[0001] This relates in general to semiconductor devices and processes, and more particularly
to the structure and wafer-scale fabrication method of a low-grade silicon package
for embedded semiconductor power block and half bridge devices.
BACKGROUND
[0002] In a majority of today's semiconductor devices, the semiconductor chip is typically
assembled on a substrate (such as a metallic leadframe or a multi-level laminate),
and encapsulated in a package of a robust material (such as ceramic or hardened plastic
compound). The assembly process typically includes the process of attaching the chip
to a substrate pad or the leadframe pad, and the process of connecting the chip terminals
to substrate leads using bonding wires or solder balls.
[0003] The use of widely different materials (such as metals, ceramics and plastics) cause
challenges for mutual parts adhesion, and for long-term device stability. An example
is delamination of adjacent parts. For plastic-packaged semiconductor devices, extensive
research has been dedicated to identify corrective measures for device reliability
issues caused by thermos-mechanical stress, due to material-based mismatches of the
coefficients of thermal expansion. Degradation due to stress effects could be mitigated,
but not eliminated. Also, moisture-related degradation of electrical characteristics
in plastic-encapsulated devices has been well-documented, but has been controlled
to only a certain degree. Much effort has further been extended to prevent the onset
of fatigue and cracking in metallic connections in devices after operational temperature
excursions, but with only limited success.
[0004] Popular families of power supply circuits include the power switching devices for
converting a DC voltage to another DC voltage. For the emerging power delivery requirements,
suitable options include the power blocks with two power MOS field effect transistors
(FETs) connected in series and coupled together by a common switch node; such assembly
is also called a half bridge. When a regulating driver and controller is added, the
assembly is referred to as power stage or, more commonly, as synchronous buck converter.
In the synchronous buck converter, the control FET chip (also called the high-side
switch) is connected between the supply voltage V
IN and the LC output filter, and the synchronous (sync) FET chip (also called the low
side switch) is connected between the LC output filter and ground potential. The gates
of the control FET chip and the sync FET chip are connected to a semiconductor chip
including the circuitry for the driver of the converter and the controller; the chip
is also connected to ground potential.
[0005] For many of today's power switching devices, the chips of the power MOSFETs and the
chip of the driver and controller IC are assembled horizontally side-by-side as individual
components. Each chip is typically attached to a rectangular or square-shaped pad
of a metallic leadframe, and the pad is surrounded by leads as output terminals. In
other power switching devices, the power MOSFET chips and the driver-and-controller
IC are assembled horizontally side-by-side on a single leadframe pad, which in turn
is surrounded on all four sides by leads serving as device output terminals. The leads
are commonly shaped without cantilever extensions, and arranged in the manner of quad
flat no-lead (QFN) or small outline no-lead (SON) devices. The electrical connections
from the chips to the leads may be provided by bonding wires, whose lengths and resistances
introduce significant parasitic inductance into the power circuit. In some recently
introduced advanced assemblies, clips substitute for many connecting wires. These
clips are wide and introduce minimum parasitic inductance, but are more expensive
than wire bonds and require a more involved assembly process. Each assembly is typically
packaged in a plastic encapsulation, and the packaged components are employed as discrete
building blocks for board assembly of power supply systems.
[0006] In other recently introduced schemes, the control FET chip and the sync FET chip
are assembled vertically on top of each other as a stack, with the physically larger-area
chip (among those two) being attached to the leadframe pad, and with clips providing
the connections to the switch node and the stack top. Independent of the physical
size, the sync FET chip needs a larger active area than the active area of the control
FET chip, due to considerations of duty cycle and conduction loss. When both the sync
chip and the control chip are assembled source-down, the larger (both physically and
active area) sync chip is assembled onto the leadframe pad and the smaller (both physically
and active area) control chip has its source tied to the drain of the sync chip, forming
the switch node, and its drain to the input supply V
IN; a clip is connected to the switch node between the two chips. The pad is at ground
potential and serves as a spreader of operationally generated heat; the elongated
clip of the stack top is tied to input supply V
IN.
[0007] EP1501126 A1 discloses a packaged electronic system comprising two nested semiconductor chips,
wherein one chip is accommodated in a recessed portion of the other.
[0008] US2012/146177 A1 discloses a packaged electronic system comprising power semiconductor chips disposed
in a recessed area of a slab of substrate material.
[0009] US2012/104623 A1 discloses in the context of power conversion a packaged electronic system, wherein
stacked semiconductor chips are disposed in a recessed area of a slab of semiconductor
substrate material.
[0010] US2014/273344 A1 discloses a packaged electronic system comprising a stack of two power semiconductor
chips forming a power converter, wherein each chip has terminals on both of its main
surfaces and the chip terminals are connected to a planar leadframe via clips.
SUMMARY
[0011] In described examples, an electronic system includes a first chip of single-crystalline
semiconductor, including a first electronic device embedded in a second chip of single-crystalline
semiconductor shaped as a container having a slab bordered by ridges, and including
a second electronic device. The nested chips are assembled in a container of low-grade
silicon shaped as a slab bordered by retaining walls and including conductive traces
and terminals. The first electronic device is connected to the second electronic device
by attaching the first chip onto the slab of the second chip. The first and second
electronic devices are connected to the container by embedding the second chip in
the container. The nested first and second chips operate as an electronic system,
and the container operates as the package of the system. For first and second devices
as field effect transistors, the system is a power block.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012]
FIG. 1 illustrates a perspective view of an embodiment that includes a power block
with stacked silicon MOS field effect transistors (FETs) flip-attached to and embedded
in a silicon package.
FIG. 2 shows a cross section of the assembled system of FIG. 1 along line A-A.
FIG. 3 depicts a cross section of a portion of a low-grade-silicon (L-g-Si) wafer
with stacked MOSFET chips of a power block attached and embedded.
FIG. 4 illustrates a perspective view of a site of a 1-g-Si wafer after etching and
metallizing a depression suitable for assembling stacked chips for a power block.
FIG. 5A shows a perspective view of the metal terminals of a MOSFET chip used in assembling
a power block.
FIG. 5B depicts a perspective view of a site of an 1-g-Si wafer after etching a depression
and depositing and patterning metal layers matching the FET terminals of the chip
of FIG. 5A.
FIG. 6 illustrates a perspective view of a single-crystalline silicon chip with a
depression etched into one chip side before fabricating a FET with terminals into
the chip.
FIG. 7 shows a perspective view of an assembled power block with stacked silicon MOS
FETs flip-attached to and embedded in a 1-g-Si slab operating as package.
FIG. 8 depicts a perspective view of an assembled power converter with stacked MOS
FETs and an adjacent driver-and-controller chip embedded in the depression etched
into a 1-g-Si slab operating as package.
FIG. 9 is a flow chart of the method for fabricating an electronic system with stacked
component chips embedded in a silicon package.
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
[0013] Example embodiments significantly improve semiconductor transistor devices, power
blocks and power converters with respect to reducing parasitic resistances and inductances,
improving thermal performances and speed, enhancing operational reliability in moist
and temperature-variable ambient, and reducing manufacturing cost. The conventional
composite package, where semiconductor chips are assembled on a metallic carrier and
packaged in a plastic encapsulation, combines materials of widely different coefficients
of thermal expansion, leading to a propensity for thermo-mechanical stresses, and
requires a lengthy, time-consuming and costly fabrication flow.
[0014] The market trend, especially for automotive and hand-held applications, requires
miniaturized semiconductor products. For example, this trend favors DC-DC converters
structures whose semiconductor chips are stacked on top of each other to save precious
real estate, instead of being assembled side by side.
[0015] The materials and cost problems of a semiconductor package are solved by a structure
concept and manufacturing flow for packages, which adopts and parallels the mass production
and controlled processes of routine semiconductor wafer manufacturing. The new package
is based on using silicon slabs cut from wafers made of low-grade and thus low cost
silicon, such as those obtained from reclaimed, unrefined and undoped silicon. While
processed in wafer form, a slab obtains a depression suitable for assembling a single-crystal
device chip, and it can act as a carrier as well as the final package.
[0016] The new package concept eliminates leadframes, bonding wires, metallic clips, solder
balls, and plastic, ceramic and metallic housings. Instead, the fabrication processes
use proven front-end techniques, such as etching semiconductors, metals and insulators,
depositing layers of metals, insulators and passivation, growing insulating layers,
and patterning by photoresist technologies.
[0017] Also, for stacking chips without clips, the assembly problem is solved by a concept
and manufacturing flow for chips with completed transistors or circuits, which includes
the etching of depressions into the completed chips having contours and depth for
embedding smaller chips into the depression.
[0018] The resulting devices do not suffer from mismatched coefficients of thermal expansion,
but instead allow the minimization of thermo-mechanical stresses. Also, parasitic
resistances and inductances are reduced because wire bonds and clips are eliminated.
Thermal conductivity (and thus electrical performance) of the new devices is enhanced
by attaching the chips of the finished devices directly onto circuit boards. Also,
the resulting power blocks and power converters (with stacked and embedded chips)
allow concurrent device miniaturization in x-dimension, y-dimension and z-dimension.
[0019] FIG. 1 illustrates system 100 as an example embodiment that includes a power block
110 embedded into, and attached to, a container of low-grade silicon (1-g-Si) including
a slab 130 and ridges, or retaining walls 131. The container exhibits certain terminals
of the system and also operates as the system package. FIG. 2 shows a cross section
through power block 101 along lines 2-2. The cross section illustrates the attachments
of the transistor chips and the layer sequence of metals and insulators. FIG. 3 depicts
a cross section through multiple packaged systems after completing the assembly, yet
before sawing the wafer of low-grade silicon into discrete packaged systems.
[0020] Referring to the example of FIG. 1, slab 130 has a flat surface 135 and is made of
low-grade silicon (1-g-Si), which is selected from a group including (but not limited
to) reclaimed silicon, unrefined silicon, undoped silicon, polycrystalline silicon,
intrinsic polycrystalline silicon, lowly doped n-type polycrystalline silicon and
lowly doped p-type polycrystalline silicon. In other embodiments, the 1-g-Si material
may be heavily doped to obtain low resistivity. In the example of FIG. 1, slab 130
has a thickness 130a of ∼300 µm, a length 130b of ∼5.8 mm, and a width 130c of ∼3.7
mm. Thickness 130a is herein referred to as first thickness. The material of the 1-g-Si
slab is exposed at the edges 131a of the slab. The slab top proper, viewed in FIG.
1, is made of a first insulating layer 133, which determines first plane 191. Portions
of the insulating layer are exposed at certain locations, while other portions are
covered by a metal layer, which is configured as terminals 120 (e.g., switch node
of the power block), terminal 121 (e.g., gate of the high side FET) and terminal 122
(e.g., drain of the high side FET tied to input supply V
IN) of system 100. The insulating surface of the slab is called herein first surface
130d, which is in a first plane 191.
[0021] As FIG. 1 shows, slab 130 is configured as a set of elevated ridges 131 with the
top surface 130d in plane 191, so that the ridges are framing a depression. In FIG.
1, the system has two parallel ridges. In other embodiments, the system may have more
ridges. The depression includes a recessed central area with a surface 134 in a second
plane 192. Surface 134 is covered by a second insulating layer 136. The central area
is suitable to accommodate at least semiconductor chip 102. Another embodiment is
shown in FIG. 8, where the central area is suitable to accommodate more than one chip.
FIG. 1 illustrates that the surface of the central area is in a second plane 192,
which is spaced from the first plane 191 by depression depth 132a, which is referred
to herein as first depth. Preferably, first depth 132a is equal to the sum of the
chip thickness 102a and the thickness of the adhesive material used for attaching
chip 102 to the recessed central area. In the example of FIG. 1, first depth 132a
may be ∼64 µm. As depicted in later figures, the central area is covered by a patterned
metal layer configured as attachment pads for the device terminals, such as transistor
terminals. As FIGS. 2 and 3 show, the pads of the central area are grouped into an
inner set and a peripheral set.
[0022] The portion of power block 110 visible in FIG. 1 is semiconductor chip 102, which
is referred to herein as second chip (first chip 101 is shown in FIGS. 2 and 3). In
the example of FIG. 1, chip 102 is made of heavily doped single-crystalline silicon,
which allows direct contact to a metal layer, often referred to as back metal. The
doped silicon is topped by an epitaxial layer of intrinsic silicon, which includes
a drain-down MOS field effect transistor (FET) serving as the low side transistor
of the power block and is herein referred to as the second semiconductor chip. Chip
102 has a thickness 102a, such as -50 µm, which is herein referred to as third thickness.
Third thickness 102a is smaller than first thickness 130a, but greater than second
thickness 101a (which is depicted in FIGS. 2 and 3 as the thickness of the first semiconductor
chip 101). Chip 102 has a flat side 102d (FIG. 1), which is referred to herein as
the third side.
[0023] The example MOS FET of FIG. 1 has its source terminal 140 and gate terminal 141 on
the third side facing away from slab 130. Source terminal 140 is electrically tied
to ground potential. In other examples, the semiconductor chip may be made of silicon-germanium,
gallium arsenide, gallium nitride, or other III-V and II-VI compounds used as semiconductor
device materials. In yet other FET embodiments, the drain terminal may be facing away
from the slab. In still other embodiments, the transistor may be a bipolar transistor
having the collector contact facing away from the slab; or the bipolar transistor
may have the emitter terminal facing away from the slab.
[0024] Because FIG. 2 shows a cross section of system 100 along lines 2-2 in FIG. 1, the
ridges of slab 130 are not represented. Instead, FIG. 2 shows the flat surface 135
of the slab and the flat surface 134 of the recessed central area, which is in the
second plane 192. FIG. 2 further displays a first semiconductor chip 101 and a second
semiconductor chip 102, which may be larger than fist chip 101. Both chips are made
of a single-crystalline semiconductor material, such as silicon. For second chip 102,
FIG. 2 indicates flat side 102d, which is referred to herein as third side. FIG. 2
further illustrates that chip 102 has a fourth side 102b, which is contoured. The
contour of fourth side 102b is configured as a set of ridges 103 with a surface in
third plane 193; ridges 103 frame a depression. In FIG. 2, chip 102 has two parallel
ridges. In other embodiments, chip 102 may have more ridges. The depression includes
a recessed flat central area with a surface 102c in a fourth plane 194 parallel to
plane 193. The central area is suitable to accommodate first chip 101, which is thus
embedded in second chip 102. FIG. 1 illustrates that fourth plane 194 is spaced from
the third plane 193 by a second depth 132b smaller than the first depth 132a and suitable
to accommodate the thickness of first chip 101 with its metal layers and layers of
attachment material.
[0025] FIG. 2 indicates that fourth side 102b including surface 102c of chip 102 is uniformly
covered by a metal layer 221, which is sometimes referred to as back metal. Preferably,
layer 221 includes a layer of refractory metal (such as titanium or tungsten) for
adhesion to the semiconductor crystal, followed by a layer of nickel and an outermost
layer of a noble metal (such as silver, palladium or gold). In some products, the
refractory metal layer is omitted. Portions of the third side 102d of chip 102 also
have a sequence of stacked layers of similar metal selections, such as titanium, nickel
and silver, or just nickel and gold. The stacked metal layers are patterned into pads
222 and 223.
[0026] In the example embodiment of FIG. 2, chip 102 includes a field effect transistor
(FET), which serves as the low-side FET of the power block. As mentioned, the bulk
single-crystal silicon of chip 102 is heavily doped and makes good contact to the
so-called back metal layer 221. In this example of FIG. 2, the metallized fourth chip
side 102b with metal layer 221 serves as the drain terminal of the low-side FET, electrically
tied to the switch node, pad 222 is the source terminal electrically tied to ground
potential, and pad 223 the gate terminal of the low-side FET. As FIG. 2 shows, the
fourth chip side 102b of chip 102 includes the ridges and the central area, which
is depressed relative to the ridges.
[0027] Based on its smaller size and thickness, first chip 101 is embedded in the depression
of second chip 102. As stated, first chip 101 is made of a single-crystalline semiconductor
material, such as silicon. In contrast to second chip 102, both first side 101d and
second side 101b of first chip 101 are flat. First chip 101 has thickness 101a, which
is smaller than second depth 132b, so that first chip 101 (together with its metal
layers and attachment layers) can be embedded in the depressed central area of second
chip 102.
[0028] In the example embodiment of FIG. 2, chip 101 includes a field effect transistor
(FET), which serves as the high-side FET of the power block and has terminals on the
first and the second chip side. In this example, the metal pad 211 of first chip side
101d serves as the drain terminal of the high-side FET, electrically tied to the input
supply V
IN, and pad 213 is the gate terminal of the high-side FET.
[0029] As FIG. 2 illustrates, the 1-g-Si material of slab 130 is covered by an insulating
layer 136, preferably thermally grown silicon dioxide. In some places, the insulating
layer has increased thickness, which is a secondary effect of the patterning of the
metal layer, discussed by the process flow below. In turn, insulating layer 136 is
covered by a metal layer. One metal layer may be sufficient, but FIG. 2 illustrates
a preferred method of a sequence of metal layers. The first layer 231 is made of a
refractory metal such as titanium, followed by a compound layer such as titanium nitride.
Alternative choices include a layer of tungsten, titanium-tungsten or another refractory
metal. The refractory metal adheres strongly to insulating layer 136. Then, a layer
232 of aluminum is deposited onto the refractory metal layer; layer 232 is preferably
thicker than layer 231. For some applications, it is preferred to deposit a layer
of nickel and a thin layer of gold (both layers designated 233 in FIG. 2) on top or
the aluminum layer 232 to facilitate the attachment of transistor terminals.
[0030] The metal layers 231 and 232 (and optional 233) are patterned in the depressed central
area of slab 130. The result of the patterning is multiple pads grouped into an inner
set and a peripheral set. The pads of the inner set match the terminals of the transistors
of the first chip 101, and the pads of the peripheral set match the terminals of the
ridges of second chip 102. For the first chip 101 of FIG. 2, the patterned metal pads
of the inner set include the drain terminal 241 and the gate terminal 243 of the high-side
FET. For the second chip 102 of FIG. 2, the patterned metal pads of the peripheral
set include the switch node terminals 242 of the power block, which combines the source
terminal of the high-side FET and the drain terminal of the low-side FET.
[0031] FIG. 3 depicts a portion of a 1-g-Si wafer 330 with multiple slab sites after completing
the assembly of first and second FET chips in each slab site. As FIG. 3 shows, for
each slab site, the assembly encompasses a first chip 101 embedded in the depression
of a second chip 102 and, in turn, the second chip embedded in the depression of a
respective slab. Second chip 102 is formed as a container including a slab 104 bordered
by ridges 103. The embedded positions imply that the metallized depressed central
area of the fourth side of second chip 102 is attached to the terminals on the second
side of the first chip, and the metallized ridges of the second chip is attached to
the pads of the peripheral set of the central 1-g-Si area, so the transistor terminals
on the third side of the second chip are co-planar with the metal layer on the ridges
of the respective 1-g-Si slab. In FIG. 3, the plane of co-planarity is designated
191; it is referred to herein as first plane.
[0032] In FIG. 3, the cut lines through the wafer for separating the slab sites are marked
340. After singulation, a discrete system looks as system 100 depicted in FIG. 1.
Metal layer 222 (as the source terminal 140) and metal layer 223 (as the gate terminal
141) are ready for attachment to external parts, when system 100 is connected to a
circuit board.
[0033] Another embodiment is a method of fabricating semiconductor slabs bordered by retaining
walls suitable as device packages, and a method of fabricating a packaged electronic
system using a silicon slab as a package for semiconductor devices. Certain processes
are summarized in FIGS. 4, 5A, 5B, 6 and 7. An overview of the process flow for fabricating
an electronic system with stacked chips embedded in a silicon package is presented
in the flow chart of FIG. 9. The process flow of fabricating semiconductor slabs starts
with providing a wafer of low-grade silicon (1-g-Si), which includes multiple slab
sites (process 901). The wafer has two parallel flat surfaces, one of which is referred
to as first surface. The preferred wafer diameter is 300 mm, but smaller diameters
may be used; the plane of the first surface is referred to as first plane 191. Preferably,
the final wafer (before dicing) has a thickness 130a (referred to as first thickness)
of ∼300 µm. Nevertheless, the preceding process steps may be executed using a thicker
wafer and obtaining the final thickness by back-grinding. Consequently, designation
110a of FIG. 3 intends to indicate such wafer thickness greater than 130a. The 1-g-Si
may be selected from a group including reclaimed silicon, unrefined silicon, undoped
silicon, polycrystalline silicon and intrinsic polycrystalline silicon. For devices
with transistor terminals isolated from the slab, the 1-g-Si material may also include
lowly doped n-type polycrystalline silicon and lowly doped p-type polycrystalline
silicon. By comparison, for devices with transistor terminals shorted to the slab,
the 1-g-Si material may also include low resistivity n-type polycrystalline silicon
and low resistivity p-type polycrystalline silicon.
[0034] In the next process for either 1-g-Si choice, a first insulating layer 133 is formed
on the first surface of the wafer (process 902); the layer covers all slab sites.
The preferred technique of forming an insulating surface layer is thermally oxidizing
the silicon. Alternative techniques include depositing a layer of silicon dioxide,
silicon nitride, silicon carbide, or a combination thereof, and depositing an insulating
compound different from a silicon compound.
[0035] Then, the first insulating layer is removed from the central portion of each slab
site to expose the underlying 1-g-Si, while leaving unremoved the first insulating
layer 133 over the peripheral site portions to form ridges framing each central portion
(process 903). The ridges are sometimes referred to as retaining walls or rims bordering
the central portion.
[0036] In the next process (process 904), the exposed 1-g-Si of the central area of each
slab site is etched, such as using KOH, to create a depression with a second 1-g-Si
surface having a flat central portion in a second plane 192 recessed from the first
plane by a depth 132a. FIG. 4 depicts an individual slab site at a processing state,
which summarizes the results of the above-referenced fabrication processes; the depicted
site is an integral portion of a larger wafer, as indicated by the phantom lines.
[0037] For the discrete slab site in FIG. 4, the depression has a rectangular configuration
bordered by two parallel ridges. For other devices, other configurations for the depression
and for the ridges may be used. The depression, which is formed by the etching process,
also creates a step of 1-g-Si between the first plane 191 and the second plane 192.
Preferably, the step is inclined less than 90°. More preferably, the step forms a
gradual slope 401 between the first and the second 1-g-Si surface, so that an uninterrupted
metal layer can easily be deposited on slope 401.
[0038] In the process flow leading up to the packaged transistor device of FIG. 2, the flow
starts by providing a wafer of undoped or weakly doped 1-g-Si, which includes multiple
slab sites 210. Each site is configured into ridges with a top in a first plane 290
and a depression framed by the ridges. The depression includes a recessed central
area in a second plane 291, spaced from the first plane by a depth 112. A second insulating
layer 136 is formed on the second silicon surface; layer 136 covers all slab sites
(process 905). Other techniques are possible, but preferably the second insulating
layer is thermally grown, so that the silicon dioxide of the second layer 136 merges
with the left-over silicon dioxide of the first layer 133.
[0039] Next, at least one layer 231 of metal is deposited onto the second insulating layer
136, covering all slab sites (process 906). Preferably, first a layer of a refractory
metal such as titanium is selected, followed by a compound layer such as titanium
nitride. Alternative choices include a layer of tungsten, titanium-tungsten or another
refractory metal. The refractory metal adheres strongly to insulating layer 136. Then,
a layer 232 of aluminum is deposited onto the refractory metal layer. Layer 232 is
preferably thicker than layer 231. For some applications, it is preferred to deposit
a layer of nickel and a thin layer of gold (both layers designated 233 in FIG. 2)
on top or the aluminum layer 232 to facilitate the attachment of transistor terminals.
[0040] Next, the metal layers 231 and 232 (and 233) are patterned at each slab site (process
907). FIG. 4 gives an overview of the patterned metal pads of a discrete slab. On
the ridges, system terminals are formed. In the central site portion, pads for transistor
terminals (or for other device terminals) are created, which are grouped in an inner
set and a peripheral set.
[0041] On the ridges for the example shown in FIG. 4, metal layers 120 are destined to be
system terminals for the switch node of a power block; metal layer 121 will be the
terminal for the gate of the high-side FET; and layer 122 will be system terminal
of the drain of the high-side FET tied to the input supply V
IN of the system. In the central site portion of the example of FIG. 4, the result of
the patterning is multiple pads grouped in an inner and a peripheral set, matching
the terminals of transistors. The pads of the inner set include pad 411 for the drain
terminal 211 of the high-side FET (ending as terminal 122 on the ridge) and pad 413
for the gate terminal 213 of the high-side FET (ending as terminal 121 on the ridge).
The pads of the peripheral set include pads 420 for the switch node terminal (ending
as terminals 120 on the ridges).
[0042] After the patterning, a layer 205 of passivation material such as silicon nitride
is deposited onto the patterned metal layer, covering all slab sites (process 908).
Passivation layer 237 is then removed, at each slab site, from the terminals on the
ridges and from the pads in the central portion to expose the underlying metal. By
comparison, the passivation material over the slopes and between the pads is left
unremoved.
[0043] In the next process 909, first semiconductor chips 101 have a flat first side 101b
and an opposite flat second side 101d, and a second thickness 101a smaller than the
first thickness 130a of the 1-g-Si slab. The first chips may include transistors with
terminals on the first and the second chip side. For the example of FIG. 5A, the chips
are shaped as a hexahedron and made of single-crystalline silicon. The chips include
a FET with a source terminal on the first chip side and a drain terminal 211 and a
gate terminal 213 on the opposite second chip side. For other systems, chip 101 may
include a bipolar transistor, or it may have different terminal distribution, or chip
101 may be made of gallium arsenide, gallium nitride or any other semiconductor single
crystalline compound.
[0044] Next, the terminals of the first side of first chips 101 are attached to respective
pads of the inner set of the central area of each slab 130 of the 1-g-Si wafer (process
910). The preferred attach material is a conductive paste, which includes an adhesive
polymeric compound. FIG. 5B depicts an example slab site after the attachment, which
creates sub-assemblies designated 500 in FIG. 5B. In the subassembly, the terminals
212 of the second side of the first chip face towards the first plane 191. In the
example of FIG. 5B, terminal 212 represents the source terminal of the FET of the
first chip.
[0045] In the next process 911, shown in FIG. 6, second semiconductor chips 102 have a flat
third side 102d and an opposite contoured fourth side 102b, and a third thickness
102a smaller than the first thickness but greater than the second thickness 101a.
The fourth side 102b is configured as a ridge, or retaining wall, in a third plane
193 framing a depression including a flat central area in a parallel fourth plane
194 recessed from the third plane by a second depth 132b. Second depth 132b is configured
to be smaller than the first depth 132a of a slab, and suitable to accommodate a first
chip 101.
[0046] Second chips 102 are made of a single crystalline semiconductor, frequently silicon,
which is heavily doped and makes good contact to the uniform metal layer covering
the fourth side 102b. Also, chips 102 include an epitaxial layer suitable for forming
active devices, such as FETs or bipolar transistors. In the example of FIG. 6, the
transistor is a FET with a source terminal 222 and a gate terminal 223 on the third
side 102d, and a drain terminal on the fourth side 102b.
[0047] FIG. 7 illustrates the assembly of a second chip 102 with a subassembly 500 of FIG.
5B (process 912). In this process, the metallized depressed central area of the fourth
side 102b of a second chip 102 is attached to the terminals on the second side 101b
of the respective first chip 101, and the metallized ridges of the second chip 102
are attached to the pads of the respective peripheral set of the central 1-g-Si area.
In this assembly process, the transistor terminals 222 and 223 on the third side 102d
of the second chips become co-planar with the terminals 120, 121 and 122 on the ridges
of the respective 1-g-Si slab 130. All attachment processes are preferably performed
using a conductive paste of an adhesive polymeric compound; alternatively, they may
be performed using a lead-free solder. The co-planarity of all system terminals facilitates
the assembly of the system onto external boards.
[0048] After the chips have been assembled in the depressions of the sites of the wafer,
the 1-g-Si wafer is cut by saws or laser into singulated systems, as depicted in FIG.
1 (process 913).
[0049] The electronic system with stacked semiconductor chips embedded in a silicon package
offers numerous technical advantages. Compared to conventional systems, multiple parts
are eliminated, all of which are costly, labor-intensive in manufacturing, and parasitic
in electrical parameters, such as: bonding wires, connecting clips, metallic leadframes,
plastic molding compounds, and solders with lead. Thermal performance is greatly improved
by low theta parameters to case, to top, to ambient, and heat sinks. The ratio of
active silicon versus package is high, and the overall system thickness can be kept
very thin (∼0.3 to ∼0.5 mm). Differences between the coefficients of thermal expansion
of chips and package are minimized or eliminated; thermo-mechanical stresses are thus
minimized.
[0050] Other embodiments are electronic systems, such as a DC-DC power converter, often
referred to as synchronous Buck converter. The example converter depicted in FIG.
8 includes a vertical stack of two FET chips, embedded into each other, and an adjacent
driver-and-controller chip assembled on a 1-g-Si container formed as a slab with retaining
walls. The example system has a length 801 of 5.0 mm, a width 802 of 3.0 mm, and a
height 803 of 0.45 mm. All metal terminals and the silicon back side 810a of the driver-and-controller
chip 810 are co-planar; the common plane is designated 191. By adopting and expanding
the designations employed in FIGS. 1 and 7, FIG. 8 shows both the power block 110
with the embedded FETs and the flipped driver-and-controller chip 810 attached to
slab 130. In the example of FIG. 8, metal layer 222 is the source terminal of the
low-side FET (sync FET), layer 223 is the gate terminal of the low-side FET (sync
FET), metal layer 122 is the drain terminal of the high-side FET, electrically tied
to the input supply V
IN, layer 121 is the gate terminal of the high-side FET, layers 120 are the terminals
of the switch node, and metal layers 811, 812, 813, 814, 815 and 816 are the output
pins of the integrated driver-and-controller circuit of flipped chip 810. The exposed
silicon surface 810a may be metallized to facilitate the attachment to an external
board.
[0051] Modifications are possible in the described embodiments, and other embodiments are
possible, within the scope of the claims. For example, example embodiments apply to
field effect transistors, and also to other suitable power transistors, bipolar transistors,
insulated gate transistors, thyristors and others.
[0052] As another example, the above considerations for structure and fabrication method
of power converters apply to regulators, multi-output power converters, applications
with sensing terminals, and applications with Kelvin terminals and others.
[0053] As another example, the high current capability of the packaged transistors and converter
can be further extended, and the efficiency further enhanced, by using the blank backside
of the 1-g-Si, after attachment of the devices to a board, so that the back side can
be connected to a heat sink, preferably. In this configuration, the device can dissipate
its heat into the board and into the heat sink.
1. A packaged electronic system (100) comprising:
a slab (130) of low-grade silicon, l-g-Si, having a first thickness (130a) and a surface
(130d) in a first plane (191), the slab configured as a ridge (131) in the first plane
framing a depression including a recessed central area in a second plane (192) spaced
from the first plane (191) by a first depth (132a), the ridge and the central area
covered by a metal layer patterned into pads for contacting transistor terminals,
the pads of the central area grouped into an inner set and a peripheral set;
a first semiconductor chip (101) having a flat first side (101d) and an opposite flat
second side (101b), and a second thickness (101a) smaller than the first thickness
(130a), the first chip (101) including a transistor having terminals on the first
and the second side, the terminals of the first chip side attached to respective pads
of the inner set of the central area of the 1-g-Si slab (130), creating a sub-assembly
wherein the terminals of the second chip side (101b) face towards the first plane
(191);
a second semiconductor chip (102) having a flat third side (102d) and an opposite
contoured fourth side (102b), and a third thickness (102a) smaller than the first
thickness (130a) but greater than the second thickness (101a), the fourth side (102b)
configured as a ridge (103) in a third plane (193) framing a depression including
a flat central area in a parallel fourth plane (194) recessed from the third plane
(193) by a second depth (132b) smaller than the first depth (132a) and accomodating
the first chip (101), the fourth side (102b) uniformly metallized, the second chip
(102) including a transistor having terminals on the third and the fourth side; and
the metallized depressed central area of the fourth side (102b) attached to the terminals
on the second side (101b) of the first chip (101), and the metallized ridges (103)
of the second chip (102) attached to the pads of the peripheral set of the central
1-g-Si area, so the transistor terminals on the third side (102d) of the second chip
(102) are co-planar with the metal layer on the ridges (131) of the respective l-g-Si
slab (130).
2. The device of claim 1, wherein the transistors of the first and the second chips are
MOS field-effect transistors, and the electronic system is a power block.
3. The device of claim 1, wherein the transistors of the first and the second chips are
bipolar transistors, and the electronic system is a regulator.
4. A method for fabricating a plurality of packaged electronic systems (100) comprising:
providing a wafer of low-grade silicon 1-g-Si, including a plurality of slab sites
(130), the wafer having a first thickness (130a) and a first surface (130d) in a first
plane (191), each site configured as a ridge (131) in the first plane framing a depression
including a recessed central area in a second plane (192) spaced from the first plane
by a first depth (132a), the ridge and the central area covered by a metal layer patterned
into pads for contacting transistor terminals, the pads of the central area grouped
into an inner set and a peripheral set;
providing a plurality of first semiconductor chips (101) having a flat first side
(101d) and an opposite flat second side (101b), and a second thickness (101a) smaller
than the first thickness, the first chips including transistors having terminals on
the first and the second side;
attaching the terminals of the first chip side to respective pads of the inner set
of the central area of each 1-g-Si slab, creating sub-assemblies, wherein the terminals
of the second chip side face towards the first plane;
providing a plurality of second semiconductor chips (102) having a flat third side
(102d) and an opposite contoured fourth side (102b), and a third thickness (102a)
smaller than the first thickness but greater than the second thickness, the fourth
side configured as a ridge (103) in a third plane (193) framing a depression including
a flat central area in a parallel fourth plane (194) recessed from the third plane
by a second depth (132b) smaller than the first depth and suitable to accommodate
the first chips, the fourth side uniformly metallized, the second chips including
transistors having terminals on the third and the fourth side; and
for each subassembly, attaching the metallized depressed central area of the fourth
side of a second chip to the terminals on the second side of the respective first
chip, and the metallized ridges of the second chip to the pads of the respective peripheral
set of the central 1-g-Si area, so the transistor terminals on the third side of the
second chips are co-planar with the metal layer on the ridges of the respective 1-g-Si
slab.
5. The method of claim 4 wherein the process of attaching employs conductive adhesives.
6. The method of claim 4 further including the process of dicing the 1-g-Si wafer to
singulate discrete multi-output devices having transistor chips embedded in a 1-g-Si
slab as a package.
7. The method of claim 6, wherein the transistors of the first and the second chips are
MOS field-effect transistors, and the electronic system is a power block.
8. The method of claim 6 wherein the transistors of the first and the second chips are
bipolar transistors, and the electronic system is a regulator.
9. The method of claim 4 wherein the process of providing a wafer of low-grade silicon
(1-g-Si) includes the processes of:
providing a wafer of 1-g-Si including a plurality of slab sites, the wafer having
a first thickness and a first surface in a first plane;
forming a first insulating layer on the first surface, the first insulating layer
covering all slab sites;
removing the insulating layer from the central portion of each slab site to expose
the underlying 1-g-Si, leaving unremoved the insulating layer over the peripheral
site portions to form a ridge framing each central portion;
etching the exposed 1-g-Si of the central area of each device site to create a depression
with a second 1-g-Si surface having a central flat portion in a second plane recessed
from the first plane by a first depth, and slopes between the first and the second
1-g-Si surface;
forming a second insulating layer on the second 1-g-Si surface, the second insulating
layer covering the central area of each device site;
depositing at least one layer of metal onto the whole wafer;
patterning the metal layer at each device site to form device terminals on the ridges
and a plurality of pads matching transistor terminals in the central portion, the
pads grouped into an inner set and a peripheral set;
depositing a passivation layer onto the wafer surface, covering all device sites;
and
removing, at each device site, the passivation layer from the terminals on the frames
and from the pads in the central portion, to expose the underlying metal, while leaving
unremoved the passivation material over the slopes and between the pads.
10. The method of claim 9 wherein the low-grade silicon (1-g-Si) of the wafer is selected
from a group including, but not limited to, reclaimed silicon, unrefined silicon,
undoped silicon, polycrystalline silicon, intrinsic polycrystalline silicon, lowly
doped n-type polycrystalline silicon and lowly doped p-type polycrystalline silicon.
11. The method of claim 9 wherein the layers of metal include a layer each of titanium,
titanium nitride and aluminum.
12. The method of claim 9 further including the process of depositing a layer of nickel
followed by an outermost layer of gold on the aluminum layer.
13. The method of claim 4 wherein the process of providing a plurality of second chips
includes the processes of:
providing a semiconductor wafer including a low-resistivity bulk semiconductor and
an epitaxial layer of intrinsic semiconductor, the wafer having a third thickness
and including a plurality of device sites;
forming a transistor in each site, the transistor having terminals on the surfaces
of the epitaxial and the bulk semiconductor;
etching the bulk semiconductor of each site to form a cavity with a flat central area
framed by a ridge of bulk semiconductor, the central area having a size and a depth
suitable to house a first chip, yet leaving un-etched the bulk semiconductor frame
of third thickness;
depositing at least one layer of metal onto the surfaces of the epitaxial and the
etched bulk semiconductor of the whole wafer;
forming metallized transistor terminals by patterning the metal layer on the surface
of the epitaxial semiconductor of each site, yet leaving un-patterned the metal layer
over the central area and the ridge of the cavity of each site; and
dicing the wafer to singulate discrete second chips of third thickness having metallized
ridges.
1. Eingehäustes elektronisches System (100), das Folgendes umfasst:
eine Platte (130) aus geringqualitativem Silicium bzw. l-g-Si (low-grade-Silicium)
mit einer ersten Dicke (130a) und einer Oberfläche (130d) in einer ersten Ebene (191),
wobei die Platte als eine Erhöhung (131) in der ersten Ebene ausgebildet ist, die
eine Vertiefung umrahmt, die einen ausgesparten mittleren Bereich in einer von der
ersten Ebene (191) um eine erste Tiefe (132a) beabstandeten zweiten Ebene (192) enthält,
wobei die Erhöhung und der mittlere Bereich durch eine in Pads zum Kontaktieren von
Transistoranschlüssen strukturierte Metallschicht bedeckt sind, wobei die Pads des
mittleren Bereichs in einen inneren Satz und einen peripheren Satz gruppiert sind;
einen ersten Halbleiterchip (101) mit einer flachen ersten Seite (101d) und einer
entgegengesetzten flachen zweiten Seite (101b), und einer zweiten Dicke (101a), die
kleiner ist als die erste Dicke (130a), wobei der erste Chip (101) einen Transistor
mit Anschlüssen auf der ersten und der zweiten Seite enthält, wobei die Anschlüsse
der ersten Chipseite an jeweiligen Pads des inneren Satzes des mittleren Bereichs
der l-g-Si-Platte (130) befestigt sind, wodurch eine Unterbaugruppe erzeugt wird,
wobei die Anschlüsse der zweiten Chipseite (101b) der ersten Ebene (191) zugewandt
sind;
einen zweiten Halbleiterchip (102) mit einer flachen dritten Seite (102d) und einer
entgegengesetzten konturierten vierten Seite (102b), und einer dritten Dicke (102a),
die kleiner als die erste Dicke (130a) aber größer als die zweite Dicke (101a) ist,
wobei die vierte Seite (102b) als eine Erhöhung (103) in einer dritten Ebene (193)
ausgebildet ist, die eine Vertiefung umrahmt, die einen flachen mittleren Bereich
in einer parallelen vierten Ebene (194) enthält, der um eine zweite Tiefe (132b),
die kleiner ist als die erste Tiefe (132a), aus der dritten Ebene (193) ausgespart
ist und den ersten Chip (101) aufnimmt, wobei die vierte Seite (102b) gleichmäßig
metallisiert ist, wobei der zweite Chip (102) einen Transistor mit Anschlüssen auf
der dritten und der vierten Seite enthält; und
wobei der metallisierte vertiefte mittlere Bereich der vierten Seite (102b) an den
Anschlüssen auf der zweiten Seite (101b) des ersten Chips (101) befestigt ist, und
die metallisierten Erhöhungen (103) des zweiten Chips (102) an den Pads des peripheren
Satzes des mittleren l-g-Si-Bereichs befestigt sind, sodass die Transistoranschlüsse
auf der dritten Seite (102d) des zweiten Chips (102) mit der Metallschicht auf den
Erhöhungen (131) der jeweiligen l-g-Si-Platte (130) komplanar sind.
2. Bauelement nach Anspruch 1, wobei es sich bei den Transistoren des ersten und des
zweiten Chips um MOS-Feldeffekttransistoren handelt und es sich bei dem elektronischen
System um einen Power-Block handelt.
3. Bauelement nach Anspruch 1, wobei es sich bei den Transistoren des ersten und des
zweiten Chips um Bipolartransistoren handelt und es sich bei dem elektronischen System
um einen Regler handelt.
4. Verfahren zum Herstellen mehrerer eingehäuster elektronischer Systeme (100), das Folgendes
umfasst:
Bereitstellen eines Wafers aus geringqualitativem Silicium bzw. l-g-Si, der mehrere
Plattenstellen (130) enthält, wobei der Wafer eine erste Dicke (130a) und eine erste
Oberfläche (130d) in einer ersten Ebene (191) aufweist, wobei jede Stelle als eine
Erhöhung (131) in der ersten Ebene ausgebildet ist, die eine Vertiefung umrahmt, die
einen ausgesparten mittleren Bereich in einer von der ersten Ebene um eine erste Tiefe
(132a) beabstandeten zweiten Ebene (192) enthält, wobei die Erhöhung und der mittlere
Bereich durch eine in Pads zum Kontaktieren von Transistoranschlüssen strukturierte
Metallschicht bedeckt sind, wobei die Pads des mittleren Bereichs in einen inneren
Satz und einen peripheren Satz gruppiert sind;
Bereitstellen mehrerer erster Halbleiterchips (101) mit einer flachen ersten Seite
(101d) und einer entgegengesetzten flachen zweiten Seite (101b), und einer zweiten
Dicke (101a), die kleiner ist als die erste Dicke, wobei die ersten Chips Transistoren
mit Anschlüssen auf der ersten und der zweiten Seite enthalten;
Befestigen der Anschlüsse der ersten Chipseite an jeweiligen Pads des inneren Satzes
des mittleren Bereichs der l-g-Si-Platte, wodurch Unterbaugruppen erzeugt werden,
wobei die Anschlüsse der zweiten Chipseite der ersten Ebene zugewandt sind;
Bereitstellen mehrerer zweiter Halbleiterchips (102) mit einer flachen dritten Seite
(102d) und einer entgegengesetzten konturierten vierten Seite (102b), und einer dritten
Dicke (102a), die kleiner als die erste Dicke aber größer als die zweite Dicke ist,
wobei die vierte Seite als eine Erhöhung (103) in einer dritten Ebene (193) ausgebildet
ist, die eine Vertiefung umrahmt, die einen flachen mittleren Bereich in einer parallelen
vierten Ebene (194) enthält, der um eine zweite Tiefe (132b), die kleiner ist als
die erste Tiefe, aus der dritten Ebene ausgespart ist und dazu geeignet ist, die ersten
Chips aufzunehmen, wobei die vierte Seite gleichmäßig metallisiert ist, wobei die
zweiten Chips Transistoren mit Anschlüssen auf der dritten und der vierten Seite enthalten;
und
für jede Unterbaugruppe, Befestigen des metallisierten vertieften mittleren Bereichs
der vierten Seite eines zweiten Chips an den Anschlüssen auf der zweiten Seite des
jeweiligen ersten Chips, und der metallisierten Erhöhungen des zweiten Chips an den
Pads des jeweiligen peripheren Satzes des mittleren l-g-Si-Bereichs, so dass die Transistoranschlüsse
auf der dritten Seite der zweiten Chips komplanar sind mit der Metallschicht auf den
Erhöhungen der jeweiligen l-g-Si-Platte.
5. Verfahren nach Anspruch 4, wobei bei dem Prozess des Befestigens leitfähige Klebstoffe
verwendet werden.
6. Verfahren nach Anspruch 4, das ferner den Prozess des Schneidens des l-g-Si-Wafers
zum Vereinzeln in diskrete Mehrfach-Ausgang-Bauelemente mit in einer l-g-Si-Platte
eingebetteten Transistorchips als eine Einhausung beinhaltet.
7. Verfahren nach Anspruch 6, wobei es sich bei den Transistoren des ersten und des zweiten
Chips um MOS-Feldeffekttransistoren handelt und es sich bei dem elektronischen System
um einen Power-Block handelt.
8. Verfahren nach Anspruch 6, wobei es sich bei den Transistoren des ersten und des zweiten
Chips um Bipolartransistoren handelt und es sich bei dem elektronischen System um
einen Regler handelt.
9. Verfahren nach Anspruch 4, wobei der Prozess des Bereitstellens eines Wafers aus geringqualitativem
Silicium (l-g-Si) die Folgenden Prozesse beinhaltet:
Bereitstellen eines Wafers aus l-g-Si, der mehrere Plattenstellen enthält, wobei der
Wafer eine erste Dicke und eine erste Oberfläche in einer ersten Ebene aufweist;
Bilden einer ersten Isolierschicht auf der ersten Oberfläche, wobei die erste Isolierschicht
alle Plattenstellen bedeckt;
Entfernen der Isolierschicht von dem mittleren Abschnitt jeder Plattenstelle, um das
darunter liegende l-g-Si freizulegen, wobei die Isolierschicht über den Abschnitten
peripherer Stellen nichtentfernt belassen wird, um eine Erhöhung, die jeden mittleren
Abschnitt umrahmt, zu bilden;
Ätzen des freigelegten l-g-Si des mittleren Bereichs jeder Bauelementstelle, um eine
Vertiefung mit einer zweiten l-g-Si-Oberfläche, die einen mittleren flachen Abschnitt
in einer aus der ersten Ebene um eine erste Tiefe ausgesparten zweiten Ebene aufweist,
und Schrägen zwischen der ersten und der zweiten l-g-Si-Oberfläche zu erzeugen;
Bilden einer zweiten Isolierschicht auf der zweiten l-g-Si-Oberfläche, wobei die zweite
Isolierschicht den mittleren Bereich jeder Bauelementstelle bedeckt;
Abscheiden mindestens einer Metallschicht auf dem gesamten Wafer;
Strukturieren der Metallschicht an jeder Bauelementstelle, um Bauelementanschlüsse
auf den Erhöhungen und mehrere zu Transistoranschlüssen passende Pads in dem mittleren
Abschnitt zu bilden, wobei die Pads in einen inneren Satz und einen peripheren Satz
gruppiert werden;
Abscheiden einer Passivierungsschicht auf der Waferoberfläche, die alle Bauelementstellen
bedeckt; und
Entfernen, an jeder Bauelementstelle, der Passivierungsschicht von den Anschlüssen
auf den Rahmen und von den Pads in dem mittleren Bereich, um das darunter liegende
Metall freizulegen, während das Passivierungsmaterial über den Schrägen und zwischen
den Pads nichtentfernt belassen wird.
10. Verfahren nach Anspruch 9, wobei das geringqualitative Silicium (l-g-Si) des Wafers
ausgewählt ist aus einer Gruppe, die unter anderem wiederverwertetes Silicium, unaufgereinigtes
Silicium, undotiertes Silicium, polykristallines Silicium, intrinsisch polykristallines
Silicium, niedrig dotiertes polykristallines n-Typ-Silicium und niedrig dotiertes
polykristallines p-Typ-Silicium enthält.
11. Verfahren nach Anspruch 9, wobei die Metallschichten jeweils eine Schicht aus Titan,
Titannitrid und Aluminium enthalten.
12. Verfahren nach Anspruch 9, das ferner den Prozess des Abscheidens einer Schicht aus
Nickel gefolgt von einer äußersten Schicht aus Gold auf der Aluminiumschicht beinhaltet.
13. Verfahren nach Anspruch 4, wobei der Prozess des Bereitstellens mehrerer zweiter Chips
die Folgenden Prozesse beinhaltet:
Bereitstellen eines Halbleiterwafers, der einen Volumenhalbleiter mit niedrigem spezifischen
Widerstand und eine Epitaxialschicht aus intrinsischem Halbleiter enthält, wobei der
Wafer eine dritte Dicke aufweist und mehrere Bauelementstellen enthält;
Bilden eines Transistors an jeder Stelle, wobei der Transistor Anschlüsse auf den
Oberflächen des Epitaxial- und des Volumenhalbleiters aufweist;
Ätzen des Volumenhalbleiters jeder Stelle, um eine Kavität mit einem flachen mittleren
Bereich, umrahmt durch eine Erhöhung aus Volumenhalbleiter, zu bilden, wobei der mittlere
Bereich eine Größe und eine Tiefe aufweist, die zur Unterbringung eines ersten Chips
geeignet sind, wobei jedoch der Volumenhalbleiterrahmen dritter Dicke ungeätzt belassen
wird;
Abscheiden mindestens einer Metallschicht auf den Oberflächen des Epitaxial- und des
geätzten Volumenhalbleiters des gesamten Wafers;
Bilden metallisierter Transistoranschlüsse durch Strukturieren der Metallschicht auf
der Oberfläche des Epitaxialhalbleiters jeder Stelle, wobei jedoch die Metallschicht
über dem mittleren Bereich und der Erhöhung der Kavität jeder Stelle nichtstrukturiert
belassen wird; und
Schneiden des Wafers zum Vereinzeln in diskrete zweite Chips dritter Dicke mit metallisierten
Erhöhungen.
1. Système de boîtier électronique (100) comprenant :
une plaque (130) de silicium de faible qualité, l-g-Si, ayant une première épaisseur
(130a) et une surface (130d) dans un premier plan (191), la plaque étant configurée
comme une rive (131) dans le premier plan encadrant un creux comprenant une zone centrale
en retrait dans un deuxième plan (192) espacé du premier plan (191) d'une première
profondeur (132a),
la rive et la zone centrale étant recouvertes d'une couche métallique structurée en
plots pour le contact avec des bornes de transistor, les plots de la zone centrale
étant regroupés en un ensemble intérieur et un ensemble périphérique ;
une première puce semi-conductrice (101) ayant un premier côté plat (101d) et un deuxième
côté plat opposé (101b), et une deuxième épaisseur (101a) inférieure à la première
épaisseur (130a), la première puce (101) comprenant un transistor ayant des bornes
sur le premier et le deuxième côté, les bornes du premier côté de la puce étant fixées
à des plots respectifs de l'ensemble intérieur de la zone centrale de la plaque de
l-g-Si (130), créant un sous-ensemble, les bornes du deuxième côté de la puce (101b)
étant orientées vers le premier plan (191) ;
une seconde puce semi-conductrice (102) ayant un troisième côté plat (102d) et un
quatrième côté opposé profilé (102b), et une troisième épaisseur (102a) inférieure
à la première épaisseur (130a) mais supérieure à la deuxième épaisseur (101a), le
quatrième côté (102b) étant configuré comme une rive (103) dans un troisième plan
(193) encadrant un creux comprenant une zone centrale plate dans un quatrième plan
parallèle (194) en retrait du troisième plan (193) d'une deuxième profondeur (132b)
inférieure à la première profondeur (132a) et accueillant la première puce (101),
le quatrième côté (102b) étant uniformément métallisé, la seconde puce (102) comprenant
un transistor ayant des bornes sur le troisième et le quatrième côté ; et
la zone centrale métallisée en creux du quatrième côté (102b) étant fixée aux bornes
sur le deuxième côté (101b) de la première puce (101), et les rives métallisées (103)
de la seconde puce (102) étant fixées aux plots de l'ensemble périphérique de la zone
centrale de l-g-Si, de sorte que les bornes de transistor sur le troisième côté (102d)
de la seconde puce (102) sont coplanaires avec la couche métallique sur les rives
(131) de la plaque de l-g-Si respective (130).
2. Dispositif selon la revendication 1, les transistors des première et seconde puces
étant des transistors à effet de champ MOS, et le système électronique étant un bloc
d'alimentation.
3. Dispositif selon la revendication 1, les transistors des première et seconde puces
étant des transistors bipolaires et le système électronique étant un régulateur.
4. Procédé de fabrication d'une pluralité de systèmes de boîtiers électroniques (100)
comprenant :
la fourniture d'une plaquette de silicium de faible qualité, l-g-Si, comprenant une
pluralité de sites de plaque (130), la plaquette ayant une première épaisseur (130a)
et une première surface (130d) dans un premier plan (191), chaque site étant configuré
comme une rive (131) dans le premier plan encadrant un creux comprenant une zone centrale
en retrait dans un deuxième plan (192) espacé du premier plan d'une première profondeur
(132a), la rive et la zone centrale étant recouvertes d'une couche métallique structurée
en plots pour le contact avec des bornes de transistor, les plots de la zone centrale
étant regroupés en un ensemble intérieur et un ensemble périphérique ;
la fourniture d'une pluralité de premières puces semiconductrices (101) ayant un premier
côté plat (101d) et un deuxième côté plat opposé (101b), et une deuxième épaisseur
(101a) inférieure à la première épaisseur, les premières puces comprenant des transistors
ayant des bornes sur le premier et le deuxième côté ;
la fixation des bornes du premier côté de puce à des plots respectifs de l'ensemble
intérieur de la zone centrale de chaque plaque de l-g-Si, créant des sous-ensembles,
les bornes du deuxième côté de puce étant orientées vers le premier plan ;
la fourniture d'une pluralité de secondes puces semiconductrices (102) ayant un troisième
côté plat (102d) et un quatrième côté opposé profilé (102b), et une troisième épaisseur
(102a) inférieure à la première épaisseur mais supérieure à la deuxième épaisseur,
le quatrième côté étant configuré comme une rive (103) dans un troisième plan (193)
encadrant un creux comprenant une zone centrale plate dans un quatrième plan parallèle
(194) en retrait du troisième plan d'une deuxième profondeur (132b) inférieure à la
première profondeur et adaptée pour accueillir les premières puces, le quatrième côté
étant uniformément métallisé, les secondes puces comprenant des transistors ayant
des bornes sur le troisième et le quatrième côté ; et
pour chaque sous-ensemble, la fixation de la zone centrale métallisée en creux du
quatrième côté d'une seconde puce aux bornes sur le deuxième côté de la première puce
respective, et les rives métallisées de la seconde puce aux plots de l'ensemble périphérique
respectif de la zone centrale de l-g-Si, de sorte que les bornes du transistor sur
le troisième côté des secondes puces sont coplanaires avec la couche métallique sur
les rives de la plaque de l-g-Si respective.
5. Procédé selon la revendication 4, le processus de fixation utilisant des adhésifs
conducteurs.
6. Procédé selon la revendication 4, comprenant en outre le processus de découpage de
la plaquette de l-g-Si pour singulariser des dispositifs discrets à sorties multiples
ayant des puces de transistor incorporées dans une plaque de l-g-Si en un boîtier.
7. Procédé selon la revendication 6, les transistors des première et seconde puces étant
des transistors à effet de champ MOS, et le système électronique étant un bloc d'alimentation.
8. Procédé selon la revendication 6, les transistors des première et seconde puces étant
des transistors bipolaires et le système électronique étant un régulateur.
9. Procédé selon la revendication 4, le processus de fourniture d'une plaquette de silicium
de faible qualité (l-g-Si) comprenant les processus de :
fourniture d'une plaquette de l-g-Si comprenant une pluralité de sites de plaque,
la plaquette ayant une première épaisseur et une première surface dans un premier
plan ;
formation d'une première couche isolante sur la première surface, la première couche
isolante recouvrant tous les sites de plaque ;
retrait de la couche isolante de la partie centrale de chaque site de plaque pour
exposer le l-g-Si sous-jacent, en laissant la couche isolante non retirée sur les
parties périphériques du site pour former une rive encadrant chaque partie centrale
;
gravure du l-g-Si exposé de la zone centrale de chaque site de dispositif pour créer
un creux avec une seconde surface de l-g-Si ayant une partie centrale plate dans un
deuxième plan en retrait du premier plan d'une première profondeur, et des pentes
entre la première et la seconde surface de l-g-Si ;
formation d'une deuxième couche isolante sur la deuxième surface de l-g-Si, la deuxième
couche isolante recouvrant la zone centrale de chaque site de dispositif ;
dépôt d'au moins une couche de métal sur l'ensemble de la plaquette ;
formation d'un motif sur la couche métallique à chaque site de dispositif pour former
des bornes de dispositif sur les rives et une pluralité de plots correspondant à des
bornes de transistor dans la partie centrale, les plots étant regroupés en un ensemble
intérieur et un ensemble périphérique ;
dépôt d'une couche de passivation sur la surface de la plaquette, recouvrant tous
les sites de dispositifs ; et
retrait, à chaque site de dispositif, de la couche de passivation des bornes sur les
cadres et des plots dans la partie centrale, pour exposer le métal sous-jacent, tout
en laissant le matériau de passivation non retiré sur les pentes et entre les plots.
10. Procédé selon la revendication 9, le silicium de faible qualité (l-g-Si) de la plaquette
étant choisi dans un groupe comprenant, sans s'y limiter, le silicium régénéré, le
silicium non raffiné, le silicium non dopé, le silicium polycristallin, le silicium
polycristallin intrinsèque, le silicium polycristallin de type n faiblement dopé et
le silicium polycristallin de type p faiblement dopé.
11. Procédé selon la revendication 9, les couches de métal comprenant une couche de titane,
une couche de nitrure de titane et une couche d'aluminium.
12. Procédé selon la revendication 9, comprenant en outre le processus de dépôt d'une
couche de nickel suivie d'une couche d'or extérieure sur la couche d'aluminium.
13. Procédé selon la revendication 4, le processus de fourniture d'une pluralité de secondes
puces comprenant les processus de :
fourniture d'une plaquette de semi-conducteur comprenant un semi-conducteur massif
à faible résistivité et une couche épitaxiale de semi-conducteur intrinsèque, la plaquette
ayant une troisième épaisseur et comprenant une pluralité de sites de dispositifs
;
formation d'un transistor dans chaque site, le transistor ayant des bornes sur les
surfaces du semi-conducteur épitaxial et du semi-conducteur massif ;
gravure du semi-conducteur massif de chaque site pour former une cavité avec une zone
centrale plate encadrée par une rive de semi-conducteur massif, la zone centrale ayant
une taille et une profondeur appropriées pour loger une première puce, tout en laissant
non gravé le cadre de semi-conducteur massif de troisième épaisseur ;
dépôt d'au moins une couche de métal sur les surfaces du semi-conducteur épitaxial
et du semi-conducteur massif gravé de toute la plaquette ;
formation de bornes de transistor métallisées en structurant la couche métallique
sur la surface du semi-conducteur épitaxial de chaque site, tout en laissant non-structurée
la couche métallique sur la zone centrale et la rive de la cavité de chaque site ;
et
découpage de la plaquette pour singulariser des secondes puces discrètes de troisième
épaisseur ayant des rives métallisées.