surface de deuxième bord
(124) et la surface de troisième bord (125) formant une zone découpée (122) du tube
conducteur extérieur (110) qu'épouse la base (115) du tube conducteur intérieur (110).
8. Procédé selon la revendication 4, la surface de deuxième bord (124) et la surface
de troisième bord (125) formant une zone découpée (122) du tube conducteur extérieur
(110) qu'épouse la base (115) du tube conducteur intérieur (110).