FIELD OF THE INVENTION
[0001] The invention is defined in the appended claims and relates to multilayer polymer
structures having at least three layers. These layers include a polar capstock layer
other than an acrylic, an olefinic substrate layer, and a tie layer. The tie layer
is selected from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic
acid which can be partially or fully in the salt form. Each layer could contain multiple
sub-layers. The multilayer structure exhibits excellent structural integrity, excellent
surface appearance, high impact strength, high scratch resistance, and excellent resistance
to UV rays.
BACKGROUND OF THE INVENTION
[0002] Multi-layered polymeric structures are useful to take advantage of the properties
of the different polymers. The multi-layer structures (or sheets) are found in parts
used in many industries, including the automotive industry; communications such as
telephones, radio, TV, cassettes, etc.; power tools; appliances; business machines;
toys; furniture; medical devices, building and construction, etc.. When preparing
multilayer structures, the layers of the structures must adhere securely to each other.
If the layers of the structure do not adhere to each other, a special adhesive, or
a tie layer, may be used to join the layers of the multilayer structure together.
[0003] The multilayer structures of the invention may be produced by any methods available
in the art, such as by co-extrusion techniques, lamination techniques, thermoforming,
injection molding, blow molding, or any combination thereof. Co-extrusion is a process
in which two or more molten polymeric compositions are simultaneously extruded through
a feedblock die or, alternatively, through a multi-manifold die, to form a laminar
structure with different functional properties in each layer. A feedblock die can
be used to feed a multi-manifold die in a single process, to provide excellent flexibility
in the manufacture of the multilayer structures. Lamination is the process of bonding
together prefabricated sheet or film layers, or prefabricated and extruded sheet or
film layers, by the use of adhesives, or by a combination of heat and pressure. Alternatively,
hot melt lamination or thermal lamination brings two or more molten polymer layers
together outside the extrusion die, usually at a nip roll or at the top roll of a
roll stack.
[0004] Multilayer structures formed by blends of different polymer compositions are known
in the prior art.
[0006] US 6,455,171,
US 6,420,050, and
US 2008/0220274 disclose multilayer structures which provide the physical properties of an olefinic
core layer and the scratch and chemical resistive properties of an acrylic cap layer.
The tie layers disclosed are either an olefinic acrylate copolymer, or a block copolymer
of vinyl aromatic monomer with aliphatic conjugated diene, partially hydrogenated
diene, or olefin monomer.
US 7,740,951 discloses a similar olefin-based substrate, an acrylic cap layer, and a tie layer
using a blend of a styrenic block copolymer with a vinyl cyanide-containing compound.
[0007] Unfortunately, none of the described tie-layers, by themselves, result in sufficient
adhesion to both the olefin substrate and the cap layers, while also affording high
quality sheet surface. Efforts to optimize such compositions can improve adhesion
to one layer, but simultaneously reduce the adhesion to the other layer. Specific
epoxy-functionalized polyolefin-acrylate copolymers have shown satisfactory adhesion
to both layers; however the presence of gels in this type of materials resulted in
a structure with unacceptable surface appearance.
[0008] US 5,082,742 discloses a structure with an olefinic substrate layer attached to a thermoplastic
resin using either a two-layer tie having a functional thermoplastic and a functional
polyolefin, or a single layer tie that is a blend of a functional thermoplastic and
a functional polyolefin. Functional groups are specifically chosen to be co-reactive
in processing conditions used to produce the tie-layer.
[0009] US 2004/0253468 A1 discloses multilayer structures obtained by coextrusion and comprising at least one
thermoplastic polyolefin layer; at least one thermoplastic vinyl aromatic polymer
layer; and a multicomponent tie layer. The multicomponent tie layer comprises at least
one thermoplastic polyolefin; at least one thermoplastic vinyl aromatic polymer; and
at least one styrenic block copolymer.
[0010] Surprisingly, it has now been found that a tie layer that does not contain co-reactive
functional groups, can be used to provide excellent adhesion of a polar cap layer,
that is not an acrylic, to an olefinic substrate layer. The useful tie layer is selected
from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid
which can be partially or fully in the salt form. The result of using the novel tie
layer between the polyolefin and polar cap layers is a multilayer structure which
displays enhanced structural integrity, as well as excellent surface appearance.
SUMMARY OF THE INVENTION
[0011] The invention is defined in the appended claims and relates to a multi-layer thermoformable
structure having:
- a) at least one polyolefin-based layer,
- b) at least one polar, non-acrylic layer, having a thickness from 0.025 to 3 mm, comprising
a styrenic-based polymer selected from the group consisting of polystyrene, high-impact
polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate
(ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene
(MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block
(SBS) copolymers and their partially of fully hydrogenated derivatives, styrene-isoprene
copolymers, styrene-isoprene-styrene (SIS) block copolymers and their partially or
fully hydrogenated derivatives, and styrene-methyl methycrylate copolymers (S/MMA),
and
- c) at least one tie layer having a thickness from 0.05 to 1 mm, comprising one or
more polymers selected from the group consisting of olefinic acrylate copolymers and
copolymers of olefin and (meth)acrylic acid partially or fully in the salt form,
where the tie layer is directly adjacent to, and in between the polyolefin-based layer
and the polar non-acrylic layer and wherein said tie layer has a tensile modulus of
greater than 300 psi, as measured by ASTM D638.
[0012] The invention also relates to article formed from the multi-layer structure.
DETAILED DESCRIPTION OF THE INVENTION
[0013] All percentages used herein are weight percentages unless stated otherwise, and all
molecular weights are weight average molecular weights determined by gel permeation
chromatography unless stated otherwise.
[0014] The invention relates to a multilayer polymer structure containing at least a capstock
layer, a tie layer, and a substrate layer.
Capstock
[0015] The multilayer structure of this invention contains at least one polar capstock layer
that is non-acrylic. Polar capstock layer polymers are styrenic-based. Styrenic-based
polymers are selected from the group consisting of polystyrene, high-impact polystyrene
(HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate
(ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene
(MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block
(SBS) copolymers and their partially or fully hydrogenenated derivatives, styrene-isoproene
copolymers styrene-isoprene-styrene (SIS) block copolymers and their partially or
fully hydrogenenated derivatives, and styrene-(meth)acrylate copolymers such as styrene-methyl
methacrylate copolymers (S/MMA). A preferred styrenic polymer is ASA. The styrenic
polymers of the invention can be manufactured by means known in the art, including
emulsion polymerization, solution polymerization, and suspension polymerization. Styrenic
copolymers of the invention have a styrene content of at least 10 percent by weight,
preferably at least 25 percent by weight.
[0016] In one embodiment, the capstock layer polymer has a weight average molecular weight
of between 50,000 and 500,000 g/mol, and preferably from 75,000 and 150,000 g/mol,
as measured by gel permeation chromatography (GPC). The molecular weight distribution
of the acrylic polymer may be monomodal, or multimodal with a polydispersity index
greater than 1.5.
[0017] In one embodiment, the multilayer structure of the invention contains two or more
polar capstock layers, and two or more tie layers, such as a five- layer structure
of polar capstock/tie layer/polyolefin-based polymer/tie layer/polar capstock layer.
The structure could have different polar cap layers on each side. In a structure in
which multiple polar capstock layers and/or multiple tie layers are used in layers
non-adjacent to each other, the polar capstock layers and tie layers can be of the
same of different compositions, though in a preferred embodiment the multiple polar
capstock layers and tie layers are the same. In another embodiment, the polar capstock
layers may be composed of two or more polar layers directly in contact with each other.
In another embodiment, the tie-layer may be composed of two or more tie layers directly
in contact with each other.
[0018] The capstock layer of the invention has a thickness of from 0.025 to 3 mm, and preferably
from 0.075 to 0.5 mm.
Substrate
[0019] The polyolefin-based layer, herein also referred to as a substrate layer, is thicker
than the capstock layer(s) and tie layer(s) combined. The polyolefin-based layer provides
a layer with a good balance of stiffness and impact resistance, excellent processability,
and relatively lower cost. It could contain one or more different polyolefin layers,
and a polyolefin layer could be a blend of two or more different polyolefins. The
polyolefins employed in the semicrystalline or crystallizable olefin polymers can
be homopolymers, copolymers, terpolymers, or mixtures thereof, etc., containing one
or more olefin monomeric units. In a polyolefin-based layer, the polyolefins are generally
present in an amount from 30 to 100% by weight, preferably at least 55%, and more
preferably at least 60% by weight. The polyolefin of this invention excludes cyclic
olefin copolymer (COCs). It is common for one or more of the polyolefin layers to
contain rework - material that has already been processed into an article, such as
a film or sheet. The rework polyolefin is then granulated and blended with virgin
polyolefin prior to re-extrusion. The rework may contain non-polyolefin components.
[0020] Polymers of alpha-olefins or 1-olefins are preferred in the present invention, and
these alpha-olefins may contain from 2 to about 20 carbon atoms. Alpha-olefins containing
2 to about 6 carbon atoms are preferred. Thus, the olefin polymers may be derived
from olefins such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene,
1-octene, 1-decene, 4-ethyl-1-hexene, etc. Examples of polyolefins include polypropylene,
polyethylene, and ethylene propylene copolymers.
[0021] In one embodiment, the polyolefins include polypropylene and ethylenepropylene polymers.
Propylene polymers may be semi-crystalline or crystalline in structure. The number
average molecular weight of the propylene polymers is preferably above about 10,000
and more preferably above about 50,000. In addition, it is preferred in one embodiment
that the apparent crystalline melting point be above about 75°C. and preferably between
about 75° C. and about 250° C. The propylene polymers useful in the present invention
are well-known to those skilled in the art and many are available commercially. Polypropylene
are the preferred propylene polymers.
[0022] Thermoplastic polyolefins (TPO) are an especially preferred substrate layer. A thermoplastic
polyolefin (TPO) composition is defined as a two-phase melt blend containing a continuous
phase of at least one semi-crystalline polypropylene component and a dispersed phase
containing at least one substantially amorphous elastomer component. The elastomer
component typically includes at least one ethylene/alpha-olefin copolymer, at least
one styrenic block copolymer, or a mixture thereof. Preferred thermoplastic polyolefin
materials provide a beneficial balance of stiffness (e.g., flexural modulus typically
ranging from 270-2900 MPa), as well as impact resistance (e.g., ductile at room temperature,
preferably ductile at -30°C.), yet are melt processable with most conventional thermoplastic
processing equipment. Preferably, the polyolefin-based substrate layer component is
further characterized by a density typically of from 0.813 g/cm.sup.3 to 1.305 g/cm
3.
[0023] In one embodiment, the multilayer structure of the invention contains two or more
substrate layers.
Tie layer
[0024] Tie layers useful in the present invention are composed of one or more polymers selected
from olefinic acrylate copolymers and copolymers of olefin and (meth)acrylic acid
which can be partially or fully in the salt form.
[0025] The tie layer has a high tensile modulus of greater than 300 psi, preferably greater
than 400 psi, and most preferably greater than 500 psi, as measured by ASTM D638.
[0026] If the tie-layer comprises a copolymer of olefin and (meth)acrylic acid partially
or fully in the salt form, the salt cation is preferably selected from the group of,
sodium, potassium, calcium, zinc, lithium, magnesium, and barium.
[0027] The olefin acrylate copolymer can be made by any method known in the art, including
but not limited to high pressure autoclaves and tubular reactors, and can have homogeneous
or heterogeneous distributions of compositions and molecular weights.
[0028] In the multi-layer structure of the invention, the tie layer ranges from 0.05 to
1 mm in thickness.
[0029] The polar capstock layer(s), polyolefin-based substrate layer(s) and tie layers may
contain one or more impact modifiers, fillers or fibers, or other additives of the
type used in the polymer art. Examples of impact modifiers include, but are not limited
to, core-shell particles and block or graft copolymers. Examples of additives include,
for example, UV light inhibitors or stabilizers, lubricant agents, heat stabilizers,
flame retardants, synergists, pigments and other coloring agents. Examples of fillers
employed in a typical compounded polymer blend according to the present invention
include talc, calcium carbonate, mica, matting agents, wollastonite, dolomite, glass
fibers, boron fibers, carbon fibers, carbon blacks, pigments such as titanium dioxide,
or mixtures thereof. Examples of matting agents include, but are not limited to, cross-linked
polymer particles of various geometries, The amount of filler and additives included
in the polymer compositions of each layer may vary from about 0.01% to about 70% of
the combined weight of polymer, additives and filler. Generally amounts from about
5% to about 45%, preferably from about 10% to about 40%, are included.
[0030] The fillers may be treated with coupling agents to improve the bond between the fillers
to the resin. For example, the fillers can be treated with materials such as fatty
acids (e.g., stearic acid), silanes, maleated polypropylene, etc. The amount of coupling
agent used is an amount effective to improve the bond between the fillers with the
resin.
Manufacture
[0031] The multi-layer structure of the invention can contain three or more layers, with
the choice of the number and composition of the layers being adjusted to meet the
needs of the end-use application. The structure can be made by any method known to
the art. This includes separate formation of the layers followed by lamination, coextrusion
of all layers - which is preferred, or a combination of coextrusion and lamination.
This also includes multi-shot injection molding, blow molding and insert molding.
[0032] The multilayered polymeric structure of the present invention may be either processed
directly into any geometric shape, such as a profile, or may be first processed into
a planar shape and then further shaped into a three-dimensional part by any suitable
method. Thermoforming, for example, is the process of heating a plastic material in
film or sheet form to its particular processing temperature and forming the hot and
flexible material against the contours of a mold by mechanical or pneumatic means.
[0033] The multilayer structure can have any given geometry, including but not limited to,
a flat sheet, a rod, or a profile. The multilayer structure exhibits excellent structural
integrity, excellent surface appearance, high impact strength, high scratch resistance,
and excellent resistance to UV rays.
Examples
[0034] The following sheet structures were prepared on a laboratory coextrusion line using
a triple manifold die:
|
Example 1 |
Example 2 (Comparative) |
Example 3 |
Layer Thickness |
Capstock |
ASA1 |
ASA1 |
PMMA4 |
6 mil |
Tie Layer |
Olefin-Acrylic Copolymer2 |
None |
Olefin-Acrylic Copolymer2 |
12 mil |
Substrate |
TPO3 |
TPO3 |
TPO3 |
90 mil |
1 LURAN SE UV 797 Natural from Styrolution.
2 PRD-940B from Arkema, Inc.
3 METAFORM 7200 from Mytex Polymers.
4 SOLARKOTE A200 from Arkema, Inc. |
[0035] After coextrusion, the composite sheet was cut into 1" wide strips and adhesion between
the capstock and substrate was measured using a 90° peel test as described in ASTM
6862-04.
[0036] The following results were obtained:
|
Peel Strength |
Example 1 |
15.9 lbf/in |
Example 2 |
< 2 lbf/in |
Example 3 |
17.2 lbf/in |
[0037] Example 1 displays excellent adhesion between the layers. In contrast, example 2,
having no tie layer present, exhibits very little adhesion. This demonstrates the
usefulness of using an olefin-acrylic copolymer as a tie layer for coextruding styrenics
such as ASA over polyolefins such as TPO. Examples 1 and 3 exhibits similar adhesion,
the choice of acrylic-based polymers or styrenic-based polymers as a capstock layer
depends on the end-application requirements, in terms of cost and physical properties
(hardness, gloss, impact).
1. A multi-layer thermoformable structure comprising:
a) at least one polyolefin-based layer,
b) at least one polar, non-acrylic layer, having a thickness from 0.025 to 3 mm, comprising
a styrenic-based polymer selected from the group consisting of polystyrene, high-impact
polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS) copolymers, acrylonitrile-styrene-acrylate
(ASA) copolymers, styrene acrylonitrile (SAN) copolymers, methacrylate-acrylonitrile-butadiene-styrene
(MABS) copolymers, styrene-butadiene copolymers (SB), styrene-butadiene-styrene block
(SBS) copolymers and their partially or fully hydrogenenated derivatives, styrene-isoprene
copolymers, styrene-isoprene-styrene (SIS) block copolymers and their partially or
fully hydrogenenated derivatives, and styrene-methyl methacrylate copolymers (S/MMA),
and
c) at least one tie layer, having a thickness from 0.05 to 1 mm, comprising one or
more polymers selected from the group consisting of olefinic acrylate copolymers and
copolymers of olefin and (meth)acrylic acid which can be partially or fully in the
salt form, ,
wherein said tie layer is directly adjacent to, and in between the polyolefin-based
layer and the polar non-acrylic based layer and_wherein said tie layer has a tensile
modulus of greater than 2,07 MPa (300 psi), as measured by ASTM D638.
2. The multi-layer thermoformable structure of claim 1, wherein said polyolefin-based
layer is a thermoplastic polyolefin.
3. The multi-layer thermoformable structure of claim 1, wherein said polar polymer layer
has a weight average molecular weight of between 50,000 and 500,000 g/mol, as measured
by gel permeation chromatography.
4. The multi-layer thermoformable structure of claim 1, wherein said styrenic-based polymer
comprises acrylonitrile-styrene-acrylate (ASA) copolymers
5. The multi-layer thermoformable structure of claim 1, wherein said polar polymer layer
further comprises one or more impact modifiers, fillers, and/or fibers.
6. The multi-layer thermoformable structure of claim 1, wherein said polyolefin-based
layer comprises at least 30 weight percent of one or more polyolefin materials.
7. The multi-layer thermoformable structure of claim 1, wherein the salt cation of the
copolymer of olefin and (meth)acrylic acid partially or fully in the salt form is
selected from the group of, sodium, potassium, calcium, zinc, lithium, magnesium,
and barium.
8. The multi-layer thermoformable structure of claim 1, wherein said tie layer has a
tensile modulus of greater than 3,45 MPa (500 psi), as measured by ASTM D638.
9. An article formed from the thermoformable structure of claim 1.
10. The article of claim 9 in the form of a flat sheet, a rod, or a profile.
11. The article of claim 9 formed by a process selected from lamination, coextrusion,
multi-shot injection molding, and insert molding.
1. Mehrschichtige thermoformbare Struktur, umfassend:
a) mindestens eine Schicht auf Polyolefinbasis,
b) mindestens eine polare Nicht-Acryl-Schicht mit einer Dicke von 0,025 bis 3 mm,
umfassend ein Polymer auf Styrolbasis aus der Gruppe bestehend aus Polystyrol, schlagzähem
Polystyrol (HIPS), Acrylnitril-Butadien-Styrol(ABS)-Copolymeren, Acrylnitril-Styrol-Acrylat(ASA)-Copolymeren,
Styrol-Acrylnitril(SAN)-Copolymeren, Methacrylat-Acrylnitril-Butadien-Styrol(MABS)-Copolymeren,
Styrol-Butadien(SB)-Copolymeren, Styrol-Butadien-Styrol(SBS)-Blockcopolymeren und
deren teilweise oder vollständig hydrierten Derivaten, Styrol-Isopren-Copolymeren,
Styrol-Isopren-Styrol(SIS)-Blockcopolymeren und deren teilweise oder vollständig hydrierten
Derivaten und Styrol-Methylmethacrylat(S/MMA)-Copolymeren, und
c) mindestens eine Verbindungsschicht mit einer Dicke von 0,05 bis 1 mm, umfassend
ein oder mehrere Polymere aus der Gruppe bestehend aus olefinischen Acrylatcopolymeren
und Copolymeren von Olefin und (Meth)acrylsäure, die teilweise oder vollständig in
der Salzform vorliegen können,
wobei die Verbindungsschicht der Schicht auf Polyolefinbasis und der polaren Schicht
auf Nicht-Acryl-Basis direkt benachbart ist und sich dazwischen befindet und wobei
die Verbindungsschicht einen nach ASTM D638 gemessenen Zugmodul von mehr als 2,07
MPa (300 psi) aufweist.
2. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht auf Polyolefinbasis
ein thermoplastisches Polyolefin ist.
3. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht aus polarem
Polymer ein durch Gelpermeationschromatographie gemessenes gewichtsmittleres Molekulargewicht
zwischen 50.000 und 500.000 g/mol aufweist.
4. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei das Polymer auf Styrolbasis
Acrylnitril-Styrol-Acrylat(ASA)-Copolymere umfasst.
5. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht aus polarem
Polymer ferner einen oder mehrere Schlagzähigkeitsmodifikatoren, einen oder mehrere
Füllstoffe und/oder eine oder mehrere Fasern umfasst.
6. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Schicht auf Polyolefinbasis
mindestens 30 Gewichtsprozent eines oder mehrerer Polyolefinmaterialien umfasst.
7. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei das Salzkation des Copolymers
von Olefin und (Meth)acrylsäure, das teilweise oder vollständig in der Salzform vorliegt,
aus der Gruppe bestehend aus Natrium, Kalium, Calcium, Zink, Lithium, Magnesium und
Barium ausgewählt ist.
8. Mehrschichtige thermoformbare Struktur nach Anspruch 1, wobei die Verbindungsschicht
einen nach ASTM D638 gemessenen Zugmodul von mehr als 3,45 MPa (500 psi) aufweist.
9. Artikel, gebildet aus der thermoformbaren Struktur nach Anspruch 1.
10. Artikel nach Anspruch 9 in Form eines Flächengebildes, eines Stabs oder eines Profils.
11. Artikel nach Anspruch 9, gebildet durch ein aus Lamination, Coextrusion, Mehrstufen-Spritzgießen
und Insert Molding ausgewähltes Verfahren.
1. Structure multicouche thermoformable comprenant :
a) au moins une couche à base de polyoléfine,
b) au moins une couche polaire, non acrylique, possédant une épaisseur de 0,025 à
3 mm, comprenant un polymère à base styrénique choisi dans le groupe constitué par
le polystyrène, le polystyrène à impact élevé (HIPS), les copolymères acrylonitrile-butadiène-styrène
(ABS), les copolymères acrylonitrile-styrène-acrylate (ASA), les copolymères de styrène
et d'acrylonitrile (SAN), les copolymères méthacrylate-acrylonitrile-butadiène-styrène
(MABS), les copolymères styrène-butadiène (SB), les copolymères à blocs styrène-butadiène-styrène
(SBS) et leurs dérivés partiellement ou totalement hydrogénés, les copolymères styrène-isoprène,
les copolymères à blocs styrène-isoprène-styrène (SIS) et leurs dérivés partiellement
ou totalement hydrogénés, et les copolymères styrène-méthacrylate de méthyle (S/MMA),
et
c) au moins une couche de liaison, possédant une épaisseur de 0,05 à 1 mm, comprenant
un ou plusieurs polymères choisis dans le groupe constitué par les copolymères oléfiniques
acrylate et les copolymères d'oléfine et d'acide (méth)acrylique qui peuvent être
partiellement ou totalement sous forme de sel,
ladite couche de liaison étant directement adjacente à, et entre la couche à base
de polyoléfine et la couche polaire à base non acrylique et ladite couche de liaison
possédant un module de traction supérieur à 2,07 MPa (300 psi), tel que mesuré selon
la norme ASTM D638.
2. Structure multicouche thermoformable selon la revendication 1, ladite couche à base
de polyoléfine étant une polyoléfine thermoplastique.
3. Structure multicouche thermoformable selon la revendication 1, ladite couche polaire
de polymère possédant un poids moléculaire moyen en poids compris entre 50 000 et
500 000 g/mole, tel que mesuré par chromatographie à perméation de gel.
4. Structure multicouche thermoformable selon la revendication 1, ledit polymère à base
styrénique comprenant des copolymères acrylonitrile-styrène-acrylate (ASA).
5. Structure multicouche thermoformable selon la revendication 1, ladite couche polaire
de polymère comprenant en outre un(e) ou plusieurs modificateurs d'impact, charges,
et/ou fibres.
6. Structure multicouche thermoformable selon la revendication 1, ladite couche à base
de polyoléfine comprenant au moins 30 pour cent en poids d'un ou plusieurs matériaux
de type polyoléfine.
7. Structure multicouche thermoformable selon la revendication 1, le cation salin du
copolymère d'oléfine et d'acide (méth)acrylique partiellement ou totalement sous forme
de sel étant choisi dans le groupe du sodium, du potassium, du calcium, du zinc, du
lithium, du magnésium, et du baryum.
8. Structure multicouche thermoformable selon la revendication 1, ladite couche de liaison
possédant un module de traction supérieur à 3,45 MPa (500 psi), tel que mesuré selon
la norme ASTM D638.
9. Article formé à partir de la structure thermoformable selon la revendication 1.
10. Article selon la revendication 9 sous forme d'une feuille plane, d'une tige, ou d'un
profilé.
11. Article selon la revendication 9 formé par un procédé choisi parmi la lamination,
la coextrusion, le moulage par multi-injection, et le moulage par insertion.