BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to a superheated steam generator and a maintenance
method therefor.
BACKGROUND ART
[0002] Austenitic stainless steels such as SUS304, and alloys such as INCONEL (registered
trademark), each of which has high heat resistance and high mechanical proof stress,
are used for an induction heating type or electrical heating type superheated steam
generation section (for example, Patent Document 1).
[0003] However, even though these stainless steels and alloys have a melting point of approximately
1400°C, volume reduction may occur due to steam oxidation in superheated steam having
high temperatures exceeding 1000°C.
[0004] The above superheated steam generation section includes a conductor tube composed
of stainless steel or alloy. Therefore, when the volume reduction occurs due to the
steam oxidation, the conductor tube cannot withstand the pressure of the superheated
steam and deformation due to thermal expansion, thus causing damage to the conductor
tube. The superheated steam may leak outside due to the damage to the conductor tube.
This may cause, for example, fire and personal injury
.
PRIOR ART
[0005]
Patent Document 1: Japanese Unexamined Patent Publication No. 2016-176613
Patent Document 2: Japanese Unexamined Patent Publication No. 2017-092018 A
Patent Document 3: Japanese Unexamined Patent Publication No. 2017-116183 A.
[0006] Patent Document 2 discloses a device for the treatment of overheated steam where
the flow path forming body is formed of a conductive material and where the temperature
of the flow path forming body in the superheated steam filling section is switched
over to a temperature below the oxidation starting temperature and to a temperature
equal to or higher than the oxidation starting temperature. This serves to reduce
deterioration of the flow path forming body due to high temperature oxidation.
[0007] Patent Document 3 describes an overheated steam generation device with a steam generation
part and an overheated steam generation part, which are both inductively heated. The
magnetic path iron cores of the two inductive heaters are connected to a common third
magnetic path iron core serving as a common passage for magnetic flux generated at
those two magnetic path iron cores. The parts for steam generation and for overheated
steam generation are connected by a connection pipe with a reservoir, which serves
to collect liquefied steam in order to prevent water from entering the overheated
steam generation part. The reservoir is arranged in the space surrounded with an outer
face of the steam generation part, an outer face of the overheated steam generation
part, and an outer face of the common iron core.
SUMMARY OF THE INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0008] Accordingly, the present invention has been made to solve the above problem and has
for its main object to inform a user of a maintenance timing for a superheated steam
generator. The superheated steam generator according to the invention is described
in claim 1 and the corresponding maintenance method according to the invention is
described in claim 10.
MEANS OF SOLVING THE PROBLEMS
[0009] In one embodiment, a superheated steam generator includes an induction heating type
or electrically heating type superheated steam generation section, and an informing
section. The superheated steam generation section is configured to generate superheated
steam by heating steam. The informing section is configured to transmit maintenance
information by employing, as a parameter, an operating temperature of the superheated
steam generation section and an operating time at the operating temperature.
[0010] With the above configuration, the maintenance information is transmitted by employing
the operating time at the operating temperature as a parameter. It is therefore possible
to inform a user of a maintenance timing for the superheated steam generator. This
makes it possible for the user to carry out maintenance before the superheated steam
generation section breaks down.
[0011] Degrees of deterioration and fatigue of the superheated steam generation section
differ depending on an operating temperature. Hence, preferably, the informing section
acquires operating temperature data indicating the operating temperature of the superheated
steam generation section, and operating time data indicating the operating time at
the operating temperature. The informing section then converts the operating time
to the operating time at a predetermined temperature (for example, 1200°C) and integrates
converted values. Subsequently, the informing section transmits the maintenance information
when an integration value exceeds a predetermined integration threshold value.
[0012] The superheated steam generator may include a conductor tube to generate the superheated
steam by being subjected to induction heating or electrical heating, and a steam adjustment
mechanism for adjusting an amount of superheated steam to be generated. A flow rate
of the superheated steam in the conductor tube is increased or decreased depending
on whether the amount of superheated steam generation increases or decreases. A high
flow rate leads to a great volume reduction rate, and a low flow rate leads to a small
volume reduction rate.
[0013] Because a volume reduction rate is proportional to a flow rate to the power of 0.8
in actual measurements at 1200°C, a flow rate is halved when the amount of superheated
steam generation is halved, and a corrected integration value (operating time) reaches
a value of 0.5
0.8=0.574 times with respect to an integration value before correction. In other words,
assuming that the superheated steam generator is operated for 1000 hours at an amount
of generation of 100% in the case of generating superheated steam at the same temperature,
the operating time reaches 574 hours by operating at an amount of generation of 50%.
[0014] Thus, the volume reduction rate differs depending on the amount of superheated steam.
Hence, preferably, the informing section corrects the integration value on a basis
of an amount of superheated steam generation in the superheated steam generation section,
and the informing section transmits the maintenance information when a corrected integration
value exceeds the integration threshold value.
[0015] The superheated steam generation section includes a conductor tube to generate the
superheated steam by being subjected to induction heating or electrical heating. The
conductor tube is susceptible to steam oxidation due to the superheated steam, and
the volume reduction is remarkable. Therefore, the informing section is preferably
configured to transmit the maintenance information containing a replacement timing
for the conductor tube.
[0016] The useful lifespan is less likely to become a problem even without consideration
of the operating time in a range of temperatures at which a volume reduction due to
steam oxidation does not substantially become a problem. For example, when the superheated
steam at 1000°C is passed through a conductor tube composed of INCONEL for 1000 hours,
a volume reduction rate is approximately 5%. In other words, it takes several tens
of thousands of hours at 1000°C or below until a remaining amount of a flow tube is
reduced to 10% or less. It is therefore less likely that the useful lifespan will
become a problem in a short period of time. Hence, the informing section is preferably
configured to transmit the maintenance information by employing, as a parameter, an
operating temperature at which the volume reduction rate of the flow tube reaches
or exceeds a predetermined value by operating for a predetermined period of time.
The informing section also preferably specifies a temperature range used for the maintenance
information at the operating temperatures of the superheated steam generation section,
and utilizes the operating time at the operating temperatures included in the temperature
range, as the operating time at a highest temperature in the temperature range.
[0017] It is conceivable to include a first superheated steam generation section of the
induction heating type and a second superheated steam generation section of the electrically
heating type, as a specific configuration of the superheated steam generation section.
The first superheated steam generation section carries out induction heating by using,
as a secondary coil, a first conductor tube that permits passage of steam. The second
superheated steam generation section further heats the superheated steam by electrically
heating a second conductor tube that permits passage of superheated steam generated
by the first superheated steam generation section.
[0018] A use method is conceivable which accelerates fatigue of the second conductor tube
by setting a higher temperature to the second superheated steam generation section
than the first superheated steam generation section in the above configuration. Here,
it is preferable that the informing section is disposed at a side of the second superheated
steam generation section and is configured to transmit the maintenance information
indicating a replacement timing for the second conductor tube.
[0019] More preferably, the informing section is also disposed at a side of the first superheated
steam generation section so as to transmit the maintenance information indicating
the replacement timing of a conductor tube of the first superheated steam generation
section. This makes it possible to also inform the user of the maintenance timing
for the first superheated steam generation section aside from the second superheated
steam generation section. Here, a maintenance frequency for replacement of the second
conductor tube or the like in the second superheated steam generation section is higher
than the maintenance frequency of replacement of the first conductor tube or the like
in the first superheated steam generation section.
[0020] Because the first conductor tube is wound around an iron core in the first superheated
steam generation section of induction heating type, disassembly for replacing the
conductor tube is complicated and time-consuming. It is therefore difficult to carry
out maintenance, such as replacement of the first conductor tube. In contrast, it
is easy to carry out maintenance, such as replacement, by a simple operation, such
as removal of power source wiring from power supply terminals of the second conductor
tube, in the second superheated steam generation section of electrically heating type.
Consequently, the first superheated steam generation section is used under service
conditions (for example, at below 1000°C) under which the conductor tube is less likely
to deteriorate or fatigue, thereby minimizing the frequency of maintenance, such as
replacement. The second superheated steam generation section is configured to generate
the superheated steam having high temperatures (for example, 1000°C or higher) because
it is easy to carry out maintenance for replacement of the second conductor tube.
EFFECTS OF THE INVENTION
[0021] With the present invention configured as described above, the maintenance information
is transmitted by employing, as a parameter, the operating time at the operating temperature.
It is therefore possible to inform a user of maintenance timing for the superheated
steam generator. This makes it possible for the user to carry out maintenance before
the superheated steam generation section breaks down.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022]
FIG. 1 is a diagram schematically illustrating a configuration of a superheated steam
generator in one embodiment;
FIG. 2 is a perspective view illustrating one embodiment of a conductor tube of a
superheated steam generation section in the embodiment;
FIG. 3 is a diagram illustrating superheated steam-INCONEL 601 alloy volume reduction
characteristics after 1000 hours; and
FIG. 4 is a diagram schematically illustrating a configuration of a superheated steam
generator in a modified embodiment.
MODE FOR CARRYING OUT THE INVENTION
[0023] One embodiment of a superheated steam generator according to the present invention
is described below with reference to the drawings.
[0024] As illustrated in FIG. 1, a superheated steam generator 100 in the present embodiment
includes a superheated steam generation section 10 configured to generate superheated
steam exceeding 100°C (e.g., 200-2000°C) by heating water or steam.
[0025] The superheated steam generation section 10 employs induction heating, and includes
a spiral-wound circular tube-shaped conductor tube 2 and a magnetic flux generation
mechanism 3 by which the conductor tube 2 is subjected to induction heating.
[0026] As illustrated in FIG. 2, the conductor tube 2 is composed of a metal tube, and includes
a winding part being wound spirally. One end of the conductor tube 2 is provided with
an inlet port P1 that permits introduction of water or steam, and the other end is
provided with an outlet port P2 that permits discharge of generated superheated steam.
Austenitic stainless steels such as SUS304, and alloys such as INCONEL, each of which
has a high heat resistance and high mechanical proof stress, is usable for the conductor
tube 2.
[0027] External piping for supplying water or steam to the conductor tube 2 is coupled to
the inlet port P1. Specifically, an induction heating type saturated steam generation
section (not illustrated) is coupled to the inlet port P1 in the present embodiment.
The saturated steam generation section has the same configuration as the superheated
steam generation section 10. External piping for supplying generated superheated steam
to a use-side (for example, a heat treatment chamber) is coupled to the outlet port
P2.
[0028] The magnetic flux generation mechanism 3 includes an iron core 31 and an induction
coil 32 wound along the iron core 31. An alternating current (AC) power source 4 is
coupled to the induction coil 32 so as to supply controlled power thereto. A power
source frequency of the AC power source 4 is a commercial frequency of 50 Hz or 60
Hz. The induction coil 32, to which the power is supplied from the AC power source
4, serves as a primary coil. By supplying power through the primary coil, an induced
current flows to the conductor tube 2, and the conductor tube 2 serves as a secondary
coil. The conductor tube 2 is subjected to Joule heating, so that steam passing through
the interior of the conductor tube 2 can be heated.
[0029] With the superheated steam generator 100, an AC voltage applied to the induction
coil 32 is controlled by detecting through a temperature detector 5 a temperature
of superheated steam discharged from the conductor tube 2, and by inputting a control
signal according to a deviation between a detected temperature and a target temperature,
to a voltage controller 6 (for example, a thyristor). Specifically, a temperature
controller 7 configured to perform the above control performs a feedback control of
the temperature of the superheated steam heated through the conductor tube 2 so that
a deviation from the target temperature is less than ±1°C. The temperature controller
7 is a computer including, for example, a central processing unit (CPU), memory, and
an input/output interface.
[0030] The superheated steam generator 100 of the present embodiment further includes an
informing section 8 configured to transmit maintenance information by employing, as
a parameter, an operating temperature of the superheated steam generation section
10, an operating time at the operating temperature, and a volume reduction rate at
the operating temperature.
[0031] The informing section 8 acquires operating temperature data indicating the operating
temperature of the superheated steam generation section 10, and operating time data
indicating the operating time at the operating temperature. The informing section
8 then converts this data to the operating time at a predetermined temperature and
integrates converted values. The informing section 8 transmits the maintenance information
when an integration value exceeds a predetermined integration threshold value. The
informing section 8 is a computer including, for example, a processor such as a central
processing unit (CPU), memory, and an input/output interface.
[0032] Specifically, the informing section 8 employs, as operating temperature data, detected
temperature data indicating a detected temperature obtained through the temperature
detector 5, or target temperature data indicating a target temperature controlled
by the temperature controller 7. The informing section 8 acquires the operating time
data indicating operating time from a timer included in the informing section 8, or
a timer of the temperature controller 7. The informing section 8 converts this data
to the operating time at 1200°C and integrates the converted values. The informing
section 8 transmits maintenance information when the integration value exceeds a predetermined
integration threshold value. Alternatively, temperatures of the conductor tube 2 may
be used as the operating temperature data. In this case, a temperature detector is
contactedly disposed, for example, at the outlet port P2 of the conductor tube 2 or
in the vicinity thereof. Particularly, when the superheated steam generation section
10 is in a standby state or performs an intermittent operation, it is preferable to
use the temperatures of the conductor tube 2.
[0033] The predetermined integration threshold value corresponds to a volume reduction limit
time, and needs to be determined by previously calculating from a pressure of superheated
steam and a thermal expansion deformation value of the conductor tube 2. An approximation
formula of a relationship between volume reduction rate and temperature needs to be
obtained by carrying out measurements at several points (refer to FIG. 3). Using a
detected temperature obtained through the temperature detector 5 or a target temperature
controlled by the temperature controller 7, a volume reduction rate is calculable
from the detected temperature or the target temperature.
[0034] A test operation for each type of superheated steam generator is carried out at a
highest temperature until the conductor tube 2 breaks down. This is because fracture
conditions differ depending on a curvature of the conductor tube 2, the flow rate
of the superheated steam, and the amount of superheated steam generation.
[0035] A fracture test was conducted by using a model having, for example, an amount of
superheated steam generation of 60 kg/h and a capacity for generating superheated
steam at 1200°C, and by using a conductor tube composed of INCONEL (with an outer
diameter of φ 33.4 mm, an inner diameter of φ 26.64 mm, and a tube thickness t of
3.38 mm). A remaining wall thickness of a fractured highest-temperature part was 0.45
mm. Volume reduction rate characteristics after 1000 hours are presented in FIG. 3,
and a reduction rate is given by equation "y."
[0036] When operated for 1000 hours at the superheated steam temperature of 1200°C, a tube
thickness t is 1.4872 mm (a reduction rate y
1200=0.56), resulting in a reduction of 1.8928 mm.
When a usable limit is set to 0.5 mm, a tube thickness reduction value is 3.38-0.5=2.88
mm. Reach time T is as follows: T=2.88/(1.8928/1000)≈1521 hours.
When set to a reduction rate y
0 for an operating time h
0 at an operating temperature θ, a converted operating time h
1200 at 1200°C is h
1200=y
0×h
0/y
1200.
[0037] In cases where the operating time at each temperatures is, for example, 500 hours
at 1200°C, 500 hours at 1100°C, and 500 hours at 1000°C, the converted operating time
at 1200°C is as follows.
Converted operating time h
1200=500+(0.33/0.56)×500+(0.05/0.56) ×500≈840 hours
[0038] The maintenance information, such as an alarm sound, indicating a replacement timing
for the conductor tube 2 is transmitted when the above converted operating time reaches
a predetermined integration threshold value.
[0039] The transmission of the maintenance information includes, for example, displaying
a warning on a display, outputting the alarm sound from a speaker, and turning on
or flashing a lamp, such as a light emitting diode (LED). Alternatively, the predetermined
integration threshold value may be set in multiple stages, and the maintenance information
may be transmitted stepwise according to the converted operating time. Furthermore,
the time remaining until reaching the volume reduction limit time may be displayed
on the display.
[0040] With the superheated steam generator 100 so configured, the maintenance information
is transmitted by employing, as a parameter, the operating time at the operating temperature.
It is therefore possible to inform a user of the maintenance timing for the superheated
steam generator 100. This makes it possible for the user to carry out maintenance
before, for example, the conductor tube 2 of the superheated steam generator 100 breaks
down.
[0041] The present invention is not limited to the above embodiment.
For example, as a value calculated in order that the informing section 8 transmits
the maintenance information, an integration value of a product of the operating time
at the operating temperature multiplied by the volume reduction rate at the operating
temperature may be used instead of the converted operating time in the above embodiment.
[0042] Alternatively, the informing section 8 may transmit the maintenance information by
taking into consideration only an operating temperature at which the volume reduction
substantially becomes a problem. Specifically, the informing section 8 transmits the
maintenance information by employing, as a parameter, the operating temperature at
which a volume reduction rate of the conductor tube 2 reaches or exceeds a predetermined
value (for example, 5%) by operating for a predetermined period of time. For example,
the informing section 8 integrates the operating time at or above an operating temperature
(1000°C for INCONEL) at which the volume reduction rate of the conductor tube 2 reaches,
for example, 5% by operating, for example, for 1000 hours. The informing section 8
transmits maintenance information, for example, when an obtained integration value
exceeds a predetermined integration threshold value.
[0043] The informing section 8 may specify a temperature range used for the maintenance
information in the operating temperatures of the superheated steam generator 10, and
may utilize the operating time at the operating temperatures included in the temperature
range, as the operating time at a highest temperature in the temperature range. For
example, temperature ranges used for the maintenance information may be specified
as 900-1000°C, 1000-1100°C, and 1100-1200°C. The informing section 8 utilizes the
operating time in the range of 900-1000°C as the operating time at 1000°C, and accumulates
as the operating time at 1000°C. Similarly, the informing section 8 utilizes the operating
time in the range of 1000-1100°C as the operating time at 1100°C, and the operating
time in the range of 1100-1200°C as operating time at 1200°C.
[0044] The temperature controller 7 may cause the superheated steam generation section 10
to stop operation by acquiring a signal indicating that the informing section 8 has
transmitted the maintenance information. The temperature controller 7 and the informing
section 8 may be configured with an identical computer.
[0045] Although the above embodiment is configured to transmit the maintenance information
indicating the replacement timing for the conductor tube 2, the above embodiment may
be configured to transmit the maintenance information indicating the replacement timing
for external piping coupled to the outlet port P2 of the conductor tube 2.
[0046] The informing section may employ, as a parameter used for the maintenance information,
the flow rate of superheated steam flowing through the conductor tube 2, and the amount
of superheated steam generation. For example, the informing section may correct an
integration value on the basis of the amount of superheated steam in the superheated
steam generation section. The informing section transmits the maintenance information
when a corrected integration value exceeds an integration threshold value. When the
amount of superheated steam generation is employed as a parameter, the informing section
may be configured to increase or decrease the operating time by using an amount of
adjustment obtained through a steam adjustment mechanism or a measurement value obtained
through a measuring section for measuring the amount of superheated steam generation.
When the amount of generation is greater than a predetermined amount of superheated
steam generation, it is conceivable to increase the operating time accordingly. When
the amount of generation is smaller than the predetermined amount of superheated steam
generation, it is conceivable to decrease the operating time accordingly. Here, the
informing section corrects the operating time (an integration value) by using a relationship
between the volume reduction rate and flow rate at each temperature (a volume reduction
rate is proportional to 0.8 times a flow rate at 1200°C).
[0047] Alternatively, the informing section may be configured to transmit the maintenance
information by employing a wall thickness of the conductor tube 2 as a parameter.
[0048] The superheated steam generation section 10 may be of the electrically heating type
instead of the induction heating type. In this case, the conductor tube 2 is subjected
to Joule heating by coupling an AC power source or a direct current (DC) power source
to both end portions of the conductor tube 2 that permits passage of fluid, and by
passing an AC current or a DC current through the conductor tube 2.
[0049] Alternatively, a superheated steam generator may be one which is obtained by combining
the induction heating type and the electrically heating type as illustrated in FIG.
4. Specifically, the superheated steam generation section 10 includes a first superheated
steam generation section 10A of the induction heating type configured to carry out
induction heating by using, as a secondary coil, a conductor tube that permits passage
of steam, and a second superheated steam generation section 10B of the electrically
heating type configured to further heat the superheated steam by electrically heating
the conductor tube that permits passage of the superheated steam generated by the
first superheated steam generation section 10A.
[0050] The first superheated steam generation section 10A has the same configuration as
that in the above embodiment. The first superheated steam generation section 10A is
configured to generate superheated steam at less than 1000°C. The second superheated
steam generation section 10B includes a conductor tube 11 coupled directly or through
an intermediate pipe to the outlet port P2 of the conductor tube 2 in the first superheated
steam generation section 10A. The conductor tube 11 is provided with a plurality of
nozzles 11a for spraying superheated steam. Power supply terminals 12 and 13 are respectively
disposed at both end portions of the conductor tube 11, and an AC power source 17
is coupled to these power supply terminals. A current flows through the conductor
tube 11 by the AC power source, and therefore the conductor tube is subjected to Joule
heating, so that the superheated steam passing therethrough can be heated.
[0051] With the above superheated steam generator 100, an AC voltage applied to the induction
coil 32 is controllable by detecting through a temperature detector 14 a temperature
of superheated steam discharged from the conductor tube 11, and by inputting a control
signal according to a deviation between a detected temperature and a target temperature
to a voltage controller 15 (for example, a thyristor). Specifically, the temperature
controller 16 configured to perform the above control performs the feedback control
of the temperature of the superheated steam heated through the conductor tube 11 so
that a deviation from the target temperature is less than ±1°C. The temperature controller
16 is a computer including, for example, a processor such as a CPU, memory, and an
input/output interface.
[0052] The informing section 8 is disposed on a side of the second superheated steam generation
section 10B. Detected temperature data indicating detected temperatures obtained through
the temperature detector 14 or target temperature data indicating a target temperature
controlled by the temperature controller 16 are used as operating temperature data.
The informing section 8 also acquires the operating time data indicating the operating
time from a timer included in the informing section 8 or a timer of the temperature
controller 16. The informing section 8 then converts this data to the operating time
at 1200°C and integrates the converted values. When an integration value exceeds a
predetermined integration threshold value, the informing section 8 transmits the maintenance
information, such as the warning indicating the replacement timing for the conductor
tube 11. Functions of the informing section 8 other than the above are the same as
those in the foregoing embodiment. In addition to the configuration illustrated in
FIG. 4, the informing section 8 may also be disposed on a side of the first superheated
steam generation section 10A so as to transmit the maintenance information indicating
the replacement timing for the conductor tube 2 in the same manner as in the foregoing
embodiment.
DESCRIPTION OF THE REFERENCE CHARACTERS
[0053]
100 superheated steam generator
10 superheated steam generation section
2 conductor tube
8 informing section
1. A superheated steam generator (100), comprising:
an induction heating type or electrically heating type superheated steam generation
section (10, 10A, 10B) configured to generate superheated steam by heating steam;
and
an informing section (8) configured to transmit maintenance information by employing,
as a parameter, an operating temperature of the superheated steam generation section
(10, 10A, 10B) and an operating time at the operating temperature, wherein the informing
section (8) acquires operating temperature data indicating the operating temperature
of the superheated steam generation section (10, 10A, 10B), and operating time data
indicating the operating time at the operating temperature,
the informing section (8) converts the operating time to an operating time at a predetermined
temperature and integrates converted values, and
the informing section (8) transmits the maintenance information when an integration
value exceeds a predetermined integration threshold value.
2. The superheated steam generator (100) according to claim 1, wherein the informing
section (8) corrects the integration value on a basis of an amount of superheated
steam generation in the superheated steam generation section (10, 10A, 10B), and the
informing section (8) transmits the maintenance information when a corrected integration
value exceeds the integration threshold value.
3. The superheated steam generator (100) according to claim 1 or 2, wherein the informing
section (8) is configured to convert to an operating time at 1200°C and integrate
the converted values.
4. The superheated steam generator (100) according to any one of claims 1- 3, wherein
the superheated steam generation section comprises a conductor tube (2, 11) that permits
passage of the superheated steam, and
the informing section (8) is configured to transmit the maintenance information indicating
a replacement timing for the conductor tube (2, 11).
5. The superheated steam generator (100) according to any one of claims 1 - 4, wherein
the informing section (8) is configured to transmit the maintenance information by
employing, as a parameter, an operating time at an operating temperature at which
a volume reduction rate of the conductor tube (2, 11) reaches or exceeds a predetermined
value by operating for a predetermined period of time.
6. The superheated steam generator (100) according to any one of claims 1 - 5, wherein
the informing section (8) specifies a temperature range used for the maintenance information
at the operating temperatures of the superheated steam generation section (10, 10A,
10B), and utilizes the operating time at the operating temperatures included in the
temperature range, as the operating time at a highest temperature in the temperature
range.
7. The superheated steam generator (100) according to any one of claims 1 - 6, wherein
the superheated steam generation section (10) comprises:
a first superheated steam generation section (10A) of the induction heating type configured
to carry out induction heating by using, as a secondary coil, a first conductor tube
(2) that permits passage of steam, and
a second superheated steam generation section (10B) of the electrically heating type
configured to further heat superheated steam generated in the first superheated steam
generation section (10A) by electrically heating a second conductor tube (11) that
permits passage of the superheated steam.
8. The superheated steam generator (100) according to any one of claims 1 - 7, wherein
the informing section (8) is configured to transmit the maintenance information indicating
a replacement timing for the second conductor tube (11).
9. The superheated steam generator (100) according to claim 7, wherein
the first superheated steam generation section (10A) generates superheated steam at
less than 1000°C, and
the second superheated steam generation section (10B) generates superheated steam
at 1000°C or above.
10. A maintenance method for a superheated steam generator (100) of an induction heating
type or an electrically heating type configured to generate superheated steam by heating
steam, the maintenance method comprising:
transmitting maintenance information by employing, as a parameter, an operating temperature
of the superheated steam generation section and an operating time at the operating
temperature, wherein transmitting maintenance information by employing, as a parameter,
operating temperature and operating time comprises:
acquiring operating temperature data indicating the operating temperature of the superheated
steam generation section, and operating time data indicating the operating time at
the operating temperature,
converting the operating time to an operating time at a predetermined temperature
and integrates converted values, and
transmitting the maintenance information when an integration value exceeds a predetermined
integration threshold value.
11. The maintenance method according to claim 10, wherein the superheated steam generator
(100) is implemented according to any one of claims 1 - 9.
1. Erzeuger (100) für überhitzten Dampf, umfassend:
einen Abschnitt (10, 10A, 10B) zur Erzeugung überhitzten Dampfes vom Typ Induktionsheizung
oder elektrische Heizung, der eingerichtet ist um überhitzten Dampf durch Aufheizen
von Dampf zu erzeugen; und
einen Informationsabschnitt (8), der eingerichtet ist, Wartungsinformation zu übertragen
unter Verwendung einer Betriebstemperatur des Abschnitts (10, 10A, 10B) zur Erzeugung
überhitzten Dampfes und einer Betriebszeit bei der Betriebstemperatur als Parameter,
wobei der Informationsabschnitt (8) Daten der Betriebstemperatur, die die Betriebstemperatur
des Abschnitts (10, 10A, 10B) zur Erzeugung überhitzten Dampfes angeben, und Betriebszeitdaten,
die die Betriebszeit bei der Betriebstemperatur angeben, erfasst,
der Informationsabschnitt (8) die Betriebszeit in Betriebszeit bei einer vorbestimmten
Temperatur umwandelt und umgewandelte Werte integriert, und
der Informationsabschnitt (8) die Wartungsinformation überträgt, wenn ein Integrationswert
einen vorbestimmten Integrations-Schwellwert übersteigt.
2. Erzeuger (100) für überhitzten Dampf nach Anspruch 1, wobei der Informationsabschnitt
(8) den Integrationswert auf Basis einer im Abschnitt (10, 10A, 10B) zur Erzeugung
überhitzten Dampfes erzeugten Menge an überhitztem Dampf korrigiert, und der Informationsabschnitt
(8) die Wartungsinformation überträgt, wenn ein korrigierter Integrationswert den
vorbestimmten Integrations-Schwellwert übersteigt.
3. Erzeuger (100) für überhitzten Dampf nach Anspruch 1 oder 2, wobei der Informationsabschnitt
(8) eingerichtet ist, in eine Betriebszeit bei 1200°C umzuwandeln und die umgewandelten
Werte zu integrieren.
4. Erzeuger (100) für überhitzten Dampf nach einem der Ansprüche 1 - 3, wobei
der Abschnitt zur Erzeugung überhitzten Dampfes ein Strömungsrohr (2, 11) umfasst,
das einen Durchgang überhitzten Dampfes ermöglicht, und
der Informationsabschnitt (8) eingerichtet ist, die Wartungsinformation zu übertragen,
die einen Zeitablauf zum Ersetzen des Strömungsrohres (2, 11) angibt.
5. Erzeuger (100) für überhitzten Dampf nach einem der Ansprüche 1 - 4, wobei
der Informationsabschnitt (8) eingerichtet ist, die Wartungsinformation zu übertragen
unter Verwendung einer Betriebszeit bei einer Betriebstemperatur, bei der eine Rate
der Volumenreduktion des Strömungsrohres (2, 11) durch Betrieb für eine vorbestimmte
Zeitdauer einen vorbestimmten Wert erreicht oder übersteigt, als Parameter.
6. Erzeuger (100) für überhitzten Dampf nach einem der Ansprüche 1 - 5, wobei der Informationsabschnitt
(8) einen Temperaturbereich vorgibt, der für die Wartungsinformation bei den Betriebstemperaturen
des Abschnitts (10, 10A, 10B) zur Erzeugung überhitzten Dampfes benutzt wird, und
die Betriebszeit bei den im Temperaturbereich enthaltenen Temperaturen als Betriebszeit
bei einer höchsten im Temperaturbereich enthaltenen Temperatur verwendet.
7. Erzeuger (100) für überhitzten Dampf nach einem der Ansprüche 1 - 6, wobei der Abschnitt
(10) zur Erzeugung überhitzten Dampfes umfasst:
einen ersten Abschnitt (10A) zur Erzeugung überhitzten Dampfes vom Induktionstyp,
der zum Ausführen von Induktionsheizung eingerichtet ist unter Verwendung eines ersten
Strömungsrohrs (2), das Durchgang von Dampf ermöglicht, als Sekundärspule, und
einen zweiten Abschnitt (10B) zur Erzeugung überhitzten Dampfes vom Typ elektrische
Heizung, das eingerichtet ist, im ersten Abschnitt (10A) zur Erzeugung überhitzten
Dampfes erzeugten überhitzten Dampf durch elektrisches Heizen eines zweiten Strömungsrohrs
(11), das Durchgang von Dampf ermöglicht, weiter zu erhitzen.
8. Erzeuger (100) für überhitzten Dampf nach einem der Ansprüche 1 - 7, wobei der Informationsabschnitt
(8) eingerichtet ist, die Wartungsinformation zu übertragen, die einen Zeitablauf
zum Ersetzen des zweiten Strömungsrohres (11) angibt.
9. Erzeuger (100) für überhitzten Dampf nach Anspruch 7, wobei
der erste Abschnitt (10A) zur Erzeugung überhitzten Dampfes überhitzten Dampf bei
weniger als 1000°C erzeugt, und
der zweite Abschnitt (10B) zur Erzeugung überhitzten Dampfes überhitzten Dampf bei
1000°C oder mehr erzeugt.
10. Wartungsverfahren für einen Erzeuger (100) für überhitzten Dampf vom Typ Induktionsheizung
oder elektrische Heizung, der eingerichtet ist, um überhitzten Dampf durch Aufheizen
von Dampf zu erzeugen, wobei das Wartungsverfahren umfasst:
Übertragen von Wartungsinformation durch Verwenden einer Betriebstemperatur eines
Abschnitts zur Erzeugung überhitzten Dampfes und einer Betriebszeit bei der Betriebstemperatur
als Parameter,
wobei das Übertragen von Wartungsinformation durch Verwenden der Betriebstemperatur
und der Betriebszeit bei der Betriebstemperatur als Parameter umfasst:
Erfassen von Daten der Betriebstemperatur, die die Betriebstemperatur des Abschnitts
zur Erzeugung überhitzten Dampfes angeben, und Betriebszeitdaten, die die Betriebszeit
bei der Betriebstemperatur angeben,
Umwandeln der Betriebszeit in Betriebszeit bei einer vorbestimmten Temperatur und
Integrieren umgewandelter Werte, und
Übertragen der Wartungsinformation, wenn ein Integrationswert einen vorbestimmten
Integrations-Schwellwert übersteigt.
11. Wartungsverfahren nach Anspruch 10, wobei der Erzeuger (100) für überhitzten Dampf
nach einem der Ansprüche 1 - 9 ausgeführt ist.
1. Générateur de vapeur surchauffée (100), comprenant :
une section de génération de vapeur surchauffée de type à chauffe par induction ou
de type à chauffe électrique (10, 10A, 10B) conçue pour générer de la vapeur surchauffée
par une chauffe de vapeur ; et
une section d'information (8) configurée pour transmettre des informations de maintenance
en utilisant, en tant que paramètre, une température de fonctionnement de la section
de génération de vapeur surchauffée (10, 10A, 10B) et un temps de fonctionnement à
la température de fonctionnement, dans lequel la section d'information (8) acquiert
des données de température de fonctionnement indiquant la température de fonctionnement
de la section de génération de vapeur surchauffée (10, 10A, 10B), et des données de
temps de fonctionnement indiquant le temps de fonctionnement à la température de fonctionnement,
la section d'information (8) convertit le temps de fonctionnement en un temps de fonctionnement
à une température prédéterminée et intègre les valeurs converties, et
la section d'information (8) transmet les informations de maintenance lorsqu'une valeur
d'intégration dépasse une valeur seuil d'intégration prédéterminée.
2. Générateur de vapeur surchauffée (100) selon la revendication 1, dans lequel la section
d'information (8) corrige la valeur d'intégration sur une base d'une quantité de génération
de vapeur surchauffée dans la section de génération de vapeur surchauffée (10, 10A,
10B), et la section d'information (8) transmet les informations de maintenance lorsqu'une
valeur d'intégration corrigée dépasse la valeur seuil d'intégration.
3. Générateur de vapeur surchauffée (100) selon la revendication 1 ou la revendication
2, dans lequel la section d'information (8) est configurée pour convertir un temps
de fonctionnement à 1200 °C et pour intégrer les valeurs converties.
4. Générateur de vapeur surchauffée (100) selon l'une quelconque des revendications 1
à 3, dans lequel
la section de génération de vapeur surchauffée comprend un tube conducteur (2, 11)
qui permet un passage de la vapeur surchauffée, et
la section d'information (8) est configurée pour transmettre les informations de maintenance
indiquant un instant de remplacement du tube conducteur (2, 11).
5. Générateur de vapeur surchauffée (100) selon l'une quelconque des revendications 1
à 4, dans lequel la section d'information (8) est configurée pour transmettre les
informations de maintenance en utilisant, en tant que paramètre, un temps de fonctionnement
à une température de fonctionnement à laquelle un taux de réduction de volume du tube
conducteur (2, 11) atteint ou dépasse une valeur prédéterminée du fait d'un fonctionnement
pendant une période de temps prédéterminée.
6. Générateur de vapeur surchauffée (100) selon l'une quelconque des revendications 1
à 5, dans lequel la section d'information (8) spécifie une plage de température utilisée
pour les informations de maintenance aux températures de fonctionnement de la section
de génération de vapeur surchauffée (10, 10A, 10B), et utilise le temps de fonctionnement
à la température de fonctionnement comprise dans la plage de température, en tant
que le temps de fonctionnement à une température la plus élevée dans la plage de température.
7. Générateur de vapeur surchauffée (100) selon l'une quelconque des revendications 1
à 6, dans lequel la section de génération de vapeur surchauffée (10) comprend :
une première section de génération de vapeur surchauffée (10A) du type à chauffe par
induction conçue pour mettre en œuvre une chauffe par induction au moyen, en tant
que serpentin secondaire, d'un premier tube conducteur (2) qui permet un passage de
vapeur, et
une seconde section de génération de vapeur surchauffée (10B) du type à chauffe électrique
conçue pour chauffer davantage la vapeur surchauffée générée dans la première section
de génération de vapeur surchauffée (10A) par une chauffe électrique d'un second tube
conducteur (11) qui permet un passage de la vapeur surchauffée.
8. Générateur de vapeur surchauffée (100) selon l'une quelconque des revendications 1
à 7, dans lequel la section d'information (8) est configurée pour transmettre les
informations de maintenance indiquant un instant de remplacement du second tube conducteur
(11).
9. Générateur de vapeur surchauffée (100) selon la revendication 7, dans lequel
la première section de génération de vapeur surchauffée (10A) génère de la vapeur
surchauffée à une température inférieure à 1000 °C, et
la seconde section de génération de vapeur surchauffée (10B) génère de la vapeur surchauffée
à une température supérieure ou égale à 1000 °C.
10. Procédé de maintenance d'un générateur de vapeur surchauffée (100) d'un type à chauffe
par induction ou d'un type à chauffe électrique conçu pour générer de la vapeur surchauffée
par une chauffe de vapeur, le procédé de maintenance comprenant l'étape consistant
à :
transmettre des informations de maintenance en utilisant, en tant que paramètre, une
température de fonctionnement de la section de génération de vapeur surchauffée et
un temps de fonctionnement à la température de fonctionnement,
dans lequel l'étape de transmission d'informations de maintenance en utilisant, en
tant que paramètre, une température de fonctionnement et un temps de fonctionnement
consiste à :
acquérir des données de température de fonctionnement indiquant la température de
fonctionnement de la section de génération de vapeur surchauffée, et des données de
temps de fonctionnement indiquant le temps de fonctionnement à la température de fonctionnement,
convertir le temps de fonctionnement en un temps de fonctionnement à une température
prédéterminée et intégrer les valeurs converties, et
transmettre les informations de maintenance lorsqu'une valeur d'intégration dépasse
une valeur seuil d'intégration prédéterminée.
11. Procédé de maintenance selon la revendication 10, dans lequel le générateur de vapeur
surchauffée (100) est conçu selon l'une quelconque des revendications 1 à 9.