(19)
(11) EP 2 836 362 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
14.10.2020 Bulletin 2020/42

(21) Application number: 13775125.1

(22) Date of filing: 03.04.2013
(51) International Patent Classification (IPC): 
B32B 7/12(2006.01)
B32B 27/30(2006.01)
B32B 27/32(2006.01)
B32B 25/14(2006.01)
B32B 27/08(2006.01)
(86) International application number:
PCT/US2013/035067
(87) International publication number:
WO 2013/154877 (17.10.2013 Gazette 2013/42)

(54)

MULTILAYER POLYMERIC STRUCTURE

MEHRSCHICHTIGE POLYMERSTRUKTUR

STRUCTURE POLYMÈRE MULTICOUCHE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 13.04.2012 US 201261623779 P

(43) Date of publication of application:
18.02.2015 Bulletin 2015/08

(73) Proprietor: Arkema France
92700 Colombes (FR)

(72) Inventors:
  • CRABB, Charles C.
    Royersford, Pennsylvania 19468 (US)
  • RICHARDS, Thomas H.,
    New Britain, Pennsylvania 18932 (US)
  • LACOCK, Steven B.
    Boyertown, Pennsylvania 19512 (US)
  • MEHLMANN, Florence
    King of Prussia, Pennsylvania 19406 (US)


(56) References cited: : 
WO-A1-2013/025739
WO-A1-2013/070502
WO-A2-2007/038383
US-A1- 2002 001 730
US-A1- 2003 099 840
US-A1- 2007 190 333
US-A1- 2008 248 294
WO-A1-2013/025739
WO-A1-2013/070502
US-A- 5 017 436
US-A1- 2002 001 730
US-A1- 2004 253 468
US-A1- 2008 145 670
US-A1- 2008 254 308
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention is defined in the appended claims and relates to multilayer polymer structures having at least three layers. These layers include a polar capstock layer other than an acrylic, an olefinic substrate layer, and a tie layer. The tie layer is selected from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid which can be partially or fully in the salt form. Each layer could contain multiple sub-layers. The multilayer structure exhibits excellent structural integrity, excellent surface appearance, high impact strength, high scratch resistance, and excellent resistance to UV rays.

    BACKGROUND OF THE INVENTION



    [0002] Multi-layered polymeric structures are useful to take advantage of the properties of the different polymers. The multi-layer structures (or sheets) are found in parts used in many industries, including the automotive industry; communications such as telephones, radio, TV, cassettes, etc.; power tools; appliances; business machines; toys; furniture; medical devices, building and construction, etc.. When preparing multilayer structures, the layers of the structures must adhere securely to each other. If the layers of the structure do not adhere to each other, a special adhesive, or a tie layer, may be used to join the layers of the multilayer structure together.

    [0003] The multilayer structures of the invention may be produced by any methods available in the art, such as by co-extrusion techniques, lamination techniques, thermoforming, injection molding, blow molding, or any combination thereof. Co-extrusion is a process in which two or more molten polymeric compositions are simultaneously extruded through a feedblock die or, alternatively, through a multi-manifold die, to form a laminar structure with different functional properties in each layer. A feedblock die can be used to feed a multi-manifold die in a single process, to provide excellent flexibility in the manufacture of the multilayer structures. Lamination is the process of bonding together prefabricated sheet or film layers, or prefabricated and extruded sheet or film layers, by the use of adhesives, or by a combination of heat and pressure. Alternatively, hot melt lamination or thermal lamination brings two or more molten polymer layers together outside the extrusion die, usually at a nip roll or at the top roll of a roll stack.

    [0004] Multilayer structures formed by blends of different polymer compositions are known in the prior art.

    [0005] Examples of multilayer structures having styrenic cap layers and olefinic core layers include those disclosed in U.S. Pat. Nos. 5,264,280, 5,374,680 and 5,385,781.

    [0006] US 6,455,171, US 6,420,050, and US 2008/0220274 disclose multilayer structures which provide the physical properties of an olefinic core layer and the scratch and chemical resistive properties of an acrylic cap layer. The tie layers disclosed are either an olefinic acrylate copolymer, or a block copolymer of vinyl aromatic monomer with aliphatic conjugated diene, partially hydrogenated diene, or olefin monomer. US 7,740,951 discloses a similar olefin-based substrate, an acrylic cap layer, and a tie layer using a blend of a styrenic block copolymer with a vinyl cyanide-containing compound.

    [0007] Unfortunately, none of the described tie-layers, by themselves, result in sufficient adhesion to both the olefin substrate and the cap layers, while also affording high quality sheet surface. Efforts to optimize such compositions can improve adhesion to one layer, but simultaneously reduce the adhesion to the other layer. Specific epoxy-functionalized polyolefin-acrylate copolymers have shown satisfactory adhesion to both layers; however the presence of gels in this type of materials resulted in a structure with unacceptable surface appearance.

    [0008] US 5,082,742 discloses a structure with an olefinic substrate layer attached to a thermoplastic resin using either a two-layer tie having a functional thermoplastic and a functional polyolefin, or a single layer tie that is a blend of a functional thermoplastic and a functional polyolefin. Functional groups are specifically chosen to be co-reactive in processing conditions used to produce the tie-layer.

    [0009] US 2004/0253468 A1 discloses multilayer structures obtained by coextrusion and comprising at least one thermoplastic polyolefin layer; at least one thermoplastic vinyl aromatic polymer layer; and a multicomponent tie layer. The multicomponent tie layer comprises at least one thermoplastic polyolefin; at least one thermoplastic vinyl aromatic polymer; and at least one styrenic block copolymer.

    [0010] Surprisingly, it has now been found that a tie layer that does not contain co-reactive functional groups, can be used to provide excellent adhesion of a polar cap layer, that is not an acrylic, to an olefinic substrate layer. The useful tie layer is selected from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid which can be partially or fully in the salt form. The result of using the novel tie layer between the polyolefin and polar cap layers is a multilayer structure which displays enhanced structural integrity, as well as excellent surface appearance.

    SUMMARY OF THE INVENTION



    [0011] The invention is defined in the appended claims and relates to a multi-layer thermoformable structure having:
    1. a) at least one polyolefin-based layer,
    2. b) at least one polar, non-acrylic layer, having a thickness from 0.025 to 3 mm, comprising a styrenic-based polymer selected from the group consisting of polystyrene, high-impact polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate (ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene (MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block (SBS) copolymers and their partially of fully hydrogenated derivatives, styrene-isoprene copolymers, styrene-isoprene-styrene (SIS) block copolymers and their partially or fully hydrogenated derivatives, and styrene-methyl methycrylate copolymers (S/MMA), and
    3. c) at least one tie layer having a thickness from 0.05 to 1 mm, comprising one or more polymers selected from the group consisting of olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid partially or fully in the salt form,
    where the tie layer is directly adjacent to, and in between the polyolefin-based layer and the polar non-acrylic layer and wherein said tie layer has a tensile modulus of greater than 300 psi, as measured by ASTM D638.

    [0012] The invention also relates to article formed from the multi-layer structure.

    DETAILED DESCRIPTION OF THE INVENTION



    [0013] All percentages used herein are weight percentages unless stated otherwise, and all molecular weights are weight average molecular weights determined by gel permeation chromatography unless stated otherwise.

    [0014] The invention relates to a multilayer polymer structure containing at least a capstock layer, a tie layer, and a substrate layer.

    Capstock



    [0015] The multilayer structure of this invention contains at least one polar capstock layer that is non-acrylic. Polar capstock layer polymers are styrenic-based. Styrenic-based polymers are selected from the group consisting of polystyrene, high-impact polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate (ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene (MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block (SBS) copolymers and their partially or fully hydrogenenated derivatives, styrene-isoproene copolymers styrene-isoprene-styrene (SIS) block copolymers and their partially or fully hydrogenenated derivatives, and styrene-(meth)acrylate copolymers such as styrene-methyl methacrylate copolymers (S/MMA). A preferred styrenic polymer is ASA. The styrenic polymers of the invention can be manufactured by means known in the art, including emulsion polymerization, solution polymerization, and suspension polymerization. Styrenic copolymers of the invention have a styrene content of at least 10 percent by weight, preferably at least 25 percent by weight.

    [0016] In one embodiment, the capstock layer polymer has a weight average molecular weight of between 50,000 and 500,000 g/mol, and preferably from 75,000 and 150,000 g/mol, as measured by gel permeation chromatography (GPC). The molecular weight distribution of the acrylic polymer may be monomodal, or multimodal with a polydispersity index greater than 1.5.

    [0017] In one embodiment, the multilayer structure of the invention contains two or more polar capstock layers, and two or more tie layers, such as a five- layer structure of polar capstock/tie layer/polyolefin-based polymer/tie layer/polar capstock layer. The structure could have different polar cap layers on each side. In a structure in which multiple polar capstock layers and/or multiple tie layers are used in layers non-adjacent to each other, the polar capstock layers and tie layers can be of the same of different compositions, though in a preferred embodiment the multiple polar capstock layers and tie layers are the same. In another embodiment, the polar capstock layers may be composed of two or more polar layers directly in contact with each other. In another embodiment, the tie-layer may be composed of two or more tie layers directly in contact with each other.

    [0018] The capstock layer of the invention has a thickness of from 0.025 to 3 mm, and preferably from 0.075 to 0.5 mm.

    Substrate



    [0019] The polyolefin-based layer, herein also referred to as a substrate layer, is thicker than the capstock layer(s) and tie layer(s) combined. The polyolefin-based layer provides a layer with a good balance of stiffness and impact resistance, excellent processability, and relatively lower cost. It could contain one or more different polyolefin layers, and a polyolefin layer could be a blend of two or more different polyolefins. The polyolefins employed in the semicrystalline or crystallizable olefin polymers can be homopolymers, copolymers, terpolymers, or mixtures thereof, etc., containing one or more olefin monomeric units. In a polyolefin-based layer, the polyolefins are generally present in an amount from 30 to 100% by weight, preferably at least 55%, and more preferably at least 60% by weight. The polyolefin of this invention excludes cyclic olefin copolymer (COCs). It is common for one or more of the polyolefin layers to contain rework - material that has already been processed into an article, such as a film or sheet. The rework polyolefin is then granulated and blended with virgin polyolefin prior to re-extrusion. The rework may contain non-polyolefin components.

    [0020] Polymers of alpha-olefins or 1-olefins are preferred in the present invention, and these alpha-olefins may contain from 2 to about 20 carbon atoms. Alpha-olefins containing 2 to about 6 carbon atoms are preferred. Thus, the olefin polymers may be derived from olefins such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-octene, 1-decene, 4-ethyl-1-hexene, etc. Examples of polyolefins include polypropylene, polyethylene, and ethylene propylene copolymers.

    [0021] In one embodiment, the polyolefins include polypropylene and ethylenepropylene polymers. Propylene polymers may be semi-crystalline or crystalline in structure. The number average molecular weight of the propylene polymers is preferably above about 10,000 and more preferably above about 50,000. In addition, it is preferred in one embodiment that the apparent crystalline melting point be above about 75°C. and preferably between about 75° C. and about 250° C. The propylene polymers useful in the present invention are well-known to those skilled in the art and many are available commercially. Polypropylene are the preferred propylene polymers.

    [0022] Thermoplastic polyolefins (TPO) are an especially preferred substrate layer. A thermoplastic polyolefin (TPO) composition is defined as a two-phase melt blend containing a continuous phase of at least one semi-crystalline polypropylene component and a dispersed phase containing at least one substantially amorphous elastomer component. The elastomer component typically includes at least one ethylene/alpha-olefin copolymer, at least one styrenic block copolymer, or a mixture thereof. Preferred thermoplastic polyolefin materials provide a beneficial balance of stiffness (e.g., flexural modulus typically ranging from 270-2900 MPa), as well as impact resistance (e.g., ductile at room temperature, preferably ductile at -30°C.), yet are melt processable with most conventional thermoplastic processing equipment. Preferably, the polyolefin-based substrate layer component is further characterized by a density typically of from 0.813 g/cm.sup.3 to 1.305 g/cm3.

    [0023] In one embodiment, the multilayer structure of the invention contains two or more substrate layers.

    Tie layer



    [0024] Tie layers useful in the present invention are composed of one or more polymers selected from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid which can be partially or fully in the salt form.

    [0025] The tie layer has a high tensile modulus of greater than 300 psi, preferably greater than 400 psi, and most preferably greater than 500 psi, as measured by ASTM D638.

    [0026] If the tie-layer comprises a copolymer of olefin and (meth)acrylic acid partially or fully in the salt form, the salt cation is preferably selected from the group of, sodium, potassium, calcium, zinc, lithium, magnesium, and barium.

    [0027] The olefin acrylate copolymer can be made by any method known in the art, including but not limited to high pressure autoclaves and tubular reactors, and can have homogeneous or heterogeneous distributions of compositions and molecular weights.

    [0028] In the multi-layer structure of the invention, the tie layer ranges from 0.05 to 1 mm in thickness.

    [0029] The polar capstock layer(s), polyolefin-based substrate layer(s) and tie layers may contain one or more impact modifiers, fillers or fibers, or other additives of the type used in the polymer art. Examples of impact modifiers include, but are not limited to, core-shell particles and block or graft copolymers. Examples of additives include, for example, UV light inhibitors or stabilizers, lubricant agents, heat stabilizers, flame retardants, synergists, pigments and other coloring agents. Examples of fillers employed in a typical compounded polymer blend according to the present invention include talc, calcium carbonate, mica, matting agents, wollastonite, dolomite, glass fibers, boron fibers, carbon fibers, carbon blacks, pigments such as titanium dioxide, or mixtures thereof. Examples of matting agents include, but are not limited to, cross-linked polymer particles of various geometries, The amount of filler and additives included in the polymer compositions of each layer may vary from about 0.01% to about 70% of the combined weight of polymer, additives and filler. Generally amounts from about 5% to about 45%, preferably from about 10% to about 40%, are included.

    [0030] The fillers may be treated with coupling agents to improve the bond between the fillers to the resin. For example, the fillers can be treated with materials such as fatty acids (e.g., stearic acid), silanes, maleated polypropylene, etc. The amount of coupling agent used is an amount effective to improve the bond between the fillers with the resin.

    Manufacture



    [0031] The multi-layer structure of the invention can contain three or more layers, with the choice of the number and composition of the layers being adjusted to meet the needs of the end-use application. The structure can be made by any method known to the art. This includes separate formation of the layers followed by lamination, coextrusion of all layers - which is preferred, or a combination of coextrusion and lamination. This also includes multi-shot injection molding, blow molding and insert molding.

    [0032] The multilayered polymeric structure of the present invention may be either processed directly into any geometric shape, such as a profile, or may be first processed into a planar shape and then further shaped into a three-dimensional part by any suitable method. Thermoforming, for example, is the process of heating a plastic material in film or sheet form to its particular processing temperature and forming the hot and flexible material against the contours of a mold by mechanical or pneumatic means.

    [0033] The multilayer structure can have any given geometry, including but not limited to, a flat sheet, a rod, or a profile. The multilayer structure exhibits excellent structural integrity, excellent surface appearance, high impact strength, high scratch resistance, and excellent resistance to UV rays.

    Examples



    [0034] The following sheet structures were prepared on a laboratory coextrusion line using a triple manifold die:
      Example 1 Example 2 (Comparative) Example 3 Layer Thickness
    Capstock ASA1 ASA1 PMMA4 6 mil
    Tie Layer Olefin-Acrylic Copolymer2 None Olefin-Acrylic Copolymer2 12 mil
    Substrate TPO3 TPO3 TPO3 90 mil
    1 LURAN SE UV 797 Natural from Styrolution.
    2 PRD-940B from Arkema, Inc.
    3 METAFORM 7200 from Mytex Polymers.
    4 SOLARKOTE A200 from Arkema, Inc.


    [0035] After coextrusion, the composite sheet was cut into 1" wide strips and adhesion between the capstock and substrate was measured using a 90° peel test as described in ASTM 6862-04.

    [0036] The following results were obtained:
      Peel Strength
    Example 1 15.9 lbf/in
    Example 2 < 2 lbf/in
    Example 3 17.2 lbf/in


    [0037] Example 1 displays excellent adhesion between the layers. In contrast, example 2, having no tie layer present, exhibits very little adhesion. This demonstrates the usefulness of using an olefin-acrylic copolymer as a tie layer for coextruding styrenics such as ASA over polyolefins such as TPO. Examples 1 and 3 exhibits similar adhesion, the choice of acrylic-based polymers or styrenic-based polymers as a capstock layer depends on the end-application requirements, in terms of cost and physical properties (hardness, gloss, impact).


    Claims

    1. A multi-layer thermoformable structure comprising:

    a) at least one polyolefin-based layer,

    b) at least one polar, non-acrylic layer, having a thickness from 0.025 to 3 mm, comprising a styrenic-based polymer selected from the group consisting of polystyrene, high-impact polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate (ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene (MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block (SBS) copolymers and their partially or fully hydrogenenated derivatives, styrene-isoprene copolymers, styrene-isoprene-styrene (SIS) block copolymers and their partially or fully hydrogenenated derivatives, and styrene-methyl methacrylate copolymers (S/MMA), and

    c) at least one tie layer, having a thickness from 0.05 to 1 mm, comprising one or more polymers selected from the group consisting of olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid which can be partially or fully in the salt form, ,

    wherein said tie layer is directly adjacent to, and in between the polyolefin-based layer and the polar non-acrylic based layer and_wherein said tie layer has a tensile modulus of greater than 2,07 MPa (300 psi), as measured by ASTM D638.
     
    2. The multi-layer thermoformable structure of claim 1, wherein said polyolefin-based layer is a thermoplastic polyolefin.
     
    3. The multi-layer thermoformable structure of claim 1, wherein said polar polymer layer has a weight average molecular weight of between 50,000 and 500,000 g/mol, as measured by gel permeation chromatography.
     
    4. The multi-layer thermoformable structure of claim 1, wherein said styrenic-based polymer comprises acrylonitrile-styrene-acrylate (ASA) copolymers
     
    5. The multi-layer thermoformable structure of claim 1, wherein said polar polymer layer further comprises one or more impact modifiers, fillers, and/or fibers.
     
    6. The multi-layer thermoformable structure of claim 1, wherein said polyolefin-based layer comprises at least 30 weight percent of one or more polyolefin materials.
     
    7. The multi-layer thermoformable structure of claim 1, wherein the salt cation of the copolymer of olefin and (meth)acrylic acid partially or fully in the salt form is selected from the group of, sodium, potassium, calcium, zinc, lithium, magnesium, and barium.
     
    8. The multi-layer thermoformable structure of claim 1, wherein said tie layer has a tensile modulus of greater than 3,45 MPa (500 psi), as measured by ASTM D638.
     
    9. An article formed from the thermoformable structure of claim 1.
     
    10. The article of claim 9 in the form of a flat sheet, a rod, or a profile.
     
    11. The article of claim 9 formed by a process selected from lamination, coextrusion, multi-shot injection molding, and insert molding.
     


    Ansprüche

    1. Mehrschichtige thermoformbare Struktur, umfassend:

    a) mindestens eine Schicht auf Polyolefinbasis,

    b) mindestens eine polare Nicht-Acryl-Schicht mit einer Dicke von 0,025 bis 3 mm, umfassend ein Polymer auf Styrolbasis aus der Gruppe bestehend aus Polystyrol, schlagzähem Polystyrol (HIPS), Acrylnitril-Butadien-Styrol(ABS)-Copolymeren, Acrylnitril-Styrol-Acrylat(ASA)-Copolymeren, Styrol-Acrylnitril(SAN)-Copolymeren, Methacrylat-Acrylnitril-Butadien-Styrol(MABS)-Copolymeren, Styrol-Butadien(SB)-Copolymeren, Styrol-Butadien-Styrol(SBS)-Blockcopolymeren und deren teilweise oder vollständig hydrierten Derivaten, Styrol-Isopren-Copolymeren, Styrol-Isopren-Styrol(SIS)-Blockcopolymeren und deren teilweise oder vollständig hydrierten Derivaten und Styrol-Methylmethacrylat(S/MMA)-Copolymeren, und

    c) mindestens eine Verbindungsschicht mit einer Dicke von 0,05 bis 1 mm, umfassend ein oder mehrere Polymere aus der Gruppe bestehend aus olefinischen Acrylatcopolymeren und Copolymeren von Olefin und (Meth)acrylsäure, die teilweise oder vollständig in der Salzform vorliegen können,

    wobei die Verbindungsschicht der Schicht auf Polyolefinbasis und der polaren Schicht auf Nicht-Acryl-Basis direkt benachbart ist und sich dazwischen befindet und wobei die Verbindungsschicht einen nach ASTM D638 gemessenen Zugmodul von mehr als 2,07 MPa (300 psi) aufweist.
     
    2. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht auf Polyolefinbasis ein thermoplastisches Polyolefin ist.
     
    3. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht aus polarem Polymer ein durch Gelpermeationschromatographie gemessenes gewichtsmittleres Molekulargewicht zwischen 50.000 und 500.000 g/mol aufweist.
     
    4. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei das Polymer auf Styrolbasis Acrylnitril-Styrol-Acrylat(ASA)-Copolymere umfasst.
     
    5. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht aus polarem Polymer ferner einen oder mehrere Schlagzähigkeitsmodifikatoren, einen oder mehrere Füllstoffe und/oder eine oder mehrere Fasern umfasst.
     
    6. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht auf Polyolefinbasis mindestens 30 Gewichtsprozent eines oder mehrerer Polyolefinmaterialien umfasst.
     
    7. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei das Salzkation des Copolymers von Olefin und (Meth)acrylsäure, das teilweise oder vollständig in der Salzform vorliegt, aus der Gruppe bestehend aus Natrium, Kalium, Calcium, Zink, Lithium, Magnesium und Barium ausgewählt ist.
     
    8. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Verbindungsschicht einen nach ASTM D638 gemessenen Zugmodul von mehr als 3,45 MPa (500 psi) aufweist.
     
    9. Artikel, gebildet aus der thermoformbaren Struktur nach Anspruch 1.
     
    10. Artikel nach Anspruch 9 in Form eines Flächengebildes, eines Stabs oder eines Profils.
     
    11. Artikel nach Anspruch 9, gebildet durch ein aus Lamination, Coextrusion, Mehrstufen-Spritzgießen und Insert Molding ausgewähltes Verfahren.
     


    Revendications

    1. Structure multicouche thermoformable comprenant :

    a) au moins une couche à base de polyoléfine,

    b) au moins une couche polaire, non acrylique, possédant une épaisseur de 0,025 à 3 mm, comprenant un polymère à base styrénique choisi dans le groupe constitué par le polystyrène, le polystyrène à impact élevé (HIPS), les copolymères acrylonitrile-butadiène-styrène (ABS), les copolymères acrylonitrile-styrène-acrylate (ASA), les copolymères de styrène et d'acrylonitrile (SAN), les copolymères méthacrylate-acrylonitrile-butadiène-styrène (MABS), les copolymères styrène-butadiène (SB), les copolymères à blocs styrène-butadiène-styrène (SBS) et leurs dérivés partiellement ou totalement hydrogénés, les copolymères styrène-isoprène, les copolymères à blocs styrène-isoprène-styrène (SIS) et leurs dérivés partiellement ou totalement hydrogénés, et les copolymères styrène-méthacrylate de méthyle (S/MMA), et

    c) au moins une couche de liaison, possédant une épaisseur de 0,05 à 1 mm, comprenant un ou plusieurs polymères choisis dans le groupe constitué par les copolymères oléfiniques acrylate et les copolymères d'oléfine et d'acide (méth)acrylique qui peuvent être partiellement ou totalement sous forme de sel,

    ladite couche de liaison étant directement adjacente à, et entre la couche à base de polyoléfine et la couche polaire à base non acrylique et ladite couche de liaison possédant un module de traction supérieur à 2,07 MPa (300 psi), tel que mesuré selon la norme ASTM D638.
     
    2. Structure multicouche thermoformable selon la revendication 1, ladite couche à base de polyoléfine étant une polyoléfine thermoplastique.
     
    3. Structure multicouche thermoformable selon la revendication 1, ladite couche polaire de polymère possédant un poids moléculaire moyen en poids compris entre 50 000 et 500 000 g/mole, tel que mesuré par chromatographie à perméation de gel.
     
    4. Structure multicouche thermoformable selon la revendication 1, ledit polymère à base styrénique comprenant des copolymères acrylonitrile-styrène-acrylate (ASA).
     
    5. Structure multicouche thermoformable selon la revendication 1, ladite couche polaire de polymère comprenant en outre un(e) ou plusieurs modificateurs d'impact, charges, et/ou fibres.
     
    6. Structure multicouche thermoformable selon la revendication 1, ladite couche à base de polyoléfine comprenant au moins 30 pour cent en poids d'un ou plusieurs matériaux de type polyoléfine.
     
    7. Structure multicouche thermoformable selon la revendication 1, le cation salin du copolymère d'oléfine et d'acide (méth)acrylique partiellement ou totalement sous forme de sel étant choisi dans le groupe du sodium, du potassium, du calcium, du zinc, du lithium, du magnésium, et du baryum.
     
    8. Structure multicouche thermoformable selon la revendication 1, ladite couche de liaison possédant un module de traction supérieur à 3,45 MPa (500 psi), tel que mesuré selon la norme ASTM D638.
     
    9. Article formé à partir de la structure thermoformable selon la revendication 1.
     
    10. Article selon la revendication 9 sous forme d'une feuille plane, d'une tige, ou d'un profilé.
     
    11. Article selon la revendication 9 formé par un procédé choisi parmi la lamination, la coextrusion, le moulage par multi-injection, et le moulage par insertion.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description