BACKGROUND
Field
[0001] The disclosed concept pertains generally to a steam generator, and in particular
to a steam generator including anti-vibration bars. The disclosed concept also pertains
to a method of securing tubes in a steam generator against vibration with a number
of anti-vibration bars.
Background Information
[0002] Heat exchangers having tube bundles are commonly employed in pressurized water nuclear
reactor systems. A steam generator generally comprises a vertically oriented shell,
a tube bundle formed of tubes which each comprise two vertical components that meet
at a bend portion, a tube sheet for supporting the tubes at the ends opposite the
bend portion, a dividing plate that cooperates with the tube sheet and a hemispheric
channel head to form a primary fluid inlet header at one end of the tube bundle and
a primary fluid outlet header at the other end of the tube bundle. A primary fluid
inlet nozzle is in fluid communication with the primary fluid inlet header and a primary
fluid outlet nozzle is in fluid communication with the primary fluid outlet header.
The steam generator secondary side comprises a wrapper disposed between the tube bundle
and the shell to form an annular chamber made up of the shell on the outside and the
wrapper on the inside, and a feedwater ring disposed above the bend portion of the
tube bundle.
[0003] The primary fluid having been heated by circulation through the reactor core enters
the steam generator through the primary fluid inlet nozzle. From the primary fluid
inlet nozzle, the primary fluid is conducted through the primary fluid inlet header,
through the inside of the tube bundle, out the primary fluid outlet header, through
the primary fluid outlet nozzle to the reactor coolant pump for recirculation. At
the same time, feedwater is introduced to the steam generator secondary side through
a feedwater nozzle which is connected to the feedwater ring inside the steam generator.
Upon entering the steam generator, the feedwater mixes with water returning from moisture
separators positioned above the tube bundle referred to as the recirculation stream.
This mixture, called the downcomer flow, is conducted down the annular chamber between
the shell and the wrapper until the tube sheet near the bottom of the annular chamber
causes the water to change direction, passing in heat exchange relationship with the
outside of the tubes and up through the inside of the wrapper. While the water is
circulating in heat exchange relationship with the tube bundle, heat is transferred
from the primary fluid in the tubes to the water surrounding the tubes, causing a
portion of the water outside the tubes to be converted to steam. The steam-water mixture
then rises and is conducted through a number of moisture separators that separate
any entrained water from the steam, and the steam vapor then exits the steam generator
and is circulated typically through a turbine generator to generate electricity in
a manner well known in the art.
[0004] The portion of the steam generator primarily including the bend portion of the tubes
and below to the channel head is typically referred to as the evaporator section.
The portion of the steam generator above the tubes that includes the moisture separators
is typically referred to as the steam drum. Feedwater enters the steam generator through
an inlet nozzle which is disposed in the upper portion of the cylindrical shell. The
feedwater is distributed and mixed with water removed by the moisture separators and
then flows down the annular channel surrounding the tube bundle.
[0005] The tubes are supported at their open ends by conventional means whereby the ends
of the tubes are welded to the tube sheet which is disposed generally transverse to
the longitudinal axis of the steam generator. A series of tube support plates or grids
arranged in an axial spaced relationship to each other are provided along the straight
portion of the tubes in order to support the straight section of the tubing. Regarding
the tube bundle, various steam generators utilize different tube configurations, for
example wherein the bend portion is curved or U-shaped, or wherein the vertical components
of the tubes each bend at sharp angles, forming a relatively horizontal shaped bend
portion.
[0006] Located within the bend portion of the tubes are a plurality of anti-vibration bars
which are typically disposed between each column of tubes. The anti-vibration bars
provide support and do not substantially interfere with the flow of the moisture laden
steam. The anti-vibration bars are intended to prevent excessive vibrations of the
individual tubes of the entire tube bundle; vibrations which can potentially damage
the tubes. It is well known that the bend portion of the tube bundle is more severely
affected by the vibrations, and, because of the bend configuration, more difficult
to adequately support in order to eliminate the vibrations.
[0007] Typical motion of the tubes experiencing normal vibration is transverse to the plane
of the U-bend and therefore such vibration is referred to as out-of-plane vibration.
Under unusual conditions, tubes can also experience in-plane vibration. In such situations,
adjacent tubes in a given column can contact one another, resulting in severe damage
to the tubes. A steam generator with an anti-vibration bar assembly in accordance
with the precharacterizing portion of claim 1 is disclosed in document
US 4,893,671. Another anti-vibration bar assembly design for a steam generator in found in document
US 4,204,570 wherein the anti-vibration bars have a contour defining a helix. Another anti-vibration
bar design is found in document
CH 367 842 wherein the anti-vibration bars are formed as straps having a zig-zag pattern.
[0008] The manufacturing and assembly of the tube bundle are major obstacles to a mechanical
solution to this problem. Hence, current anti-vibration bar assembly designs do not
significantly restrict in plane motion of the tubes.
SUMMARY
[0009] These needs and others are met by a design as claimed in claim 1 and a method as
claimed in claim 9.
[0010] The disclosed concept in which a solid antivibration bar having an increased thickness
is structured to be located within a tube bundle.
[0011] In accordance with one aspect of the disclosed concept, a steam generator is provided.
The steam generator has a primary side for circulating a heated fluid and a secondary
side for circulating a fluid to be heated by the heated fluid circulating in the primary
side. The steam generator includes: a channel head for receiving the heated fluid;
a tube sheet that separates the channel head from the secondary side; a tube bundle
having a plurality of tubes, arranged in rows and columns, the tube bundle extending
from the channel head, through the tube sheet and through at least a portion of the
secondary side; and a first number of solid anti-vibration bars. The plurality of
tubes includes a first column of tubes, the first column of tubes comprising a first
tube having a curved center line disposed in a first plane. The plurality of tubes
further includes a second column of tubes, each of the first number of anti-vibration
bars being disposed between the first column of tubes and the second column of tubes.
The second column of tubes comprises a second tube having a curved center line disposed
in a second plane, the second plane being parallel to and spaced a distance from the
first plane. Each of the tubes has a tube outer diameter. Each of the first number
of anti-vibration bars has a thickness generally transverse to the first and second
planes. The thickness of each of the first number of anti-vibration bars is greater
than the distance between the first and second planes minus the tube outer diameter.
[0012] In accordance with another aspect of the disclosed concept, a method is provided
for securing tubes within a steam generator against vibration, the tubes being disposed
in a tube bundle and arranged in rows and columns, with lanes between the columns.
The method comprises: providing a first column of tubes, the first column of tubes
comprising a first tube having a curved center line disposed in a first plane; providing
a first number of solid anti-vibration bars; and providing a second column of tubes,
each of the first number of anti-vibration bars being disposed between the first column
of tubes and the second column of tubes, the second column of tubes comprising a second
tube having a curved center line disposed in a second plane, the second plane being
parallel to and spaced a distance from the first plane. Each of the tubes has a tube
outer diameter. Each of the first number of anti-vibration bars has a thickness generally
transverse to the first and second planes. The thickness of each of the first number
of anti-vibration bars is greater than the distance between the first and second planes
minus the tube outer diameter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] A full understanding of the disclosed concept can be gained from the following description
of the preferred embodiments when read in conjunction with the accompanying drawings
in which:
Figure 1 is a perspective view, partially cut away, of a vertical tube and shell steam
generator;
Figure 2 is a schematic, cross-section of a portion of a tube bundle of a steam generator
with anti-vibration bars;
Figure 3 is a schematic, cross-section of a portion of a tube bundle of a steam generator
with anti-vibration bars in accordance with an embodiment of the disclosed concept;
Figure 4A is schematic front view of a number of tubes of the tube bundle of Figure
3;
Figure 4B is a schematic side view of the tubes of Figure 4A;
Figure 4C is a schematic isometric view of the tubes of Figure 4A;
Figure 5 is a schematic, cross-section of a portion of a tube bundle of a steam generator
with anti-vibration bars in accordance with an alternative embodiment of the disclosed
concept;
Figure 6A is a schematic, cross-section of a portion of a tube bundle of a steam generator
with anti-vibration bars in accordance with a further embodiment of the disclosed
concept;
Figure 6B is a schematic, cross-section of the tube bundle of Figure 6A with the anti-vibration
bars being displaced; and
Figure 7 is a schematic, cross-section, of a portion of a tube bundle of a steam generator
with anti-vibration bars in accordance with an additional embodiment of the disclosed
concept.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] Referring now to the drawings, Figure 1 shows a steam generator 2 that utilizes a
plurality of heat exchanger tubes 3 which form a tube bundle 4 to provide the heating
surface required to transfer heat from the primary fluid to vaporize or boil the secondary
fluid. The steam generator 2 comprises a vessel having a vertically oriented tubular
shell portion 6 and a top enclosure or dished head 8 enclosing the upper end and a
generally hemispherical-shaped channel head 10 enclosing the lower end. The lower
shell portion 6 is smaller in diameter than the upper shell portion 12 and a frustoconical-shaped
transition 14 connects the upper portion and lower portions. A tube sheet 16 is attached
to the channel head 10 and has a plurality of holes 18 disposed therein to receive
ends of the tubes 3. A dividing plate 22 is centrally disposed within the channel
head 10 to divide the channel head 10 into two compartments 24,26, which serve as
headers for the tube bundle 4. Compartment 26 is the primary fluid inlet compartment
and has a primary fluid inlet nozzle 27 in fluid communication therewith. Compartment
24 is the primary fluid outlet compartment and has a primary fluid outlet nozzle 28
in fluid communication therewith. Thus, primary fluid,
i.e., the reactor coolant, which enters fluid compartment 26 is caused to flow through
the tube bundle 4 and out through outlet nozzle 28.
[0015] The tube bundle 4 is encircled by a wrapper 30 which forms an annular passage 32
between the wrapper 30 and the shell and transition portions 6,14, respectively. The
top of the wrapper 30 is covered by a lower deck plate 34 which includes a plurality
of openings 36 in fluid communication with a plurality of riser tubes 38. Swirl vanes
40 are disposed within the riser tubes 38 to cause steam flowing therethrough to spin
and centrifugally remove some of the moisture contained within the steam as it flows
through this primary centrifugal separator. The water separated from the steam in
this primary separator is returned to the top surface of the lower deck plate 34.
After flowing through the primary centrifugal separator, the steam passes through
a secondary separator 42 before reaching a steam outlet nozzle 44 centrally disposed
in the dished head 8. The water separated from the steam in the secondary separator
42 is returned to mix with the water returned from the primary separator above the
lower deck plate 34.
[0016] The feedwater inlet structure of this steam generator 2 includes a feedwater inlet
nozzle 46 having a generally horizontal portion called a feedring 48 and discharge
nozzles 50 elevated above the feedring 48. Feedwater, which is supplied through the
feedwater inlet nozzle 46, passes through the feedwater ring 48, exits through the
discharge nozzles 50 and mixes with water which was separated from the steam and is
recirculated. The mixture then flows down above the lower deck plate 34 into the annular
downcomer passage 32. The water then enters the tube bundle 4 at the lower portion
of the wrapper 30 and flows among the tubes 3 and up the tube bundle 4 where it is
heated to generate steam.
[0017] As previously mentioned, the tube bundle 4 has a plurality of anti-vibration bars
(not shown in Figure 1) located between the tubes 3. Figure 2 shows a portion of a
tube bundle 100 that includes a number of columns of tubes 110,130,150. Located between
the first column of tubes 110 and the second column of tubes 130 is an anti-vibration
bar 120. Located between the second column of tubes 130 and the third column of tubes
150 is an anti-vibration bar 140. The anti-vibration bar 120 has a thickness 122 and
the anti-vibration bar 140 has a thickness 142. As seen, because the anti-vibration
bars 120,140 are linear, the thicknesses 122,142 are restricted by a distance 101
between the columns of tubes 110,130,150. As a result, in operation the anti-vibration
bars 120,140 do not significantly reduce the amount of possible in-plane motion within
the columns of tubes 110,130,150.
[0018] As will be discussed in connection with Figures 3 through 7, in-plane vibration can
be significantly reduced by including a number of improved anti-vibration bars 220,240,320,
460,480,520. Referring to Figure 3, the cross section of a portion within a U-shaped
bend of a tube bundle 200 of a steam generator (not shown) is shown. The tube bundle
200 includes a number of columns of tubes 210,230,250, wherein any two adjacent tubes
have an equal distance 203 (subject to manufacturing tolerance) between their centers
(e.g., a triangular pitch). Although the disclosed concept will be described in association
with a triangular pitch, it will be appreciated that the disclosed concept could be
employed with alternative orientations (e.g., without limitation, a tube bundle (not
shown) with tubes having square pitch rotated 45 degrees).
[0019] The first column of tubes 210 may be either in the middle of the tube bundle 200
or may be at an end. Located between the first column of tubes 210 and the second
column of tubes 230 is an anti-vibration bar 220. The anti-vibration bar 220 is solid
and has a thickness 222. Referring to Figures 3 through 4C, the first column of tubes
210 includes a tube 212 that has a curved center line 214 located in a plane 216.
Similarly, the second column of tubes 230 includes a tube 232 that has a curved center
line 234 located in a plane 236. As seen in Figure 3, the plane 216 and the plane
236 are parallel and are spaced apart by a distance 206. The distance 206 is substantially
equal to two times an outer radius 202 (e.g., a tube outer diameter 204) plus a distance
201. The distance 201 corresponds to the distance 101 shown in Figure 2.
[0020] As seen in Figure 3, the thickness 222 of the anti-vibration bar 220 is generally
transverse to the planes 216,236 and is greater than the distance 201 between the
columns of tubes 210,230. Continuing to refer to Figure 3, located between the second
column of tubes 230 and the third column of tubes 250 is a second anti-vibration bar
240. Similar to the anti-vibration bar 220, the anti-vibration bar 240 is solid and
has a thickness 242. Referring to Figures 3 through 4C, the third column of tubes
250 includes a tube 252 that has a curved center line 254 located in a plane 256.
The plane 256 is parallel to and spaced a distance 208 from the plane 236. The distance
208 is substantially equal to two times the radius 202 (e.g., the tube outer diameter
204) plus the distance 201.
[0021] Similar to the thickness 222 of the anti-vibration bar 220, the thickness 242 of
the anti-vibration bar 240 is generally transverse to planes 236,256 and is greater
than the distance 201 between the columns of tubes 230,250. In operation, this increased
thickness prevents significant in-plane (see, for example, planes 216,236,256) motion
in the columns of tubes 210,230,250, advantageously corresponding to a significant
decrease in in-plane vibration within the tube bundle 200. As seen in Figure 3, the
anti-vibration bar 220 includes a number of bends 224 that are curved and are structured
to wind between the first column of tubes 210 and the second column of tubes 230.
[0022] Similarly, the anti-vibration bar 240 includes a number of bends 244 that are curved
and are structured to wind between the second column of tubes 230 and the third column
of tubes 250. The bends 224,244 enable the thicknesses 222,242 of the anti-vibration
bars 220,240 to be greater than the thicknesses 122,142 of the anti-vibration bars
120,140. Furthermore, while the thicknesses 122,142 of the anti-vibration bars 120,140
are no greater than the distance 101, the thicknesses 222,242 of the anti-vibration
bars 220,240 are only limited by the distance 203 between adjacent centers minus two
times the radius 202 (e.g., the tube outer diameter 204).
[0023] Figure 5 shows a portion within a U-shaped bend of a tube bundle 300 of a steam generator
(not shown) in accordance with an alternative embodiment of the disclosed concept.
As seen, the tube bundle 300 includes an anti-vibration bar 320 that is located between
a first column of tubes 310 and a second column of tubes 330. The first column of
tubes 310 may be either in the middle of the tube bundle 300 or may be at an end.
Furthermore, the first column of tubes 310 includes a tube 312 that has a curved center
line (not shown) that is located in a plane 316. The second column of tubes 330 includes
a tube 332 that has a curved center line (not shown) that is located in a plane 336.
The plane 336 is parallel to and spaced a distance 306 from the plane 316. Similar
to the anti-vibration bars 220,240, the anti-vibration bar 320 has a thickness 322.
The thickness 322 is generally transverse to the planes 316,336 and is greater than
a distance 301 between the columns of tube 310,330.
[0024] As seen, the distance 301 corresponds to the distance 306 minus two times a radius
302 (e.g., a tube outer diameter 304). In a similar manner as the anti-vibration bars
220,240, the anti-vibration bar 320 is structured to wind between the first column
of tubes 310 and the second column of tubes 330. However, while the anti-vibration
bars 220,240 include a number of bends 224,244 that are curved, the anti-vibration
bar 320 includes a number of bends 324 that are substantially jagged. The bends 324
of the anti-vibration bar 320, like the bends 224,244 of the anti-vibration bars 220,240,
allow the anti-vibration bar 320 to have the increased thickness 322. Furthermore,
similar to the anti-vibration bars 220,240, in operation, the increased thickness
322 of the anti-vibration bar 320 prevents significant in-plane (see, for example,
planes 316,336) motion with the columns of tubes 310,330 advantageously corresponding
to a significant decrease in in-plane vibration within the tube bundle 300.
[0025] Figure 6A shows a portion within a U-shaped bend of a tube bundle 400 which includes
a number of anti-vibration bars 460,480. The anti-vibration bar 460 is located between
a first column of tubes 410 and a second column of tubes 430. The first column of
tubes 410 may be either in the middle of the tube bundle 400 or may be at an end.
The anti-vibration bar 480 is located between the second column of tubes 430 and a
third column of tubes 450. Similar to the anti-vibration bars 220,240, the anti-vibration
bars 460,480 include a number of bends 464,484 that are structured to wind between
the columns of tubes 410,430,450. However, the anti-vibration bars 460,480 are less
thick than the anti-vibration bars 220,240.
[0026] As seen in Figure 6A, the first column of tubes 410 includes a tube 412 and the second
column of tubes 430 includes a tube 432, the anti-vibration bar 460 being situated
adjacent the tubes 412,432. Since the anti-vibration bar 460 is less thick, there
are gaps (see, for example, gap 467) between the anti-vibration bar 460 and the tubes
412,432. Similarly, the anti-vibration bar 480 is situated adjacent the tube 432 and
each of the tubes in the third column of tubes 450. Since the anti-vibration bar 480
is less thick, there are gaps (see, for example, gap 487) between the anti-vibration
bar 480 and the tubes in the second column of tubes 430 and the third column of tubes
450.
[0027] As seen, the anti-vibration bar 460 is substantially located along a longitudinal
axis 465 and the anti-vibration bar 480 is substantially located along a longitudinal
axis 485. Figure 6B shows a portion of a tube bundle 400' in which the anti-vibration
bars 460,480 have been displaced along the longitudinal axes 465,485. As seen in Figures
6A and 6B, the anti-vibration bar 460 is displaced in a first direction 461 along
the longitudinal axis 465. The anti-vibration bar 480 is displaced in a second direction
481 along the longitudinal axis 485. The first direction 461 and the second direction
481 are substantially parallel to and opposite each other. The anti-vibration bars
460,480 may be displaced by being pulled and/or pushed after fabrication of the tube
bundle by an operator or by the use of a suitable mechanism known in the art.
[0028] As seen in Figure 6B, as the anti-vibration bar 460 moves in the first direction
461 along the longitudinal axis 465, the anti-vibration bar 460 engages the tube 412
such that there is no gap (or the gap 467 seen in Figure 6A substantially decreases
in size). Similarly, as the anti-vibration bar 480 moves in the second direction 481
along the longitudinal axis 485, the anti-vibration bar 480 engages the tube 432 such
that there is no gap (or the gap 487 seen in Figure 6A substantially decreases in
size). In this manner, gaps (see, for example, gaps 467,487 in Figure 6A) between
the anti-vibration bars 460,480 and tubes in the columns of tubes 410,430,450 decrease
in size, further reducing the amount of possible in-plane motion.
[0029] Figure 7 shows a portion within a U-shaped bend of a tube bundle 500 of a steam generator
(not shown) in accordance with an alternative embodiment of the disclosed concept.
As seen, the tube bundle 500 includes a number of columns of tubes 510,530,550. The
first column of tubes 510 may be either in the middle of the tube bundle 500 or may
be at an end. Located between the first column of tubes 510 and the second column
of tubes 530 is an anti-vibration bar 520. The anti-vibration bar 520 is substantially
similar to the anti-vibration bars 220,240, having a thickness 522 generally transverse
to planes 516,536 and greater than a distance 501 between the columns of tubes 510,530.
[0030] Located between the second column of tubes 530 and the third column of tubes 550
is an anti-vibration bar 540 that is substantially similar to the anti-vibration bars
120,140 seen in Figure 2. The anti-vibration bar 540 has a thickness 542 that is generally
transverse to the plane 536, which is parallel to and spaced a distance 508 from a
plane 556. The thickness 542 of the anti-vibration bar 540 is less than the thickness
522 of the anti-vibration bar 520. Similar to the thicknesses 122,142 of the anti-vibration
bars 120,140, the thickness 542 is restricted by the distance 501 and may be substantially
equal to, but no more than the distance 501. As seen, the anti-vibration bar 540 is
substantially linear, having no bend or curvature along its longitudinal axis.
[0031] In this manner, in-plane vibration within the tube bundle 500 can be significantly
reduced by including the anti-vibration bar 520, while costs can advantageously be
saved by including the anti-vibration bar 540 in accordance with existing designs.
Figure 7 shows one of many alternative embodiments that are within the scope of the
disclosed concept. For example and without limitation, it is within the scope of the
disclosed concept to have any number of the anti-vibration bars 220,240,320,460,480,520
that are arranged in any configuration with existing anti-vibration bars 120,140,540.
Additionally, it is further understood that the anti-vibration bars 220,240,320,460,480,520,540
are secured to a structure or structures (not shown) extending around the tube bundle
bends in one of several manners known in the art.
[0032] The foregoing description of the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit the invention to
the precise form disclosed, and other modifications and variations may be possible
in light of the above teachings. The embodiments were chosen and described in order
to best explain the principles of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention in various embodiments
and various modifications as are suited to the particular use contemplated.
[0033] As employed herein, the term "solid" shall mean being without an internal cavity
or opening. As employed herein, the term "number" shall mean one or an integer greater
than one (i.e., a plurality).
1. A steam generator (2) having a primary side for circulating a heated fluid and a secondary
side for circulating a fluid to be heated by the heated fluid circulating in the primary
side, the steam generator comprising:
a channel head (10) for receiving the heated fluid;
a tube sheet (16) that separates the channel head from the secondary side;
a tube bundle (200,300,500) having a plurality of tubes, arranged in rows and columns,
the tube bundle extending from the channel head, through the tube sheet and through
at least a portion of the secondary side; and
a first number of solid anti-vibration bars (220,320,520);
wherein the plurality of tubes comprises :
a first column of tubes (210,310,510), the first column of tubes comprising a first
tube (212,312) having a curved center line (214) disposed in a first plane (216,316,516),
and
a second column of tubes (230,330,530), each of the first number of anti-vibration
bars being disposed between the first column of tubes and the second column of tubes,
the second column of tubes comprising a second tube (232,332) having a curved center
line (234) disposed in a second plane (236,336,536), the second plane being parallel
to and spaced a distance (206,306) from the first plane,
wherein each of the tubes has a tube outer diameter (204,304);
wherein each of the first number of anti-vibration bars has a thickness (222,322,522)
generally transverse to the first and second planes;
wherein the thickness of each of the first number of anti-vibration bars is greater
than the distance between the first and second planes minus the tube outer diameter;
characterized in that
each of the first number of anti-vibration bars is substantially disposed on a longitudinal
axis; and
each of the first number of anti-vibration bars has a curved center line intersecting
the longitudinal axis.
2. The steam generator (2) of Claim 1 wherein each of the first number of anti-vibration
bars (220,520) comprises a number of bends (224,524); wherein the bends of each of
the first number of anti-vibration bars wind between the first column of tubes (210,510)
and the second column of tubes (230,530); and wherein the bends of each of the first
number of anti-vibration bars are curved.
3. The steam generator (2) of Claim 1 wherein each of the first number of anti-vibration
bars (320) comprises a number of bends (324); wherein the bends of each of the first
number of anti-vibration bars wind between the first column of tubes (310) and the
second column of tubes (330); and wherein the bends of each of the first number of
anti-vibration bars are substantially jagged.
4. The steam generator (2) of Claim 1 further comprising a second number of solid anti-vibration
bars (240);
wherein the plurality of tubes further comprises a third column of tubes (250);
wherein each of the second number of anti-vibration bars is disposed between the second
column of tubes (230) and the third column of tubes;
wherein the third column of tubes comprises a third tube (252) having a curved center
line (254) disposed in a third plane (256);
wherein the third plane is parallel to and spaced a distance (208) from the second
plane (236);
wherein each of the second number of anti-vibration bars has a thickness (242) generally
transverse to the second and third planes; and
wherein the thickness of each of the second number of anti-vibration bars is greater
than the distance between the second and third planes minus the tube outer diameter
(204).
5. The steam generator (2) of Claim 4 wherein the plurality of tubes have a triangular
pitch; wherein the tube bundle (200) comprises a U-shaped bend; and wherein each of
the first number of anti-vibration bars (220) and the second number of anti-vibration
bars (240) is disposed in the U-shaped bend.
6. The steam generator (2) of Claim 4 wherein the plurality of tubes have a rotated square
pitch; wherein the tube bundle (200) comprises a U-shaped bend; and wherein each of
the first number of anti-vibration bars (220) and the second number of anti-vibration
bars (240) is disposed in the U-shaped bend.
7. The steam generator (2) of Claim 1 further comprising a second number of anti-vibration
bars (540);
wherein the plurality of tubes further comprises a third column of tubes (550);
wherein each of the second number of anti-vibration bars is disposed between the second
column of tubes (530) and the third column of tubes;
wherein the third column of tubes comprises a third tube having a curved center line
disposed in a third plane (556);
wherein the third plane is parallel to and spaced a distance (508) from the second
plane (536);
wherein each of the second number of anti-vibration bars has a thickness (542) generally
transverse to the second and third planes; and
wherein the thickness of each of the second number of anti-vibration bars is less
than the thickness (522) of each of the first number of anti-vibration bars (520).
8. The steam generator (2) of Claim 7 wherein the thickness (542) of each of the second
number of anti-vibration bars (540) is substantially equal to the distance (508) between
the second and third planes (536,556) minus the tube outer diameter.
9. A method of securing tubes within a steam generator (2) against vibration, the tubes
being disposed in a tube bundle (200,300,400,400', 500) and arranged in rows and columns,
with lanes between the columns, the method comprising:
providing a first column of tubes (210,310,410,510), the first column of tubes comprising
a first tube (212,312,412) having a curved center line (214) disposed in a first plane
(216,316,516);
providing a first number of solid anti-vibration bars (220,320,460,520); and
providing a second column of tubes (230,330,430,530), each of the first number of
anti-vibration bars being disposed between the first column of tubes and the second
column of tubes, the second column of tubes comprising a second tube (232,332,432)
having a curved center line (234) disposed in a second plane (236,336,536) the second
plane being parallel to and spaced a distance (206,306) from the first plane;
wherein each of the tubes has a tube outer diameter (204,304);
wherein each of the first number of anti-vibration bars has a thickness (222,322,522)
generally transverse to the first and second planes;
wherein the thickness of each of the first number of anti-vibration bars is greater
than the distance between the first and second planes minus the tube outer diameter;
wherein each of the first number of anti-vibration bars is substantially disposed
on a longitudinal axis; and
wherein each of the first number of anti-vibration bars has a curved center line intersecting
the longitudinal axis.
10. The method of Claim 9 wherein each of the first number of anti-vibration bars (220,460,520)
comprises a number of bends (224,464,524); wherein the bends of each of the first
number of anti-vibration bars wind between the first column of tubes (210,410,510)
and the second column of tubes (230,430,530); and wherein the bends of each of the
first number of anti-vibration bars are curved.
11. The method of Claim 9 wherein each of the first number of anti-vibration bars (320)
comprises a number of bends (324); wherein the bends of each of the first number of
anti-vibration bars wind between the first column of tubes (310) and the second column
of tubes (330); and wherein the bends of each of the first number of anti-vibration
bars are substantially jagged.
12. The method of Claim 9 further comprising:
providing a second number of solid anti-vibration bars (240,480); and
providing a third column of tubes (250,450), each of the second number of anti-vibration
bars being disposed between the second column of tubes (230,430) and the third column
of tubes, the third column of tubes comprising a third tube (252) having a curved
center line (254) disposed in a third plane (256), the third plane being parallel
to and spaced a distance (208) from the second plane (236);
wherein each of the second number of anti-vibration bars has a thickness (242) generally
transverse to the second and third planes; and
wherein the thickness of each of the second number of anti-vibration bars is greater
than the distance between the second plane and third planes minus the tube outer diameter
(204).
13. The method of Claim 12 wherein the first number of anti-vibration bars (460) comprises
a first anti-vibration bar substantially disposed along a first longitudinal axis
(465); wherein the second number of anti-vibration bars (480) comprises a second anti-vibration
bar substantially disposed along a second longitudinal axis (485) parallel to the
first longitudinal axis; wherein the first anti-vibration bar is disposed adjacent
the first tube (412) and the second tube (432); wherein the second anti-vibration
bar is disposed adjacent the second tube and the third tube; wherein there is a first
gap (467) between the first anti-vibration bar and the first tube and a second gap
between the first anti-vibration bar and the second tube; and wherein there is a third
gap (487) between the second anti-vibration bar and the second tube and a fourth gap
between the second anti-vibration bar and the third tube, the method further comprising:
displacing the first anti-vibration bar in a first direction (461) along the first
longitudinal axis; and
displacing the second anti-vibration bar in a second direction (481) along the second
longitudinal axis, the second direction being opposite the first direction, each of
the first gap, the second gap, the third gap, and the fourth gap having a size that
decreases as the first anti-vibration bar is displaced in the first direction and
the second anti-vibration bar is displaced in the second direction.
14. The method of Claim 13 wherein the tubes have a triangular pitch; wherein the tube
bundle (400) comprises a U-shaped bend; and wherein each of the first number of anti-vibration
bars (460) and the second number of anti-vibration bars (480) is disposed in the U-shaped
bend.
15. The method of claim 9 further comprising:
providing a second number of anti-vibration bars (540); and
providing a third column of tubes (550), each of the second number of anti-vibration
bars being disposed between the second column of tubes (530) and the third column
of tubes, the third column of tubes comprising a third tube having a curved center
line disposed in a third plane (556), the third plane being parallel to and spaced
a distance (508) from the second plane (536);
wherein each of the second number of anti-vibration bars has a thickness (542) generally
transverse to the second and third planes; and
wherein the thickness of each of the second number of anti-vibration bars is less
than the thickness (522) of each of the first number of anti-vibration bars (520).
1. Dampferzeuger (2) mit einer Primärseite zum Zirkulieren eines erwärmten Fluids und
einer Sekundärseite zum Zirkulieren eines Fluids, das durch das erwärmte Fluid, das
in der Primärseite zirkuliert, erwärmt werden soll, wobei der Dampferzeuger umfasst:
ein Kanal-Kopfstück (10) zum Empfangen des erwärmten Fluids;
eine Rohrplatte (16), die das Kanal-Kopfstück von der Sekundärseite trennt;
ein Rohrbündel (200, 300, 500) mit einer Vielzahl von Rohren, die in Reihen und Säulen
angeordnet sind, wobei sich das Rohrbündel von dem Kanal-Kopfstück, durch die Rohrplatte
und durch zumindest einen Abschnitt der Sekundärseite erstreckt; und
eine erste Anzahl von massiven schwingungsdämpfenden Stangen (220, 320, 520);
wobei die Vielzahl von Rohren umfasst:
eine erste Rohrsäule (210, 310, 510), wobei die erste Rohrsäule ein erstes Rohr (212,
312) mit einer gekrümmten Mittellinie (214) umfasst, die in einer ersten Ebene (216,
316, 516) angeordnet ist, und
eine zweite Rohrsäule (230, 330, 530), wobei jede der ersten Anzahl von schwingungsdämpfenden
Stangen zwischen der ersten Rohrsäule und der zweiten Rohrsäule angeordnet ist, wobei
die zweite Rohrsäule ein zweites Rohr (232, 332) mit einer gekrümmten Mittellinie
(234) umfasst, die in einer zweiten Ebene (236, 336, 536) angeordnet ist, wobei die
zweite Ebene parallel zu der ersten Ebene und um einen Abstand (206, 306) von dieser
beabstandet ist,
wobei jedes der Rohre einen Rohraußendurchmesser (204, 304) aufweist;
wobei jede der ersten Anzahl von schwingungsdämpfenden Stangen eine Dicke (222, 322,
522) allgemein quer zu der ersten und zweiten Ebene aufweist;
wobei die Dicke einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen größer
als der Abstand zwischen der ersten und zweiten Ebene vermindert um den Rohraußendurchmesser
ist;
dadurch gekennzeichnet, dass
jede der ersten Anzahl von schwingungsdämpfenden Stangen im Wesentlichen auf einer
Längsachse angeordnet ist; und
jede der ersten Anzahl von schwingungsdämpfenden Stangen eine gekrümmte Mittellinie
aufweist, welche die Längsachse schneidet.
2. Dampferzeuger (2) nach Anspruch 1, wobei jede der ersten Anzahl von schwingungsdämpfenden
Stangen (220, 520) eine Anzahl von Biegungen (224, 524) umfasst; wobei die Biegungen
einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen sich zwischen der
ersten Rohrsäule (210, 510) und der zweiten Rohrsäule (230, 530) winden; und wobei
die Biegungen einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen gekrümmt
sind.
3. Dampferzeuger (2) nach Anspruch 1, wobei jede der ersten Anzahl von schwingungsdämpfenden
Stangen (320) eine Anzahl von Biegungen (324) umfasst; wobei die Biegungen einer jeden
der ersten Anzahl von schwingungsdämpfenden Stangen sich zwischen der ersten Rohrsäule
(310) und der zweiten Rohrsäule (330) winden; und wobei die Biegungen einer jeden
der ersten Anzahl von schwingungsdämpfenden Stangen im Wesentlichen zackenförmig sind.
4. Dampferzeuger (2) nach Anspruch 1, ferner umfassend eine zweite Anzahl von massiven
schwingungsdämpfenden Stangen (240);
wobei die Vielzahl von Rohren ferner eine dritte Rohrsäule (250) umfasst;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen zwischen der zweiten
Rohrsäule (230) und der dritten Rohrsäule angeordnet ist;
wobei die dritte Rohrsäule ein drittes Rohr (252) mit einer gekrümmten Mittellinie
(254) umfasst, die in einer dritten Ebene (256) angeordnet ist;
wobei die dritte Ebene parallel zu der zweiten Ebene (236) und um einen Abstand (208)
von dieser beabstandet ist;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen eine Dicke (242) allgemein
quer zu der zweiten und dritten Ebene aufweist; und
wobei die Dicke einer jeden der zweiten Anzahl von schwingungsdämpfenden Stangen größer
als der Abstand zwischen der zweiten und dritten Ebene vermindert um den Rohraußendurchmesser
(204) ist.
5. Dampferzeuger (2) nach Anspruch 4, wobei die Vielzahl von Rohren eine dreieckige Teilung
aufweist; wobei das Rohrbündel (200) eine U-förmige Biegung umfasst; und wobei jede
der ersten Anzahl von schwingungsdämpfenden Stangen (220) und der zweiten Anzahl von
schwingungsdämpfenden Stangen (240) in der U-förmigen Biegung angeordnet ist.
6. Dampferzeuger (2) nach Anspruch 4, wobei die Vielzahl von Rohren eine gedreht quadratische
Teilung aufweist; wobei das Rohrbündel (200) eine U-förmige Biegung umfasst; und wobei
jede der ersten Anzahl von schwingungsdämpfenden Stangen (220) und der zweiten Anzahl
von schwingungsdämpfenden Stangen (240) in der U-förmigen Biegung angeordnet ist.
7. Dampferzeuger (2) nach Anspruch 1, ferner umfassend eine zweite Anzahl von schwingungsdämpfenden
Stangen (540);
wobei die Vielzahl von Rohren ferner eine dritte Rohrsäule (550) umfasst;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen zwischen der zweiten
Rohrsäule (530) und der dritten Rohrsäule angeordnet ist;
wobei die dritte Rohrsäule ein drittes Rohr mit einer gekrümmten Mittellinie umfasst,
die in einer dritten Ebene (556) angeordnet ist;
wobei die dritte Ebene parallel zu der zweiten Ebene (536) und um einen Abstand (508)
von dieser beabstandet ist;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen eine Dicke (542) allgemein
quer zu der zweiten und dritten Ebene aufweist; und
wobei die Dicke einer jeden der zweiten Anzahl von schwingungsdämpfenden Stangen geringer
ist als die Dicke (522) einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen
(520).
8. Dampferzeuger (2) nach Anspruch 7, wobei die Dicke (542) einer jeden der zweiten Anzahl
von schwingungsdämpfenden Stangen (540) im Wesentlichen gleich dem Abstand (508) zwischen
der zweiten und dritten Ebene (536, 556) vermindert um den Rohraußendurchmesser ist.
9. Verfahren zum Sichern von Rohren in einem Dampferzeuger (2) gegen Schwingungen, wobei
die Rohre in einem Rohrbündel (200, 300, 400, 400', 500) vorgesehen und in Reihen
und Säulen angeordnet sind, mit Bahnen zwischen den Säulen, wobei das Verfahren umfasst:
Bereitstellen einer ersten Rohrsäule (210, 310, 410, 510), wobei die erste Rohrsäule
ein erstes Rohr (212, 312, 412) mit einer gekrümmten Mittellinie (214) umfasst, die
in einer ersten Ebene (216, 316, 516) angeordnet ist;
Bereitstellen einer ersten Anzahl von massiven schwingungsdämpfenden Stangen (220,
320, 460, 520); und
Bereitstellen einer zweiten Rohrsäule (230, 330, 430, 530), wobei jede der ersten
Anzahl von schwingungsdämpfenden Stangen zwischen der ersten Rohrsäule und der zweiten
Rohrsäule angeordnet ist, wobei die zweite Rohrsäule ein zweites Rohr (232, 332, 432)
mit einer gekrümmten Mittellinie (234) umfasst, die in einer zweiten Ebene (236, 336,
536) angeordnet ist, wobei die zweite Ebene zu parallel zu der ersten Ebene und um
einen Abstand (206, 306) von dieser beabstandet ist;
wobei jedes der Rohre einen Rohraußendurchmesser (204, 304) aufweist;
wobei jede der ersten Anzahl von schwingungsdämpfenden Stangen eine Dicke (222, 322,
522) allgemein quer zu der ersten und zweiten Ebene aufweist;
wobei die Dicke einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen größer
als der Abstand zwischen der ersten und zweiten Ebene vermindert um den Rohraußendurchmesser
ist;
wobei jede der ersten Anzahl von schwingungsdämpfenden Stangen im Wesentlichen auf
einer Längsachse angeordnet ist; und
wobei jede der ersten Anzahl von schwingungsdämpfenden Stangen eine gekrümmte Mittellinie
aufweist, welche die Längsachse schneidet.
10. Verfahren nach Anspruch 9, wobei jede der ersten Anzahl von schwingungsdämpfenden
Stangen (220, 460, 520) eine Anzahl von Biegungen (224, 464, 524) umfasst; wobei die
Biegungen einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen sich zwischen
der ersten Rohrsäule (210, 410, 510) und der zweiten Rohrsäule (230, 430, 530) winden;
und wobei die Biegungen einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen
gekrümmt sind.
11. Verfahren nach Anspruch 9, wobei jede der ersten Anzahl von schwingungsdämpfenden
Stangen (320) eine Anzahl von Biegungen (324) umfasst; wobei die Biegungen einer jeden
der ersten Anzahl von schwingungsdämpfenden Stangen sich zwischen der ersten Rohrsäule
(310) und der zweiten Rohrsäule (330) winden; und wobei die Biegungen einer jeden
der ersten Anzahl von schwingungsdämpfenden Stangen im Wesentlichen zackenförmig sind.
12. Verfahren nach Anspruch 9, ferner umfassend die folgenden Schritte:
Bereitstellen einer zweiten Anzahl von massiven schwingungsdämpfenden Stangen (240,
480); und
Bereitstellen einer dritten Rohrsäule (250, 450), wobei jede der zweiten Anzahl von
schwingungsdämpfenden Stangen zwischen der zweiten Rohrsäule (230, 430) und der dritten
Rohrsäule angeordnet ist, wobei die dritte Rohrsäule ein drittes Rohr (252) mit einer
gekrümmten Mittellinie (254) umfasst, die in einer dritten Ebene (256) angeordnet
ist, wobei die dritte Ebene parallel zu der zweiten Ebene (236) und um einen Abstand
(208) von dieser beabstandet ist;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen eine Dicke (242) allgemein
quer zu der zweiten und dritten Ebene aufweist; und
wobei die Dicke einer jeden der zweiten Anzahl von schwingungsdämpfenden Stangen größer
als der Abstand zwischen der zweiten und dritten Ebene vermindert um den Rohraußendurchmesser
(204) ist.
13. Verfahren nach Anspruch 12, wobei die erste Anzahl von schwingungsdämpfenden Stangen
(460) eine erste schwingungsdämpfende Stange umfasst, die im Wesentlichen entlang
einer ersten Längsachse (465) angeordnet ist; wobei die zweiten Anzahl von schwingungsdämpfenden
Stangen (480) eine zweite schwingungsdämpfende Stange umfasst, die im Wesentlichen
entlang einer zweiten Längsachse (485) angeordnet ist, die parallel zu der ersten
Längsachse ist; wobei die erste schwingungsdämpfende Stange benachbart zu dem ersten
Rohr (412) und dem zweiten Rohr (432) angeordnet ist; wobei die zweite schwingungsdämpfende
Stange benachbart zu dem zweiten Rohr und dem dritten Rohr angeordnet ist; wobei ein
erster Spalt (467) zwischen der ersten schwingungsdämpfende Stange und dem ersten
Rohr vorliegt, und ein zweiter Spalt zwischen der ersten schwingungsdämpfenden Stange
und dem zweiten Rohr; und wobei ein dritter Spalt (487) zwischen der zweiten schwingungsdämpfenden
Stange und dem zweiten Rohr vorliegt, und einer vierter Spalt zwischen der zweiten
schwingungsdämpfenden Stange und dem dritten Rohr, wobei das Verfahren ferner umfasst:
Verschieben der ersten schwingungsdämpfenden Stange in einer ersten Richtung (461)
entlang der ersten Längsachse; und
Verschieben der zweiten schwingungsdämpfenden Stange in einer zweiten Richtung (481)
entlang der zweiten Längsachse, wobei die zweite Richtung der ersten Richtung entgegengesetzt
ist, wobei jeder von dem ersten Spalt, dem zweiten Spalt, dem dritten Spalt und dem
vierten Spalt eine Größe aufweist, die abnimmt, während die erste schwingungsdämpfende
Stange in der ersten Richtung verschoben wird und die zweite schwingungsdämpfende
Stange in der zweiten Richtung verschoben wird.
14. Verfahren nach Anspruch 13 wobei die Rohre eine dreieckige Teilung aufweisen; wobei
das Rohrbündel (400) eine U-förmige Biegung umfasst; und wobei jede der ersten Anzahl
von schwingungsdämpfenden Stangen (460) und der zweiten Anzahl von schwingungsdämpfenden
Stangen (480) in der U-förmigen Biegung angeordnet ist.
15. Verfahren nach Anspruch 9, ferner umfassend die folgenden Schritte:
Bereitstellen einer zweiten Anzahl von schwingungsdämpfenden Stangen (540); und
Bereitstellen einer dritten Rohrsäule (550), wobei jede der zweiten Anzahl von schwingungsdämpfenden
Stangen zwischen der zweiten Rohrsäule (530) und der dritten Rohrsäule angeordnet
ist, wobei die dritte Rohrsäule ein drittes Rohr mit einer gekrümmten Mittellinie
umfasst, die in einer dritten Ebene (556) angeordnet ist, wobei die dritte Ebene parallel
zu der zweiten Ebene (536) und um einen Abstand (508) von dieser beabstandet ist;
wobei jede der zweiten Anzahl von schwingungsdämpfenden Stangen eine Dicke (542) allgemein
quer zu der zweiten und dritten Ebene aufweist; und
wobei die Dicke einer jeden der zweiten Anzahl von schwingungsdämpfenden Stangen geringer
ist als die Dicke (522) einer jeden der ersten Anzahl von schwingungsdämpfenden Stangen
(520).
1. Générateur de vapeur (2) ayant un côté primaire pour faire circuler un fluide chauffé
et un côté secondaire pour faire circuler un fluide à chauffer par le fluide chauffé
circulant dans le côté primaire, le générateur de vapeur comprenant :
une tête de canal (10) pour recevoir le fluide chauffé ;
une plaque tubulaire (16) séparant la tête de canal du côté secondaire ;
un faisceau de tubes (200, 300, 500) ayant une pluralité de tubes arrangés dans des
rangées et colonnes, le faisceau de tubes s'étendant à partir de la tête de canal,
à travers la plaque tubulaire et à travers au moins une portion du côté secondaire
; et
une première série de barres antivibratoires solides (220, 320, 520) ;
la pluralité de tubes comprenant :
une première colonne de tubes (210, 310, 510), la première colonne de tubes comprenant
un premier tube (212, 312) ayant une ligne centrale courbée (214) disposée dans un
premier plan (216, 316, 516), et
une deuxième colonne de tubes (230, 330, 530), chacune de la première série de barres
antivibratoires étant disposée entre la première colonne de tubes et la deuxième colonne
de tubes, la deuxième colonne de tubes comprenant un deuxième tube (232, 332) ayant
une ligne centrale courbée (234) disposée dans un deuxième plan (236, 336, 536), le
deuxième plan étant parallèle à et espacé du premier plan par une distance (206, 306),
chacun des tubes ayant un diamètre extérieur de tube (204, 304) ;
chacune de la première série de barres antivibratoires ayant une épaisseur (222, 322,
522) généralement transverse aux premier et deuxième plans ;
l'épaisseur de chacune de la première série de barres antivibratoires étant supérieure
à la distance entre les premier et deuxième plans moins le diamètre extérieur de tube
;
caractérisé en ce que
chacune de la première série de barres antivibratoires est disposée sensiblement sur
un axe longitudinal ; et
chacune de la première série de barres antivibratoires a une ligne central courbée
croisant l'axe longitudinal.
2. Générateur de vapeur (2) selon la revendication 1, dans lequel chacune de la première
série de barres antivibratoires (220, 520) comprend une série de coudes (224, 524)
; dans lequel les coudes de chacune de la première série de barres antivibratoires
s'étendent en serpentins entre la première colonne de tubes (210, 510) et la deuxième
colonne de tubes (230, 530) ; et dans lequel les coudes de chacune de la première
série de barres antivibratoires sont courbés.
3. Générateur de vapeur (2) selon la revendication 1, dans lequel chacune de la première
série de barres antivibratoires (320) comprend une série de coudes (324) ; dans lequel
les coudes de chacune de la première série de barres antivibratoires s'étendent en
serpentins entre la première colonne de tubes (310) et la deuxième colonne de tubes
(330) ; et dans lequel les coudes de chacune de la première série de barres antivibratoires
s'étendent sensiblement en zig-zag.
4. Générateur de vapeur (2) selon la revendication 1, en outre comprenant une seconde
série de barres antivibratoires solides (240) ;
dans lequel la pluralité de tubes en outre comprend une troisième colonne de tubes
(250) ;
chacune de la seconde série de barres antivibratoires étant disposée entre la deuxième
colonne de tubes (230) et la troisième colonne de tubes ;
la troisième colonne de tubes comprenant un troisième tube (252) ayant une ligne centrale
courbée (254) disposée dans un troisième plan (256) ;
le troisième plan étant parallèle à et espacé du deuxième plan (236) par une distance
(208) ;
chacune de la deuxième série de barres antivibratoires ayant une épaisseur (242) généralement
transverse aux deuxième et troisième plans ; et
l'épaisseur de chacune de la deuxième série de barres antivibratoires étant supérieure
à la distance entre les deuxième et troisième plans moins le diamètre extérieur de
tube (204).
5. Générateur de vapeur (2) selon la revendication 4, dans lequel la pluralité de tubes
a un pas triangulaire ; le faisceau de tubes (200) comprenant un coude de forme de
U ; et chacune de la première série de barres antivibratoires (220) et de la deuxième
série de barres antivibratoires (240) étant disposée dans le coude en forme de U.
6. Générateur de vapeur (2) selon la revendication 4, dans lequel la pluralité de tubes
a un pas en carré tourné ; le faisceau de tubes (200) comprenant un coude de forme
de U ; et chacune de la première série de barres antivibratoires (220) et de la deuxième
série de barres antivibratoires (240) étant disposée dans le coude en forme de U.
7. Générateur de vapeur (2) selon la revendication 1, en outre comprenant une seconde
série de barres antivibratoires solides (540) ;
dans lequel la pluralité de tubes en outre comprend une troisième colonne de tubes
(550) ;
chacune de la seconde série de barres antivibratoires étant disposée entre la deuxième
colonne de tubes (530) et la troisième colonne de tubes ;
la troisième colonne de tubes comprenant un troisième tube ayant une ligne centrale
courbée disposée dans un troisième plan (556) ;
le troisième plan étant parallèle à et espacé du deuxième plan (536) par une distance
(508) ;
chacune de la deuxième série de barres antivibratoires ayant une épaisseur (542) généralement
transverse aux deuxième et troisième plans ; et
l'épaisseur de chacune de la seconde série de barres antivibratoires étant inférieure
à l'épaisseur (522) de chacune de la première série de barres antivibratoires (520).
8. Générateur de vapeur (2) selon la revendication 7, dans lequel l'épaisseur (542) de
chacune de la seconde série de barres antivibratoires (540) est sensiblement égale
à la distance (508) entre les deuxième et troisième plans (536, 556) moins le diamètre
extérieur de tube.
9. Procédé de sécuriser des tubes dans un générateur de vapeur (2) contre les vibrations,
les tubes étant disposés dans un faisceau de tubes (200, 300, 400, 400', 500) et arrangés
dans des rangées et colonnes, avec des voies entre les colonnes, le procédé comprenant
:
fournir une première colonne de tubes (210, 310, 410, 510), la première colonne de
tubes comprenant un premier tube (212, 312, 412) ayant une ligne centrale courbée
(214) disposée dans un premier plan (216, 316, 516) ;
fournir une première série de barres antivibratoires solides (220, 320, 460, 520)
; et
fournir une deuxième colonne de tubes (230, 330, 430, 530), chacune de la première
série de barres antivibratoires étant disposée entre la première colonne de tubes
et la deuxième colonne de tubes, la deuxième colonne de tubes comprenant un deuxième
tube (232, 332, 432) ayant une ligne centrale courbée (234) disposée dans un deuxième
plan (236, 336, 536), le deuxième plan étant parallèle à et espacé du premier plan
par une distance (206, 306) ;
chacun des tubes ayant un diamètre extérieur de tube (204, 304) ;
chacune de la première série de barres antivibratoires ayant une épaisseur (222, 322,
522) généralement transverse aux premier et deuxième plans ;
l'épaisseur de chacune de la première série de barres antivibratoires étant supérieure
à la distance entre les premier et deuxième plans moins le diamètre extérieur de tube
;
chacune de la première série de barres antivibratoires étant disposée sensiblement
sur un axe longitudinal ; et
chacune de la première série de barres antivibratoires ayant une ligne central courbée
croisant l'axe longitudinal.
10. Procédé selon la revendication 9, dans lequel chacune de la première série de barres
antivibratoires (220, 460, 520) comprend une série de coudes (224, 464, 524) ; dans
lequel les coudes de chacune de la première série de barres antivibratoires s'étendent
en serpentins entre la première colonne de tubes (210, 410, 510) et la deuxième colonne
de tubes (230, 430, 530) ; et dans lequel les coudes de chacune de la première série
de barres antivibratoires sont courbés.
11. Procédé selon la revendication 9, dans lequel chacune de la première série de barres
antivibratoires (320) comprend une série de coudes (324) ; dans lequel les coudes
de chacune de la première série de barres antivibratoires s'étendent en serpentins
entre la première colonne de tubes (310) et la deuxième colonne de tubes (330) ; et
dans lequel les coudes de chacune de la première série de barres antivibratoires s'étendent
sensiblement en zig-zag.
12. Procédé selon la revendication 9, en outre comprenant les étapes consistant à :
fournir une seconde série de barres antivibratoires solides (240, 480) ; et
fournir une troisième colonne de tubes (250, 450), chacune de la seconde série de
barres antivibratoires étant disposée entre la deuxième colonne de tubes (230, 430)
et la troisième colonne de tubes, la troisième colonne de tubes comprenant un troisième
tube (252) ayant une ligne centrale courbée (254) disposée dans un troisième plan
(256), le troisième plan étant parallèle à et espacé du deuxième plan (236) par une
distance (208) ;
chacune de la deuxième série de barres antivibratoires ayant une épaisseur (242) généralement
transverse aux deuxième et troisième plans ; et
l'épaisseur de chacune de la deuxième série de barres antivibratoires étant supérieure
à la distance entre les deuxième et troisième plans moins le diamètre extérieur de
tube (204).
13. Procédé selon la revendication 12, dans lequel la première série de barres antivibratoires
(460) comprend une première barre antivibratoire sensiblement disposée le long d'un
premier axe longitudinal (465) ; dans lequel la seconde série de barres antivibratoires
(480) comprend une seconde barre antivibratoire sensiblement disposée le long d'un
second axe longitudinal (485) parallèle au premier axe longitudinal ; la première
barre antivibratoire étant disposée adjacente au premier tube (412) et au deuxième
tube (432) ; la seconde barre antivibratoire étant disposée adjacente au deuxième
tube et au troisième tube ; dans lequel il y a un premier écart (467) entre la première
barre antivibratoire et le premier tube et un second écart entre la première barre
antivibratoire et le deuxième tube ; et dans lequel il y a un troisième écart (487)
entre la seconde barre antivibratoire et le deuxième tube et un quatrième écart entre
la seconde barre antivibratoire et le troisième tube, le procédé en outre comprenant
les étapes consistant à :
déplacer la première barre antivibratoire dans une première direction (461) le long
du premier axe longitudinal ; et
déplacer la seconde barre antivibratoire dans une seconde direction (481) le long
du second axe longitudinal, la seconde direction étant opposée à la première direction,
chacun des premier, deuxième, troisième et quatrième écarts ayant une dimension qui
se diminue lorsque la première barre antivibratoire est déplacée dans la première
direction et la seconde barre antivibratoire est déplacée dans la seconde direction.
14. Procédé selon la revendication 13, dans lequel les tubes ont un pas triangulaire ;
le faisceau de tubes (400) comprenant un coude de forme de U ; et chacune de la première
série de barres antivibratoires (460) et de la deuxième série de barres antivibratoires
(480) étant disposée dans le coude en forme de U.
15. Procédé selon la revendication 9, en outre comprenant les étapes consistant à :
fournir une seconde série de barres antivibratoires (540) ; et
fournir une troisième colonne de tubes (550), chacune de la seconde série de barres
antivibratoires étant disposée entre la deuxième colonne de tubes (530) et la troisième
colonne de tubes, la troisième colonne de tubes comprenant un troisième tube ayant
une ligne centrale courbée disposée dans un troisième plan (556), le troisième plan
étant parallèle à et espacé du deuxième plan (536) par une distance (508) ;
chacune de la deuxième série de barres antivibratoires ayant une épaisseur (542) généralement
transverse aux deuxième et troisième plans ; et
l'épaisseur de chacune de la seconde série de barres antivibratoires étant inférieure
à l'épaisseur (522) de chacune de la première série de barres antivibratoires (520).