TECHNICAL FIELD
[0001] The present disclosure relates to power capacitors comprising a plurality of capacitor
elements.
BACKGROUND
[0002] Power capacitor units, or high voltage capacitor units, typically comprise a casing
and a plurality of capacitor elements arranged inside the casing and connected to
busbar assemblies, which in turn are connected to bushings for leading current into
and out from the casing.
[0003] Each capacitor element may consist of a few layers of insulating film such as polypropylene,
which is wound together with aluminium foil. The aluminium foils work as electrodes
and the film layers work as dielectric. Capacitor elements could alternatively consist
of a few layers of metalized plastic film.
[0004] A large quantity of heat is generated inside the casing when a power capacitor is
being operated.
US 2014/334105 A1 discloses a capacitor packaging solution that incorporates both thermal and electrical
considerations. A package can include capacitor elements electrically coupled to a
busbar, and a thermally enhanced isolation layer between the busbar and a case. The
isolation layer is provided adjacent a case base and sidewall portions. The busbar
is disposed adjacent the isolation layer and be configured to extend along the package
side and along the package length below the capacitor elements to provide an extended
path for heat dissipation from the bus bar prior to its contact with capacitor elements.
The enhanced isolation layer is configured to conduct heat away from the busbar to
the case to avoid the hotspot temperature of the capacitor. The isolation layer provides
electrical isolation between the busbar and the case, as well as provides a heat conducting
medium that can improve the transfer of heat from the busbar to the case, and thus
reduce the amount of heat transferred to the capacitor elements. The isolation layer
comprises a thermally enhanced substance configured to improve heat dissipation. The
isolation layer comprises an epoxy substance in which a thermally conductive filler,
such as alumina filler, has been infused.
[0005] US 2016/172121 A1 discloses an energy storage module comprising a plurality of energy storage assemblies
electrically connected to one another. The module comprises an external casing in
which are arranged the storage assemblies and at least one heat exchanger. The energy
storage assemblies are arranged side by side on at least two distinct levels, the
or at least one of the heat exchangers being positioned between two adjacent levels
so as to be in thermal contact with at least one storage assembly of each of the two
adjacent levels on two opposite respective contact faces of the exchanger. The or
at least one of the exchangers is fixed to the casing of the module at least at a
securing wall that is distinct from the contact faces. The securing walls of the exchanger
and of the casing are configured in such a way that the module has a space between
the corresponding securing walls of the exchanger and of the casing, at least at a
location distinct from a securing site.
SUMMARY
[0006] Electrical characteristics, e.g. capacitance size, are typical performance parameters
taken into account when designing a power capacitor unit. Such parameters may be dependent
of the size or number of the capacitor elements.
[0007] By selecting a suitable number of layers of capacitor elements having a fixed predetermined
height, better production flexibility may be provided, because less modification of
the assembly line is required compared to the case when differently sized capacitor
elements would have to be produced for differently rated power capacitor units. A
one-sized capacitor element may thus be seen as a building block for creating power
capacitor units with different performance ratings. Thus, instead of enlarging the
size of each capacitor element for a higher performance power capacitor, which would
require substantial modifications of the assembly line, additional capacitor elements
may be stacked in layers to obtain the desired power capacitor performance.
[0008] Power capacitor units provided with more than one layer of capacitor elements however
provides a challenge due to the additional heat generated by busbar assemblies arranged
between the layers of capacitor elements.
[0009] The disclosure of
US 2014/334105 A1 discloses only a single-layered capacitor, which provides heat conduction in the
direction from the busbar towards the case, but it does not provide efficient heat
conduction in the transverse direction, perpendicular to the heat transfer direction
between the busbar and case.
[0010] In view of the above, a general object of the present disclosure is to provide a
power capacitor unit which solves or at least mitigates the problem of the prior art.
[0011] There is hence provided a power capacitor unit comprising: a casing, a first layer
of capacitor elements, a second layer of capacitor elements, wherein the first layer
of capacitor elements are stacked on the second layer of capacitor elements, a first
busbar assembly connected to the capacitor elements of the first layer, a second busbar
assembly connected to the capacitor elements of the second layer, wherein the first
busbar assembly and the second busbar assembly are arranged between the first layer
of capacitor elements and the second layer of capacitor elements, a heat conducting
layer provided between the first busbar assembly and the second busbar assembly, wherein
the heat conducting layer is in thermal contact with the casing, thereby conducting
heat from the first busbar assembly and the second busbar assembly to the casing,
and wherein the casing is electrically insulated from the first busbar assembly and
the second busbar assembly.
[0012] An effect obtainable thereby is that heat generated between the two layers of capacitor
elements may be conducted away from this region to the casing for cooling of the power
capacitor unit. The heat conducting layer provides heat conduction laterally in the
plane defined by the heat conducting layer, out to the casing.
[0013] Furthermore, a power capacitor unit having two or more layers of capacitor elements
can be designed with lower maximum temperature compared to the same MVAR or MJoule
ratings with one layer of capacitor elements due to the heat conducting layer. A greater
flexibility in the production can be obtained when it is possible to use a larger
number of shorter capacitor elements instead of a smaller number of taller capacitor
elements to design the power capacitor unit.
[0014] The heat dissipation from the first busbar assembly and the second busbar assembly
is provided by means of a heat sink functionality of the heat conducting layer and
the casing which is in thermal contact with the heat conducting layer. The majority
of heat dissipated from the first busbar assembly and the second busbar assembly is
thus provided by this heat sink functionality obtained due to the thermal contact
between the heat conducting layer and the casing.
[0015] The heat conducting layer may according to one variation be solid. The heat conducting
layer is in particular not hollow; it is for example not provided with any channels
for carrying a coolant. The heat conducting layer may be monolithic.
[0016] According to one embodiment the heat conducting layer is formed by at least one sheet.
[0017] According to one embodiment the at least one sheet is one of an aluminium sheet,
a copper sheet, and a plastic sheet comprising oxide particles.
[0018] According to one embodiment the at least one sheet has a sheet portion which protrudes
from between the first layer of capacitor elements and second layer of capacitor elements
and which sheet portion is folded to extend parallel, and in thermal contact, with
a sidewall of the casing.
[0019] According to one embodiment the sheet portion is furthermore folded to extend parallel,
and in thermal contact, with a wide wall of the casing, which wide wall is parallel
with a surface defined by the heat conducting layer between the first layer of capacitor
elements and the second layer of capacitor elements.
[0020] According to one embodiment the sheet portion extends along a majority of the length
of the wide wall. By arranging the metal sheet with additional thermal contact with
the casing, better heat dissipation may be obtained.
[0021] According to one embodiment the heat conducting layer is in direct contact with the
casing.
[0022] One embodiment comprises a first insulation layer provided between and in thermal
contact with the heat conducting layer and the first busbar assembly, which first
insulation layer is configured to provide electrical insulation between the first
busbar assembly and the heat conducting layer, and a second insulation layer provided
between and in thermal contact with the heat conducting layer and the second busbar
assembly, which second insulation layer is configured to provide electrical insulation
between the second busbar assembly and the heat conducting layer. The casing is thereby
electrically insulated from the first busbar assembly and the second busbar assembly,
in particular in case that the heat conducting layer is a metal sheet.
[0023] If the heat conducting layer is both electrically insulating and heat conducting,
e.g. in case the heat conducting layer is made of a plastic material comprising oxide
particles interspersed therein, there is generally no need for additional electrical
insulation layers other than the heat conducting layer itself in order to provide
electrical insulation between the first busbar assembly, the second busbar assembly
and the casing.
[0024] According to one embodiment the first insulation layer is in direct contact with
the first busbar assembly and with the heat conducting layer.
[0025] According to one embodiment the second insulation layer is in direct contact with
the second busbar assembly and with the heat conducting layer.
[0026] According to one embodiment the casing is composed of metal.
[0027] According to one embodiment the first insulation layer is formed by a polymer sheet.
[0028] According to one embodiment the second insulation layer is formed by a polymer sheet.
[0029] One embodiment comprises a third busbar assembly connected to the capacitor elements
of the first layer and provided between the casing and the capacitor elements of the
first layer, and a third insulation layer provided between the third busbar assembly
and the casing for electrically insulating the casing from the third busbar assembly.
[0030] One embodiment comprises a fourth busbar assembly connected to the capacitor elements
of the second layer and provided between the casing and the capacitor elements of
the second layer, and a fourth insulation layer provided between the fourth busbar
assembly and the casing for electrically insulating the casing from the fourth busbar
assembly.
[0031] According to one embodiment the heat conducting layer is only arranged to cover a
limited portion of the area between the first layer of capacitor elements and the
second layer of capacitor elements, the heat conducting layer being provided only
along two opposite lateral portions between the first layer of capacitor elements
and the second layer of capacitor elements.
[0032] The casing may have a proximal end wall which contains the bushings and a distal
end wall which is arranged opposite to the proximal end wall. The opposite lateral
portions may extend in a direction from the proximal end wall towards the distal end
wall.
[0033] Generally, all terms used in the claims are to be interpreted according to their
ordinary meaning in the technical field, unless explicitly defined otherwise herein.
All references to "a/an/the element, apparatus, component, means, etc. are to be interpreted
openly as referring to at least one instance of the element, apparatus, component,
means, etc., unless explicitly stated otherwise.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034] The specific embodiments of the inventive concept will now be described, by way of
example, with reference to the accompanying drawings, in which:
Fig. 1 schematically shows a perspective view of an example of a power capacitor unit;
Fig. 2 schematically depicts a perspective view of a portion of the power capacitor
unit in Fig 1 with some internal components exposed;
Fig. 3 is a cross-section along lines A-A of the power capacitor in Fig. 1 schematically
showing one example of a heat conducting configuration of the power capacitor unit
in Fig. 1;
Fig. 4 is a cross-section along lines A-A of the power capacitor in Fig. 1 schematically
showing another example of a heat conducting configuration of the power capacitor
unit in Fig. 1; and
Fig. 5 is a cross-section along lines A-A of the power capacitor in Fig. 1 schematically
showing another example of a heat conducting configuration of the power capacitor
unit in Fig. 1.
DETAILED DESCRIPTION
[0035] The inventive concept will now be described more fully hereinafter with reference
to the accompanying drawings, in which exemplifying embodiments are shown. The inventive
concept may, however, be embodied in many different forms and should not be construed
as limited to the embodiments set forth herein; rather, these embodiments are provided
by way of example so that this disclosure will be thorough and complete, and will
fully convey the scope of the inventive concept to those skilled in the art. Like
numbers refer to like elements throughout the description.
[0036] The present disclosure relates to a power capacitor unit comprising a casing and
two layers of capacitor elements arranged in a stacked manner. It should be noted
that the power capacitor unit may comprise exactly two layers of capacitor elements,
or more than two layers of capacitor elements, in which case the structure described
below may be applied between each adjacent pair of layers of capacitor elements.
[0037] Each layer of capacitor elements comprises at least one, but typically a plurality
of rows, and a plurality of columns of capacitor elements, arranged in a common plane.
[0038] The power capacitor unit also has a first busbar assembly connected to one layer
of capacitor elements, providing an electrical connection to the capacitor elements,
and a second busbar assembly connected to the other layer of capacitor elements, providing
an electrical connection to the capacitor elements. The first busbar assembly and
the second busbar assembly are arranged between the two layers of capacitor elements.
[0039] The power capacitor unit also includes a heat conducting layer arranged between the
first busbar assembly and the second busbar assembly, i.e. between the two layers
of capacitor elements. The casing is electrically insulated from the first busbar
assembly and the second busbar assembly. This electrical insulation may for example
be obtained by means of the inherent structure of the heat conducting layer, which
according to one example may be made of one or more sheets of plastic material provided
with a plurality of oxide particles dispersed therein for conducting heat while the
plastic material also provides an adequate electrical insulation. In this case, the
heat conducting layer may be arranged in direct contact with the first busbar assembly
and the second busbar assembly.
[0040] Alternatively, the power capacitor unit may comprise a first insulation layer arranged
between the heat conducting layer and the first busbar assembly, and a second insulation
layer arranged between the heat conducting layer and the second busbar assembly. The
first busbar assembly is arranged in thermal contact with the heat conducting layer,
via the first insulation layer. The second busbar assembly is arranged in thermal
contact with the heat conducting layer, via the second insulation layer.
[0041] The first insulation layer is configured to provide electrical insulation between
the first busbar assembly and the heat conducting layer. The second insulation layer
is configured to provide electrical insulation between the second busbar assembly
and the heat conducting layer. The first insulation layer and the second insulation
layer are preferably thin, for example in the order or 0.1-5 mm, such as 0.1-3 mm,
for example 0.1-2 mm, to facilitate heat conduction to the heat conducting layer from
the busbar assemblies.
[0042] There are hence a number of stacked layers between the two layers of capacitor elements.
The layers are arranged in the following order, in the case of the presence of additional
insulation layers. The first busbar assembly is arranged adjacent to the capacitor
elements of the first layer, then follows the first insulation layer, the heat conducting
layer, the second insulation layer, and the second busbar assembly arranged adjacent
to the capacitor elements of the second layer.
[0043] The heat conducting layer is in thermal contact with the casing. Hereto, the heat
conducting layer is configured to transfer heat from the first busbar assembly and
the second busbar assembly arranged between the two layers of capacitor elements,
to the casing for cooling the power capacitor unit.
[0044] Fig. 1 shows an example of a power capacitor unit 1. The power capacitor unit 1 may
be a low voltage or a high voltage capacitor unit, either an AC type capacitor unit
or a DC type capacitor unit.
[0045] The power capacitor unit 1 has a casing 3 and a plurality of bushings 5 extending
through the casing 3 for connecting the power capacitor unit 1 to an electrical circuit.
The casing 3 is preferably made of metal, for example steel such as stainless steel
or carbon steel, aluminium or any other suitable metal material, or composite material.
[0046] Fig. 2 shows the power capacitor unit 1 with portions of the casing 3 removed to
expose the interior of the power capacitor unit 1. It is to be noted that in this
schematic drawing, the insulation layers and the heat conducting layer previously
mentioned are not shown for reasons of clarity. As can be seen, the power capacitor
unit 1 comprises a first layer 7 of capacitor elements 7a and a second layer 9 of
capacitor elements 9a. A busbar assembly 25 is also shown arranged on top of the first
layer 7 of capacitor elements 7a.
[0047] Turning now to Fig. 3, an example of an internal configuration of the power capacitor
unit 1 is shown, with a cross-section taken along lines A-A of Fig. 1. As can be seen
each capacitor element 7a is stacked on a respective capacitor element 9a. The capacitor
elements 7a thus form the first layer 7 of capacitor elements 7a and the capacitor
elements 9a form the second layer 9 of capacitor elements 9a.
[0048] The power capacitor unit 1 comprises a first busbar assembly 13 extending along the
capacitor elements 7a of the first layer 7 of capacitor elements 7a. The busbar assembly
13 provides an electrical connection to the capacitor elements 7a. The first busbar
assembly 13 is furthermore connected to a bushing 5, shown in Figs 1 and 2, for leading
current to or from the capacitor elements 7a of the first layer 7 of capacitor elements
7a.
[0049] The power capacitor unit 1 also comprises a first insulation layer 15 extending along
the first busbar assembly 13. The first insulation layer 15 may for example be a polymer
layer such as a polypropylene layer.
[0050] The power capacitor unit 1 furthermore comprises a second busbar assembly 19 extending
along the capacitor elements 9a of the second layer 9 of capacitor elements 9a. The
busbar assembly 19 provides an electrical connection to the capacitor elements 9a.
The second busbar assembly 19 is connected to another bushing 5 for leading current
to or from the capacitor elements 9a of the second layer 9 of capacitor elements 9a.
[0051] The power capacitor unit 1 also comprises a second insulation layer 21 extending
along the second busbar assembly 19. The second insulation layer 21 may for example
be a polymer sheet such as a polypropylene sheet.
[0052] The power capacitor unit 1 comprises a heat conducting layer 17 configured to lead
heat away from the first busbar assembly 13 and from the second busbar assembly 21,
via the first insulation layer 15 and the second insulation layer 21, to the casing
3.
[0053] The heat conducting layer 17 may be composed of one or more metal sheets, each metal
sheet for example being a copper sheet or an aluminium sheet.
[0054] The first insulation layer 15 is configured to provide electrical insulation between
the first busbar assembly 13 and the heat conducting layer 17. The second insulation
layer 21 is configured to provide electrical insulation between the second busbar
assembly 19 and the heat conducting layer 17.
[0055] The first insulation layer 15 and the second insulation layer 21 mainly conduct heat
in directions perpendicular to the plane defined by the first insulation layer 15
and the second insulation layer 21. Hereto, the first insulation layer 15 conducts
heat from the first busbar assembly 13 to the heat conducting layer 17 and the second
insulation layer 21 conducts heat from the second busbar assembly 19 to the heat conducting
layer 17. The heat conducting layer 17 conducts heat in directions parallel with the
plane defined by the heat conducting layer 17, to the casing 3, in particular to the
sidewalls 3a and 3b of the casing 3. The heat conducting layer 17 hence conducts heat
laterally.
[0056] The heat conducting layer 17 has sheet portions 23 which protrude laterally from
between the first layer 7 of capacitor elements 7a and the second layer 9 of capacitor
elements 9a. In particular, each sheet portion 23 may be folded to extended parallel
with a respective sidewall 3a, 3b. The sheet portions 23 are preferably arranged in
thermal contact, for example in direct contact, with the sidewalls 3a, 3b so that
heat may be transferred from the heat conducting layer 17 to the casing 3 in a more
efficient manner. In order to obtain folding in both directions shown in Fig. 3, two
stacked sheets may be used to form the heat conducting layer 17, with the lower sheet
being folded downwards and the upper sheet being folded upwards. According to the
example shown in Fig. 3, the sheet or sheets forming the heat conducting layer 17
are folded several times so that the sheet portion 23 extends parallel and in thermal
contact, such as in direct contact, with the wide walls 3c and 3d arranged adjacent
to the sidewalls 3a and 3b and parallel with the heat conducting layer 17 extending
between the first layer 7 of capacitor elements 7a and the second layer 9 of capacitor
elements 9a. Hereto, the sheet portion 23 may be configured to enclose the first layer
7 of capacitor elements 7a and the second layer 9 of capacitor elements 9a and extend
along all of the four walls 3a-3d in a cross-section of the power capacitor unit 1.
[0057] The heat conducting layer 17 may according to one variation be arranged to cover
essentially the entire surface formed between the first layer 7 of capacitor elements
7a and the second layer of capacitor elements 9a. According to another variation,
the heat conducting layer 17 may be arranged to cover only the main hot spot region
between the two layers 7 and 9 in which case the heat conducting layer 17 extends
between the two sidewalls 3a and 3b, as shown in Fig. 3, but it does not extend all
the way between the proximal end wall containing the bushings 5 and the distal end
wall of the power capacitor unit i.The hot spot region may be located centrally between
the two sidewalls 3a and 3b of the casing 3, closer to the proximal end wall which
contains the bushings 5 than to the distal end wall of the power capacitor unit 1.
[0058] The power capacitor unit 1 may furthermore comprise a third busbar assembly 25 connected
to the capacitor elements 7a of the first layer 7. The third busbar assembly 25 may
be provided at the opposite side of the capacitor elements 7a with respect to that
side to which the first busbar assembly 13 is connected. The third busbar assembly
25 is furthermore connected to a bushing 5 to lead current to/from the capacitor elements
7a. In particular one of the busbar assemblies 13 and 25 is configured to lead current
to the capacitor elements 7a and the other one is configured to lead current away
from the capacitor elements 7a.
[0059] The power capacitor unit 1 may also have a third insulation layer 27 arranged between
the casing 3 and the third busbar assembly 25 to provide electrical insulation between
the casing 3 and the third busbar assembly 25. According to the example shown in Fig.
3, the sheet portion 23 extends along the wide wall 3d and is arranged between the
wide wall 3d and the third insulation layer 27. Hereto, the third insulation layer
27 is configured to transfer heat from the third busbar assembly 25 to the sheet portion
23 arranged along the wide wall 3d.
[0060] The power capacitor unit 1 may furthermore comprise a fourth busbar assembly 29 connected
to the capacitor elements 9a of the second layer 9. The fourth busbar assembly 29
may be provided at the opposite side of the capacitor elements 9a with respect to
that side to which the second busbar assembly 19 is connected. The fourth busbar assembly
29 is furthermore connected to a bushing 5 to lead current to/from the capacitor elements
9a. In particular one of the busbar assemblies 19 and 29 is configured to lead current
to the capacitor elements 9a and the other one is configured to lead current away
from the capacitor elements 9a.
[0061] The power capacitor unit 1 may also have a fourth insulation layer 31 arranged between
the casing 3 and the fourth busbar assembly 29 to provide electrical insulation between
the casing 3 and the fourth busbar assembly 29. According to the example shown in
Fig. 3, the sheet portion 23 extends along the wide wall 3c and is arranged between
the wide wall 3c and the fourth insulation layer 31. Hereto, the fourth insulation
layer 31 is configured to transfer heat from the fourth busbar assembly 29 to the
sheet portion 23 arranged along the wide wall 3c.
[0062] Fig. 4 shows another example internal configuration of the power capacitor unit 1.
This example is very similar to the example shown in Fig. 3, except that the heat
conducting layer 17' has a slightly different configuration.
[0063] According to the example in Fig. 4, the heat conducting layer 17' includes sheets
33, 35 that are folded to extend along and in thermal contact with essentially the
entire sidewalls 3a, 3b in a direction from one wide wall 3c to the other wide wall
3d. The sheets 33, 35 are furthermore folded to extend along and in thermal contact
with only a portion of the respective wide walls 3c, 3d in a direction from one side
wall 3a to the other side wall 3b.
[0064] Although not shown in the schematic drawing in Fig. 4, the third and fourth insulation
layers 27 and 31 may be in contact with the respective wide wall 3c, 3d to thereby
transfer heat from the third busbar assembly 25 and the fourth busbar assembly 29,
respectively.
[0065] According to the example in Fig. 5, the heat conducting layer 17' is only arranged
to cover a limited portion of the area between the first layer 7 of capacitor elements
7a and the second layer 9 of capacitor elements 9a. In particular the heat conducting
layer 17' may be formed by several metal sheets, namely at least a first sheet 33
provided only along a lateral portion between the first layer 7 of capacitor elements
7a and the second layer 9 of capacitor elements 9a, and at least a second sheet 35
provided only along an opposite lateral portion between the first layer 7 of capacitor
elements 7a and the second layer 9 of capacitor elements 9a. Furthermore, the sheets
33, 35 are folded to extend along and in thermal contact with essentially the entire
respective sidewalls 3a, 3b in a direction from one wide wall 3c to the other wide
wall 3d. The sheets 33, 35 are furthermore folded to extend along and in thermal contact
with only a portion of the respective wide walls 3c, 3d in a direction from one side
wall 3a to the other side wall 3b. Alternatively, the sheets 33, 35 could be folded
to extend along and in thermal contact with the entire respective wide walls 3c, 3d
in a direction from one side wall 3a to the other side wall 3b.Each of the first busbar
assembly and the second busbar assembly may for example comprise conductive strips
arranged in a grid formation as shown in Fig. 2. Alternatively the first busbar assembly
may comprise a conductive sheet configured to be connected to each capacitor element
of the first layer of capacitor elements, and the second busbar assembly may comprise
a conductive sheet configured to be connected to each capacitor element of the second
layer of capacitor elements.
[0066] The inventive concept has mainly been described above with reference to a few examples.
However, as is readily appreciated by a person skilled in the art, other embodiments
than the ones disclosed above are equally possible within the scope of the inventive
concept, as defined by the appended claims.
1. A power capacitor unit (1) comprising:
a casing (3),
a first layer (7) of capacitor elements (7a),
a second layer (9) of capacitor elements (9a), wherein the first layer (7) of capacitor
elements (7a) are stacked on the second layer (9) of capacitor elements (9a),
a first busbar assembly (13) connected to the capacitor elements (7a) of the first
layer (7),
a second busbar assembly (19) connected to the capacitor elements (9a) of the second
layer (9),
wherein the first busbar assembly (13) and the second busbar assembly (19) are arranged
between the first layer (7) of capacitor elements (7a) and the second layer (9) of
capacitor elements (9a),
a heat conducting layer (17; 17') provided between the first busbar assembly (13)
and the second busbar assembly (19),
wherein the heat conducting layer (17; 17') is in thermal contact with the casing
(3), thereby conducting heat from the first busbar assembly (13) and the second busbar
assembly (19) to the casing (3), and wherein the casing (3) is electrically insulated
from the first busbar assembly (13) and the second busbar assembly (19).
2. The power capacitor unit (1) as claimed in claim 1, wherein the heat conducting layer
(17; 17') is formed by at least one sheet.
3. The power capacitor unit (1) as claimed in claim 2, wherein the at least one sheet
is one of an aluminium sheet, a copper sheet, and a plastic sheet comprising oxide
particles.
4. The power capacitor unit (1) as claimed in claim 2 or 3, wherein the at least one
sheet has a sheet portion (23) which protrudes from between the first layer (7) of
capacitor elements (7a) and second layer (9) of capacitor elements (9a) and which
sheet portion (23) is folded to extend parallel, and in thermal contact, with a sidewall
(3a, 3b) of the casing (3).
5. The power capacitor unit (1) as claimed in claim 4, wherein the sheet portion (23)
is furthermore folded to extend parallel, and in thermal contact, with a wide wall
(3c, 3d) of the casing (3), which wide wall (3c, 3d) is parallel with a surface defined
by the heat conducting layer (17; 17') between the first layer (7) of capacitor elements
(7a) and the second layer (9) of capacitor elements (9a).
6. The power capacitor unit (1) as claimed in claim 5, wherein the sheet portion (23)
extends along a majority of the length of the wide wall (3c, 3d).
7. The power capacitor unit (1) as claimed in any of the preceding claims, wherein the
heat conducting layer (17; 17') is in direct contact with the casing (3).
8. The power capacitor as claimed in any of the preceding claims, comprising a first
insulation layer (15) provided between and in thermal contact with the heat conducting
layer (17; 17') and the first busbar assembly (13), which first insulation layer (15)
is configured to provide electrical insulation between the first busbar assembly (13)
and the heat conducting layer (17; 17'), and a second insulation layer (21) provided
between and in thermal contact with the heat conducting layer (17; 17') and the second
busbar assembly (19), which second insulation layer (21) is configured to provide
electrical insulation between the second busbar assembly (19) and the heat conducting
layer (17; 17').
9. The power capacitor unit (1) as claimed in claim 8, wherein the first insulation layer
(15) is in direct contact with the first busbar assembly (13) and with the heat conducting
layer (17; 17').
10. The power capacitor unit (1) as claimed in claim 8 or 9, wherein the second insulation
layer (21) is in direct contact with the second busbar assembly (19) and with the
heat conducting layer (17; 17').
11. The power capacitor unit (1) as claimed in any of the preceding claims, wherein the
casing (3) is composed of metal.
12. The power capacitor unit (1) as claimed in any claims 8-11, wherein the first insulation
layer (15) is formed by a polymer sheet.
13. The power capacitor unit (1) as claimed in any of claims 8-12, wherein the second
insulation layer (21) is formed by a polymer sheet.
14. The power capacitor unit (1) as claimed in any of the preceding claims, comprising
a third busbar assembly (25) connected to the capacitor elements (7a) of the first
layer (7) and provided between the casing (3) and the capacitor elements (7a) of the
first layer (7), and a third insulation layer (27) provided between the third busbar
assembly (25) and the casing (3) for electrically insulating the casing (3) from the
third busbar assembly (25).
15. The power capacitor unit (1) as claimed in any of the preceding claims, comprising
a fourth busbar assembly (29) connected to the capacitor elements (9a) of the second
layer (9) and provided between the casing (3) and the capacitor elements (9a) of the
second layer (9), and a fourth insulation layer (31) provided between the fourth busbar
assembly (29) and the casing (3) for electrically insulating the casing (3) from the
fourth busbar assembly (29).
16. The power capacitor unit (1) as claimed in any of the preceding claims, wherein the
heat conducting layer (17') is only arranged to cover a limited portion of the area
between the first layer (7) of capacitor elements (7a) and the second layer (9) of
capacitor elements (9a), the heat conducting layer (17') being provided only along
two opposite lateral portions between the first layer (7) of capacitor elements (7a)
and the second layer (9) of capacitor elements (9a).
1. Leistungskondensatoreinheit (1), die Folgendes umfasst:
ein Gehäuse (3),
eine erste Schicht (7) von Kondensatorelementen (7a),
eine zweite Schicht (9) von Kondensatorelementen (9a),
wobei die erste Schicht (7) von Kondensatorelementen (7a) auf der zweiten Schicht
(9) von Kondensatorelementen (9a) gestapelt ist,
eine erste Sammelschienenanordnung (13), verbunden mit den Kondensatorelementen (7a)
der ersten Schicht (7),
eine zweite Sammelschienenanordnung (19), verbunden mit den Kondensatorelementen (9a)
der zweiten Schicht (9),
wobei die erste Sammelschienenanordnung (13) und die zweite Sammelschienenanordnung
(19) zwischen der ersten Schicht (7) von Kondensatorelementen (7a) und der zweiten
Schicht (9) von Kondensatorelementen (9a) angeordnet ist,
eine Wärmeleitschicht (17; 17'), bereitgestellt zwischen der ersten Sammelschienenanordnung
(13) und der zweiten Sammelschienenanordnung (19),
wobei die Wärmeleitschicht (17; 17') in thermischem Kontakt mit dem Gehäuse (3) ist,
dabei Wärme von der ersten Sammelschienenanordnung (13) und der zweiten Sammelschienenanordnung
(19) zum Gehäuse (3) leitend, und
wobei das Gehäuse (3) von der ersten Sammelschienenanordnung (13) und der zweiten
Sammelschienenanordnung (19) elektrisch isoliert ist.
2. Leistungskondensatoreinheit (1) nach Anspruch 1, wobei die Wärmeleitschicht (17; 17')
durch zumindest eine Tafel gebildet wird.
3. Leistungskondensatoreinheit (1) nach Anspruch 2, wobei die zumindest eine Tafel eine
aus einer Aluminiumtafel, einer Kupfertafel und einer Kunststofftafel, umfassend Oxidpartikel,
ist.
4. Leistungskondensatoreinheit (1) nach Anspruch 2 oder 3, wobei die zumindest eine Tafel
einen Tafelteil (23) aufweist, der zwischen der ersten Schicht (7) von Kondensatorelementen
(7a) und der zweiten Schicht (9) von Kondensatorelementen (9a) herausragt, und wobei
der Tafelteil (23) gefaltet ist, um sich parallel zu, und in thermischem Kontakt mit,
einer Seitenwand (3a, 3b) des Gehäuses (3) zu erstrecken.
5. Leistungskondensatoreinheit (1) nach Anspruch 4, wobei der Tafelteil (23) ferner gefaltet
ist, um sich parallel zu, und in thermischem Kontakt mit, einer breiten Wand (3c,
3d) des Gehäuses (3) zu erstrecken, wobei die breite Wand (3c, 3d) parallel zu einer
Oberfläche ist, die durch die Wärmeleitschicht (17; 17') zwischen der ersten Schicht
(7) von Kondensatorelementen (7a) und der zweiten Schicht (9) von Kondensatorelementen
(9a) definiert ist.
6. Leistungskondensatoreinheit (1) nach Anspruch 5, wobei sich der Tafelteil (23) entlang
eines Großteils der Länge der breiten Wand (3c, 3d) erstreckt.
7. Leistungskondensatoreinheit (1) nach einem der vorhergehenden Ansprüche, wobei die
Wärmeleitschicht (17; 17') in direktem Kontakt mit dem Gehäuse (3) ist.
8. Leistungskondensator nach einem der vorhergehenden Ansprüche, umfassend eine erste
Isolierschicht (15), bereitgestellt zwischen, und in thermischem Kontakt mit, der
Wärmeleitschicht (17; 17') und der ersten Sammelschienenanordnung (13), wobei die
erste Isolierschicht (15) dazu ausgelegt ist, eine elektrische Isolierung zwischen
der ersten Sammelschienenanordnung (13) und der Wärmeleitschicht (17; 17') bereitzustellen,
und eine zweite Isolierschicht (21), bereitgestellt zwischen, und in thermischem Kontakt
mit, der Wärmeleitschicht (17; 17') und der zweiten Sammelschienenanordnung (19),
wobei die zweite Isolierschicht (21) dazu ausgelegt ist, elektrische Isolierung zwischen
der zweiten Sammelschienenanordnung (19) und der Wärmeleitschicht (17; 17') bereitzustellen.
9. Leistungskondensatoreinheit (1) nach Anspruch 8, wobei die erste Isolierschicht (15)
in direktem Kontakt mit der ersten Sammelschienenanordnung (13) und mit der Wärmeleitschicht
(17; 17') ist.
10. Leistungskondensatoreinheit (1) nach Anspruch 8 oder 9, wobei die zweite Isolierschicht
(21) in direktem Kontakt mit der zweiten Sammelschienenanordnung (19) und mit der
Wärmeleitschicht (17; 17') ist.
11. Leistungskondensatoreinheit (1) nach einem der vorhergehenden Ansprüche, wobei das
Gehäuse (3) aus Metall besteht.
12. Leistungskondensatoreinheit (1) nach einem der Ansprüche 8-11, wobei die erste Isolierschicht
(15) durch eine Polymertafel gebildet wird.
13. Leistungskondensatoreinheit (1) nach einem der Ansprüche 8-12, wobei die zweite Isolierschicht
(21) durch eine Polymertafel gebildet wird.
14. Leistungskondensatoreinheit (1) nach einem der vorhergehenden Ansprüche, umfassend
eine dritte Sammelschienenanordnung (25), verbunden mit den Kondensatorelementen (7a)
der ersten Schicht (7) und bereitgestellt zwischen dem Gehäuse (3) und den Kondensatorelementen
(7a) der ersten Schicht (7), und eine dritte Isolierschicht (27), bereitgestellt zwischen
der dritten Sammelschienenanordnung (25) und dem Gehäuse (3), zum elektrischen Isolieren
des Gehäuses (3) von der dritten Sammelschienenanordnung (25).
15. Leistungskondensatoreinheit (1) nach einem der vorhergehenden Ansprüche, umfassend
eine vierte Sammelschienenanordnung (29), verbunden mit den Kondensatorelementen (9a)
der zweiten Schicht (9) und bereitgestellt zwischen dem Gehäuse (3) und den Kondensatorelementen
(9a) der zweiten Schicht (9), und eine vierte Isolierschicht (31), bereitgestellt
zwischen der vierten Sammelschienenanordnung (29) und dem Gehäuse (3), zum elektrischen
Isolieren des Gehäuses (3) von der vierten Sammelschienenanordnung (29).
16. Leistungskondensatoreinheit (1) nach einem der vorhergehenden Ansprüche, wobei die
Wärmeleitschicht (17') nur angeordnet ist, um einen begrenzten Teil des Bereichs zwischen
der ersten Schicht (7) von Kondensatorelementen (7a) und der zweiten Schicht (9) von
Kondensatorelementen (9a) abzudecken, wobei die Wärmeleitschicht (17') nur entlang
zweier gegenüberliegender lateraler Teile zwischen der ersten Schicht (7) von Kondensatorelementen
(7a) und der zweiten Schicht (9) von Kondensatorelementen (9a) bereitgestellt ist.
1. Unité de condensateur de puissance (1) comprenant :
un boîtier (3),
une première couche (7) d'éléments de condensateur (7a) ,
une deuxième couche (9) d'éléments de condensateur (9a), la première couche (7) d'éléments
de condensateur (7a) étant empilée sur la deuxième couche (9) d'éléments de condensateur
(9a),
un premier ensemble barre omnibus (13) relié aux éléments de condensateur (7a) de
la première couche (7),
un deuxième ensemble barre omnibus (19) relié aux éléments de condensateur (9a) de
la deuxième couche (9),
le premier ensemble barre omnibus (13) et le deuxième ensemble barre omnibus (19)
étant agencés entre la première couche (7) d'éléments de condensateur (7a) et la deuxième
couche (9) d'éléments de condensateur (9a),
une couche thermoconductrice (17 ; 17') disposée entre le premier ensemble barre omnibus
(13) et le deuxième ensemble barre omnibus (19),
la couche thermoconductrice (17 ; 17') étant en contact thermique avec le boîtier
(3), conduisant ainsi la chaleur provenant du premier ensemble barre omnibus (13)
et du deuxième ensemble barre omnibus (19) jusqu'au boîtier (3), et le boîtier (3)
étant isolé électriquement du premier ensemble barre omnibus (13) et du deuxième ensemble
barre omnibus (19).
2. Unité de condensateur de puissance (1) selon la revendication 1, dans laquelle la
couche thermoconductrice (17 ; 17') est formée par au moins une feuille.
3. Unité de condensateur de puissance (1) selon la revendication 2, dans laquelle l'au
moins une feuille est soit une feuille d'aluminium, soit une feuille de cuivre, soit
une feuille de plastique comprenant des particules d'oxyde.
4. Unité de condensateur de puissance (1) selon la revendication 2 ou 3, dans laquelle
l'au moins une feuille a une partie de feuille (23) qui fait saillie depuis un emplacement
entre la première couche (7) d'éléments de condensateur (7a) et la deuxième couche
(9) d'éléments de condensateur (9a) et laquelle partie de feuille (23) est pliée pour
s'étendre parallèlement à, et en contact thermique avec, une paroi latérale (3a, 3b)
du boîtier (3).
5. Unité de condensateur de puissance (1) selon la revendication 4, dans laquelle la
partie de feuille (23) est en outre pliée pour s'étendre parallèlement à, et en contact
thermique avec, une grande paroi (3c, 3d) du boîtier (3), laquelle grande paroi (3c,
3d) est parallèle à une surface définie par la couche thermoconductrice (17 ; 17')
entre la première couche (7) d'éléments de condensateur (7a) et la deuxième couche
(9) d'éléments de condensateur (9a).
6. Unité de condensateur de puissance (1) selon la revendication 5, dans laquelle la
partie de feuille (23) s'étend le long d'une majorité de la longueur de la grande
paroi (3c, 3d).
7. Unité de condensateur de puissance (1) selon l'une quelconque des revendications précédentes,
dans laquelle la couche thermoconductrice (17 ; 17') est en contact direct avec le
boîtier (3).
8. Condensateur de puissance selon l'une quelconque des revendications précédentes, comprenant
une première couche d'isolation (15) disposée entre et en contact thermique avec la
couche thermoconductrice (17 ; 17') et le premier ensemble barre omnibus (13), laquelle
première couche d'isolation (15) est configurée pour fournir une isolation électrique
entre le premier ensemble barre omnibus (13) et la couche thermoconductrice (17 ;
17'), et une deuxième couche d'isolation (21) disposée entre et en contact thermique
avec la couche thermoconductrice (17 ; 17') et le deuxième ensemble barre omnibus
(19), laquelle deuxième couche d'isolation (21) est configurée pour fournir une isolation
électrique entre le deuxième ensemble barre omnibus (19) et la couche thermoconductrice
(17 ; 17').
9. Unité de condensateur de puissance (1) selon la revendication 8, dans laquelle la
première couche d'isolation (15) est en contact direct avec le premier ensemble barre
omnibus (13) et avec la couche thermoconductrice (17 ; 17').
10. Unité de condensateur de puissance (1) selon la revendication 8 ou 9, dans laquelle
la deuxième couche d'isolation (21) est en contact direct avec le deuxième ensemble
barre omnibus (19) et avec la couche thermoconductrice (17 ; 17').
11. Unité de condensateur de puissance (1) selon l'une quelconque des revendications précédentes,
dans laquelle le boîtier (3) est composé de métal.
12. Unité de condensateur de puissance (1) selon l'une quelconque des revendications 8
à 11, dans laquelle la première couche d'isolation (15) est formée par une feuille
polymère.
13. Unité de condensateur de puissance (1) selon l'une quelconque des revendications 8
à 12, dans laquelle la deuxième couche d'isolation (21) est formée par une feuille
polymère.
14. Unité de condensateur de puissance (1) selon l'une quelconque des revendications précédentes,
comprenant un troisième ensemble barre omnibus (25) relié aux éléments de condensateur
(7a) de la première couche (7) et disposé entre le boîtier (3) et les éléments de
condensateur (7a) de la première couche (7), et une troisième couche d'isolation (27)
disposée entre le troisième ensemble barre omnibus (25) et le boîtier (3) pour isoler
électriquement le boîtier (3) du troisième ensemble barre omnibus (25).
15. Unité de condensateur de puissance (1) selon l'une quelconque des revendications précédentes,
comprenant un quatrième ensemble barre omnibus (29) relié aux éléments de condensateur
(9a) de la deuxième couche (9) et disposé entre le boîtier (3) et les éléments de
condensateur (9a) de la deuxième couche (9), et une quatrième couche d'isolation (31)
disposée entre le quatrième ensemble barre omnibus (29) et le boîtier (3) pour isoler
électriquement le boîtier (3) du quatrième ensemble barre omnibus (29).
16. Unité de condensateur de puissance (1) selon l'une quelconque des revendications précédentes,
dans laquelle la couche thermoconductrice (17') est uniquement agencée pour recouvrir
une partie limitée de la zone entre la première couche (7) d'éléments de condensateur
(7a) et la deuxième couche (9) d'éléments de condensateur (9a), la couche thermoconductrice
(17') étant disposée uniquement le long de deux parties latérales opposées entre la
première couche (7) d'éléments de condensateur (7a) et la deuxième couche (9) d'éléments
de condensateur (9a).