Field of the Invention
[0001] The present invention relates to the field of centrifugal separators, and more specifically
to centrifugal separators having a system for ventilating the space around the centrifuge
rotor.
Background of the Invention
[0002] Centrifugal separators are generally used for separation of liquids and/or solids
from a liquid mixture or a gas mixture. During operation, fluid mixture that is about
to be separated is introduced into a rotating bowl and due to the centrifugal forces,
heavy particles or denser liquid, such as water, accumulates at the periphery of the
rotating bowl whereas less dense liquid accumulates closer to the central axis of
rotation. This allows for collection of the separated fractions, e.g. by means of
different outlets arranged at the periphery and close to the rotational axis, respectively.
[0003] When processing a flammable fluid over the flash point in a centrifugal separator
there is a risk of creating an explosive atmosphere. This may occur if there are flammable
gas and oxygen in certain concentrations in presence at a source of ignition. Different
legislations demand that actions are taken in order to decrease or minimize the risk
of an explosion occurring. For example, in the European Union there is the ATEX directive
that regulates what equipment and work environment are allowed in an environment with
an explosive atmosphere.
GB 751078 and
CH 107681 describe centrifuges with means relating to the rotor to provide air circulation
for cooling of the rotor and the electric motor driving the same.
[0004] JP 2015104701 describes a centrifuge system where the operation of the system is terminated if
flammable gas is detected by a flammable gas detector.
[0005] A common method today for preventing explosions when processing a flammable fluid
is purging the separation system with inert gas, such as nitrogen or carbon dioxide,
which reduces or eliminates the oxygen content. Such a system is described in e.g.
GB 2011808, in which a centrifuge is located in a container that can be sealed by means of a
lid. Means is provided for supplying an inert gas for purging the container and centrifuge
of all oxygen and other combustible gases/vapors etc. before start of the centrifuge
process to reduce the risk of explosion.
[0006] However, such purging systems based on inert gas increase both the investment and
operating costs and also the complexity of the centrifugal separator system, e.g.
since inert gas systems usually require means for maintaining an overpressure of the
inert gas around the centrifuge rotor. Thus, there is a need in the art for a less
complex system for reducing the risk of explosion when processing flammable fluids
in a centrifugal separator.
Summary of the Invention
[0007] A main object of the present invention is to provide a centrifugal separator having
a convenient ventilation system.
[0008] A further object is to provide a centrifugal separator having a reduced risk for
explosion during processing of a flammable fluid.
[0009] As a first aspect of the invention, there is provided a centrifugal separator for
separation of at least two components of a fluid mixture which are of different densities
which fluid mixture comprises a flammable fluid, which centrifugal separator comprises
a stationary frame,
a drive member configured to rotate a rotating part in relation to the stationary
frame, wherein the rotating part comprises a spindle and a centrifuge rotor enclosing
a separation space, the centrifuge rotor being mounted to the spindle to rotate together
with the spindle around an axis (X) of rotation, wherein the rotating part is supported
by the stationary frame by at least one bearing device,
wherein the stationary frame surrounds the centrifuge rotor, thereby forming a rotor
space between the stationary frame and the centrifuge rotor, and wherein the stationary
frame comprises at least one first air inlet arranged to provide fluid communication
into the rotor space and at least one first air outlet arranged to provide fluid communication
out from the rotor space,
wherein the at least one first air inlet and the at least one first air outlet are
arranged in the stationary frame so as to provide a flow of air from the at least
one first air inlet to and out through the at least one first air outlet upon rotation
of the rotating part, and
wherein the at least one first air inlet is arranged to be connected to a source of
air and wherein the at least one first air outlet is arranged to allow outflow of
air from the rotor space. the centrifugal separator further comprises at least one
sensor configured to detect a parameter related to the concentration of flammable
gas in the air of said rotor space.
[0010] The centrifugal separator is for separation of a fluid mixture, such as a gas mixture
or a liquid mixture. The stationary frame of the centrifugal separator is a non-rotating
part, and the rotating part, such as the spindle is supported by the frame by at least
one bearing device, such as by at least one ball-bearing.
[0011] The drive member is arranged for rotating the spindle and the centrifuge rotor mounted
on the spindle. Such a drive member for rotating the rotating part may comprise an
electrical motor having a rotor and a stator. The rotor may be provided on or fixed
to the spindle so that it transmits driving torque to the spindle and hence to the
centrifuge rotor during operation.
[0012] Alternatively, the drive member may be provided beside the spindle and rotates the
rotating part by a suitable transmission, such as a belt or a gear transmission.
[0013] The centrifuge rotor is adjoined to a first end of the spindle and is thus mounted
to rotate with the spindle. During operation, the spindle thus forms a rotating shaft.
The first end of the spindle may be an upper end of the spindle. The spindle is thus
rotatable around the axis of rotation (X).
[0014] The rotating part may be arranged to rotate at a speed of above 3000 rpm, such as
above 3600 rpm.
[0015] The centrifuge rotor further encloses a separation space in which the separation
of the fluid mixture takes place. Thus, the centrifuge rotor forms a rotor casing
for the separation space. The separation space may comprise a stack of separation
discs arranged centrally around the axis of rotation. Such separation discs form surface
enlarging inserts in the separation space. The separation discs may have the form
of a truncated cone, i.e. the stack may be a stack of frustoconical separation discs.
The discs may also be axial discs arranged around the axis of rotation.
[0016] The centrifugal separator may further comprise at least one inlet for fluid mixture,
i.e. feed, that is to be separated. Such inlet may be a stationary pipe arranged for
supplying the feed to the separation space. The inlet may also be provided inside
a rotating shaft, such as the spindle. Thus, the spindle may be hollow and may further
have a diameter of at least 10 mm, such as at least 20 mm. For example, the outer
diameter of the spindle may be between 10-300 mm, such as between 20-200 mm.
[0017] The centrifugal separator may further comprise at least one liquid outlet for fluid
that has been separated. The at least one liquid outlet for fluid that has been separated
may comprise a first outlet and a second outlet arranged at a larger radius from the
rotational axis as compared to the first liquid outlet. Thus, liquids of different
densities may be separated and be discharged via the first and second liquid outlets,
respectively. During operation, a sludge phase, i.e. mixed solid and liquid particles
forming a heavy phase, may be collected in an outer peripheral part of the separation
space. Therefore, the centrifugal separator may further comprise outlets for discharging
such a sludge phase from the periphery of the separation space. The outlets may be
in the form of a plurality of peripheral ports extending from the separation space
through the centrifuge rotor to the rotor space between the centrifuge rotor and the
stationary frame. The peripheral ports may be arranged to be opened intermittently,
during a short period of time in the order of milliseconds, to enable discharge of
a sludge phase from the separation space to the rotor space. The peripheral ports
may also be in the form of nozzles that are constantly open during operation to allow
a constant discharge of sludge.
[0018] The stationary frame may be single walled or e.g. double or triple walled and surrounds
the centrifuge rotor at a distance from the rotor, thereby forming a rotor space between
the rotor and the frame wall. The stationary frame comprises at least one first air
inlet and at least one first air outlet. Thus, the frame may comprise a single air
inlet and/or a single air outlet, or as an alternative, two or more air inlets and/or
two or more air outlets. The at least one air inlet and the at least one first air
outlet are arranged so as to provide fluid communication between the outside of the
frame to the rotor space. Thus, the at least one air inlet and the at least one air
outlet may be through holes in the stationary frame.
[0019] Air may be atmospheric air and the pressure of the air may be atmospheric pressure
or a pressure that is higher than atmospheric pressure.
[0020] The at least one first air inlet and the at least one first air outlet are arranged
in the frame so as to provide a flow of air from the at least one first air inlet
to the at least one first air outlet upon rotation of the rotating part. Thus, the
rotation of the centrifuge rotor may drive air from the outside of the stationary
frame through the at least one first air inlet to the rotor space surrounding the
rotor and then out from the rotor space through the at least one first air outlet.
Thus, merely the rotation of the bowl may drive a flow of ventilating air through
the stationary frame, thereby ventilating the centrifuge bowl.
[0021] The at least one first air inlet is further arranged to be connected to a source
of air. The source of air may be the ambient air surrounding the centrifugal separator,
and the at least one first air inlet may thus simply be a through hole or a pipe through
the stationary frame. However, the source of air may also be pressurized air, such
as the pressurized air from a common air source that is found in almost all industrial
environments. Thus, the at least one air inlet may be arranged to provide a connection
with such a pressurized air source, e.g. by means of threads or the like.
[0022] Furthermore, the at least one first air outlet is arranged to allow outflow of air
from the rotor space. "Outflow of air" refers to the air outlet or outlets being arranged
to allow a flow of air out from the rotor space upon rotation of the centrifuge rotor.
[0023] Thus, the at least one first air outlet may be free of any device that exerts a counter
pressure to the air in the rotor space. Consequently, the at least one first air outlet
may be arranged to allow free outflow of air from the rotor space. Thus, the at least
one first air outlet may be free of e.g. any liquid seals.
[0024] The at least one first inlet and/or the at least one first air outlet may have a
cross-sectional area of more than 0.5 cm
2, such as more than 1.0 cm
2, such as more than 1.5 cm
2, such as more than 2.0 cm
2, such as more than 2.5 cm
2.
[0025] The at least one first air inlet and/or the at least one first air outlet may comprise
a substantially circular through hole in the frame having a diameter of more than
5 mm, such as more than 10 mm, such as more than 15 mm.
[0026] Furthermore, the at least one first air inlet and the at least one first air outlet
may be arranged so as to provide a flow of air of above 4 Nm
3/hour, such as above 6 Nm
3/hour, such as above 8 Nm
3/hour from inlet to and out through outlet upon rotation of the centrifuge rotor at
its operational speed.
[0027] The first aspect of the invention is based on the insight that the centrifuge rotor
may be ventilated using a flow of air that is generated upon rotation of the centrifuge
rotor. Thus, it is believed that the rotation of the centrifuge rotor may draw air
into the rotor space via the air inlet, which then may leave the rotor space via the
air outlet. This is thus advantageous in that the centrifugal separator does not need
any complex inert gas system for decreasing the risk of explosion. The ventilation
may thus be performed constantly by the air outside the separator. Moreover, since
the air inlet may be connected to a source of pressurized air, the centrifuge rotor
may also be ventilated during standstill of the separator and the ventilation using
pressurised air may be performed constantly or with a frequency according to a time
schedule.
[0028] In embodiments of the first aspect of the invention, the at least one first air inlet
is arranged in the frame so that it communicates with a left portion of the rotor
space and the at least one first air outlet is arranged in the frame so that it communicates
with a right portion of the rotor space, or vice versa.
[0029] The "left" and "right" portions may be as seen in an axial plane through the centre
of the centrifugal separator. The "left" portion may then be left of the rotational
axis X whereas the "right" portion may be right of the rotational axis X. Thus, the
left and right portions may be different portions of the rotor space.
[0030] An air inlet, an air outlet and the rotational axis may all be arranged in the same
axial plane.
[0031] Thus, an air inlet may be provided in the frame to communicate with a first half
of the rotor space and a first outlet may be provided in the frame to communicate
with a second half, other than the first half, of the rotor space. This may facilitate
that a large amount of the rotor space is ventilated when air flows from the air inlet
to the air outlet.
[0032] In embodiments of the first aspect of the invention, the at least one first air inlet
is arranged in the frame so that it communicates with an upper portion of the rotor
space and the at least one first air outlet is arranged in the frame so that it communicates
with a lower portion of the rotor space, or vice versa.
[0033] This is also advantageous in that it facilitates that a large amount of the rotor
space is ventilated when air flows from the air inlet to the air outlet.
[0034] The "upper" and "lower" portions may be as seen in an axial plane through the centre
of the centrifugal separator. The "upper" portion may then be axially above the centre
of the centrifuge rotor, whereas the "lower" portion may be axially below the centre
of the centrifuge rotor. Thus, the upper and lower portions may be different portions
of the rotor space.
[0035] As an example the at least one first air inlet may be arranged in the frame so that
it communicates with an upper left portion of the rotor space and the at least one
first air outlet may be arranged in the frame so that it communicates with a lower
right portion of the rotor space, or vice versa. This may facilitate that a large
amount of the rotor space is ventilated when air flows from an air inlet to an air
outlet.
[0036] The flammable gas may be a combustible gas, such as a hydrocarbon that originates
from a flammable liquid, such as from an oil or fuel. The sensor may thus be a sensor
comprising e.g. infrared or catalytic bead sensing technologies for detecting flammable
gases. The at least one sensor may be arranged within the rotor space, such as on
the inner surface of the stationary frame.
[0037] Using a sensor for detecting a parameter related to the concentration of flammable
gas may be advantageous in that it allows for adjusting the flow of air, i.e. the
ventilation, based on output from the sensor, and it may further give information
that the concentration of flammable gas is below a specific, non-harmful level.
[0038] As an example the parameter may be the ratio of hydrocarbons to oxygen in the air
of the rotor space. The parameter may also be the actual concentration of hydrocarbons.
The centrifugal separator may thus also include a sensor configured to detect the
concentration of oxygen in the rotor space, or it may comprise at least one sensor
with the capacity of detecting both the concentration of oxygen and the concentration
of hydrocarbon, or directly the ratio of hydrocarbons to oxygen.
[0039] As an example, at least one of the at least one sensor may be arranged in an additional
space that is in fluid communication with the rotor space.
[0040] In embodiments, such an additional space does not surround the centrifuge rotor.
[0041] The additional space may thus be a passage or chamber, such as a tube-shaped passage
or chamber, arranged outside the actual stationary frame but communicates with the
rotor space via at least one opening in the frame. This may be advantageous allows
for easy access to the at least one sensor.
[0042] Furthermore, the at least one first air inlet may be arranged to be connected to
a source of pressurized air.
[0043] As an example, the at least one first air inlet may be arranged to be connected to
a source of pressurized air and the centrifugal separator may further comprise a control
unit configured to receive an input signal related to the parameter and generate a
signal to regulate the flow of pressurized air based on the input signal.
[0044] This allows the flow of pressurized air, i.e. the ventilation of the centrifuge rotor,
to be controlled by the detected parameter. Thus, the flow of ventilating air may
be regulated by the detected parameters.
[0045] The control unit may comprise a processor and an input/output interface for communicating
with the source of pressurized air and for receiving information about the parameter
related to the concentration of flammable gas in the rotor space from at least one
sensor.
[0046] Regulating may comprise increasing the flow of pressurized air if the detected parameter
is above a threshold value. The threshold value may for example be a lower explosion
limit for the ratio of hydrocarbons to oxygen in the rotor space or a specific concentration
of hydrocarbons in the rotor space.
[0047] Regulating may further comprise decreasing the flow of pressurized air if the detected
parameter is below a threshold value.
[0048] Regulating may also comprise using a regulation loop to keep the flow of pressurized
air at a constant level or turning on or off the flow of pressurized air. Thus, the
control unit may be configured to decrease the flow of pressurized air at standstill
of the separator, i.e. it may further be configured to receive information about the
rotational speed of the centrifugal separator and control the flow of pressurized
air based on that information.
[0049] The centrifugal separator may thus comprise pressure regulating means arranged for
supplying the air at a pressure that is higher than atmospheric pressure to the at
least one first air inlet. The pressure regulating means may comprise a valve. The
control unit may thus be arranged to generate a signal that is sent to the pressure
regulating means.
[0050] In embodiments of the first aspect of the invention, the frame further surrounds
the drive member thereby also forming a drive space enclosing the drive member, and
further comprises at least one second air inlet arranged to provide fluid communication
into the drive space and at least one second air outlet arranged to provide fluid
communication out from the drive space, wherein the centrifugal separator further
comprises means for generating a flow of air from a second air inlet to and out through
a second air outlet.
[0051] The means for generating a flow of air from a second air inlet to and out through
a second air outlet may for example comprise a fan. The means for generating a flow
of air from a second air inlet to and out through a second air outlet may further
be a source of pressurized air. Thus, at least one second air inlet may be arranged
to be connected to a source of pressurized air. The at least one second air outlet
may be arranged to allow outflow of air from the drive space, such as a free outflow
without any counter pressure means. Further, the at least one second air inlet and
the at least one second air outlet may be as or have a size as discussed in relation
to the at least one first air inlet and the at least one first air outlet above.
[0052] Thus, the centrifugal separator may further be arranged for ventilating the drive
space around the drive member in analogy with what is described about ventilation
of the rotor space above. The drive space may be in fluid communication with the rotor
space or it may be sealed from the rotor space. As an example, the centrifuge rotor
may be arranged axially above or below the drive member, and the rotor space and the
drive space may be sealed using e.g. a liquid seal axially between the rotor space
and the drive space. The bearing device may be arranged in the drive space.
[0053] Furthermore, the centrifugal separator may comprise at least one sensor configured
to detect a parameter related to the concentration of flammable gas in the air of
the drive space.
[0054] Thus, a sensor arranged in the drive space may be a sensor as described in relation
to the rotor space above.
[0055] Further, at least one second gas inlet may be arranged to be connected to a source
of pressurized air, and wherein the centrifugal separator further comprises a control
unit configured to receive an input signal related to the parameter and generate a
signal to regulate the flow of pressurized air based on the input signal.
[0056] The control unit may be and may function, e.g. in terms of regulating the flow of
pressurized air, as described in relation to the control unit for receiving a signal
from at least one sensor configured to detect a parameter related to the concentration
of flammable gas in the rotor space.
[0057] The same control unit may be used for receiving and controlling the flow of air in
the rotor space and the drive space.
[0058] In embodiments of the first aspect of the invention, the centrifuge rotor is at its
outer periphery provided with a set of sludge outlets for discharge of a higher density
component such as sludge or other solids in a fluid mixture, and wherein the frame
further encloses a solids collector for collecting the discharged component, and wherein
the centrifugal separator further comprises at least one sensor configured to detect
a parameter related to the concentration of flammable gas in the air of the solids
collector.
[0059] The sludge outlets may be arranged to be opened intermittently or they may be arranged
to be permanently opened, i.e. forming nozzles. The solids collector may comprise
a cyclone.
[0060] Having at least one sensor arranged in the solids collector may further increase
the safety of the process, i.e. it may give information also about any concentration
of flammable gas in the solids collector. If the centrifugal separator comprises a
control unit as described above, also the sensor in the solids collector may be connected
to the control unit so that the flow of ventilation air may be regulated based on
information from the sensor in the solids collector. The sensor in the solids collector
may function as described in relation to the sensor in the rotor space and drive space,
respectively.
[0061] As a second aspect of the invention, there is provided a method for ventilating a
centrifugal separator, comprising
- providing a centrifugal separator according to the first aspect of the invention,
- supplying a fluid mixture comprising at least two components which are of different
densities to be separated to the separation space of the centrifuge rotor; and
- rotating the rotating part so as to provide a flow of air from at least one first
gas inlet to and out through at least one first gas outlet, thereby ventilating the
centrifugal separator, wherein the fluid mixture to be separated comprises a flammable
fluid and the method further comprises
- detecting a parameter related to the concentration of flammable gas in said rotor
space, and
- regulating the flow of air from said at least one first gas inlet to and out through
said at least one first gas outlet based on the detected parameter.
[0062] The terms and definitions used in relation to the second aspect are the same as discussed
in relation to the first aspect above.
[0063] The fluid mixture to be separated may be a liquid mixture.
[0064] Depending on the application, the liquid mixture to be separated may have different
temperature and if the liquid mixture to be separated comprises petrol or ethanol
or other volatile chemical substances, it may start to have a substantial evaporation
rate at room temperature or above. Thus, as an example, the liquid mixture supplied
to the separator may be supplied at room temperature. As a further example, the liquid
mixture may have a temperature of at least 40 °C, such as at least 50 °C, such as
at least 90 °C, such as at least 95 °C, such as at least 98 °C.
[0065] The liquid mixture may be supplied to the separation space via a stationary inlet
pipe from above or below, or it may be supplied via the spindle, such as through a
duct in the spindle that co-rotates with the spindle.
[0066] Rotating the rotating part thus includes using the drive member for transmitting
torque to the spindle so that the spindle and centrifuge rotor rotates. Rotating the
rotating part may comprise rotating the centrifuge rotor at a speed that is above
3000 rpm, such as above 3600 rpm.
[0067] The method may of course also comprise separating the fluid mixture into two or several
phases, such as one or two liquid phases and a solid or sludge phase.
[0068] The flammable fluid may comprise an oil. The oil may be selected from heavy fuel
oil (HFO), lubrication oil or crude oil. HFO may be defined as in
ISO 8217, Petroleum products - Fuels (class F) - Specification of marine fuels. Editions
2005 and 2012. Further, the fluid mixture to be separated may be heated to a temperature of above
70° C, such as to a temperature between 70° C and 98 ° C, such as to a temperature
above 98 ° C, before being supplied to the separation space. This may increase the
handling and separation of e.g. an oil mixture to be separated.
[0069] As discussed in relation to the first aspect above, the parameter may be the ratio
of hydrocarbons to oxygen in the rotor space. The parameter may also be the actual
concentration of hydrocarbons.
[0070] Regulating may comprise increasing the flow of pressurized air if the detected parameter
is above a threshold value. The threshold value may for example be a lower explosion
limit for the ratio of hydrocarbons to oxygen in the rotor space or a specific concentration
of hydrocarbons in the rotor space.
[0071] Regulating may further comprise decreasing the flow of pressurized air if the detected
parameter is below a threshold value.
[0072] Regulating may also comprise using a regulation loop to keep the flow of pressurized
air at a constant level or turning on or off the flow of pressurized air
[0073] Thus, in embodiments of the second aspect of the invention, the method is further
comprising
- detecting a parameter related to the concentration of flammable gas in a drive space
surrounding the drive member, and
- increasing the flow of air from the at least one first gas inlet to and through the
at least one first gas outlet if the detected parameter is above a threshold value.
[0074] Further, in embodiments of the second aspect of the invention, the method is further
comprising
- detecting a parameter related to the concentration of flammable gas in a solids collector,
and
- increasing the flow of air from the at least one first gas inlet to and through the
at least one first gas outlet if the detected parameter is above a threshold value
[0075] The method may of course comprise detecting a parameter related to the concentration
of flammable gas in both the rotor space and the drive space, in the rotor space and
in the solids collector, or in all three of the rotor space, the drive space and the
solids collector.
Brief description of the Drawings
[0076]
Figure 1 shows a schematic drawing of an embodiment of a centrifugal separator that
is ventilated using ambient air.
Figure 2 shows a schematic drawing of an embodiment of a centrifugal separator that
is ventilated using ambient air and in which a sensor is used in an additional space.
Figure 3 shows a schematic drawing of an embodiment of a centrifugal separator that
is ventilated using a flow of pressurized air.
Figure 4 shows a schematic drawing of an embodiment of a centrifugal separator that
is ventilated using a flow of pressurized air that is regulated by means of a control
unit.
Detailed Description
[0077] The centrifugal separator according to the present disclosure will be further illustrated
by the following description of some embodiments with reference to the accompanying
drawings.
[0078] Fig. 1 shows an embodiment of a centrifugal separator 1 having a stationary frame
2 and a rotating part 4. The rotating part 4 comprises a vertical spindle 5 and a
centrifuge rotor 6, in which the actual separation takes place during operation of
the centrifugal separator 1. A liquid mixture that is to be separated may during operation
be introduced into a separation space (not shown) inside centrifuge rotor 6 from the
top via a channel in pipe 33. Also, separated liquid phases, e.g. one or two depending
on the application, are discharged in channels in this pipe 33. The separation space
further comprise a stack of frusto-conical separation discs (not shown) in order to
achieve effective separation of the liquid. The stack of truncated conical separation
discs are thus examples of surface-enlarging inserts and are fitted centrally and
coaxially with the centrifuge rotor. 6. Moreover, the centrifuge rotor 6 comprises
at its periphery a set of sludge outlets 19, which may be opened intermittently to
discharge a separated sludge phase radially out from centrifuge rotor 6. The sludge
phase is collected in solids collector 20 after discharge. The solids collector 20
is in this case arranged radially outside the stationary frame 2.
[0079] The spindle 5 is journalled in an upper bearing 7a and a lower bearing 7b and carries
at its upper end above the upper bearing 7a the centrifuge rotor 6. The rotating part
4 is rotatable about an axis X of rotation and driven by drive member 3, which in
these examples comprise a screw gear. However, the drive device may of course as an
alternative comprise an electrical motor or a belt drive. Furthermore, the drive member
3 may also be arranged axially above the centrifuge rotor 6.
[0080] The stationary frame 2 surrounds centrifuge rotor 6 at a distance from the centrifuge
rotor 6 so that a rotor space 8 is formed around the centrifuge rotor 6. As illustrated
in the figures, which all show an axial plane through the frame 2, the rotor space
8 may be divided in a left portion 11 and a right portion 12 of the rotational axis
X. The rotor space 8 may also be divided in an upper portion 13 and a lower portion
14. The division between the upper portion 13 and the lower portion 14 may for example
be a radial line through the sludge outlets 19, as illustrated by dotted line "Y"
in the figures. Thus, in an axial plane, the rotor space 8 may be divided in an upper
right portion, an upper left portion, a lower right portion and a lower left portion.
[0081] A first air inlet 9 is arranged in the stationary frame 2 in the upper left portion,
whereas a first air outlet 10 is arranged in the stationary frame in the lower right
portion. The first air inlet 9 and first air outlet 10 are arranged as through holes
in the frame, with a diameter between 5 - 10 mm, so that the air inlet 9, the air
outlet 10 and the rotational axis are all substantially in the same axial plane. The
first air inlet 9 and the first air outlet 10 communicate with the ambient air. The
first air outlet 10 has no liquid seal or the like that exerts a counter pressure,
i.e. it is arranged so that it allows for a substantially free flow of air out from
the rotor space 8.
[0082] The air inlet 9 thus communicates with the upper left portion of the rotor space
8 whereas the air outlet 10 communicates with the lower right portion. However, it
is to be understood that the air inlet 9 for example also could be arranged in the
frame 2 so that it communicates with an upper right portion of rotor space 8, whereas
the air outlet 10 also could be arranged in the frame 2 so that it communicates with
the lower left portion of the rotor space 8.
[0083] Due to the first air inlet 9 and the first air outlet 10, ambient air from outside
of the frame 2 may be drawn into the rotor space 8 via the inlet 9 and then out from
rotor space 8 via outlet 10 upon rotation of centrifuge rotor 6. Thus, a flow of ventilating
air is formed through the rotor space, as illustrated by arrows "A" in the figures.
[0084] The stationary frame further comprises a lower part 16 that also surrounds drive
member 3, thereby forming a drive space 27 around the drive member 3. The drive space
27 and the rotor space 8 is in this embodiment not in fluid contact, and may be separated
by means of e.g. a water seal arranged e.g. above the upper bearing 7a. Also the lower
part 16 of the frame comprises an air inlet and an air outlet, and are in Fig. 1 seen
as a second air inlet 17 that communicates with a portion of the drive space 27 that
is left of the rotational axis X, and a second air outlet 18 that communicates with
a portion of the drive space 27 that is right of the rotational axis X, as seen in
an axial plane. Also, the separator 1 comprises means for generating a flow of air
(not shown) through the drive space 27, such as a fan. Thus, also a flow of ventilating
air may be generated that ventilates the drive space 27 during operation of the centrifugal
separator 1. This flow of air flows in the drive space 27 from the second air inlet
17 to and out through the second air outlet 18, as is illustrated by arrows "B" in
the figures.
[0085] Further, the centrifugal separator 1 comprises a sensor 15a arranged in the rotor
space 8, a sensor 15b arranged in the solids collector 20 and a sensor 15c arranged
in the drive space 27. All these sensors may be sensors that detect a parameter related
to the concentration of flammable gas, such as the ratio of hydrocarbons to oxygen
in the vicinity of the sensors. Thus, these sensors 15 a-c may give information related
to the concentration of harmful or flammable gases, and may be used e.g. to confirm
that the ventilation around the rotor and/or the solids collector and/or the drive
member is ok, or if the concentration of flammable gas is above e.g. a lower explosion
limit in the rotor space 8, the solids collector 20 and or the drive space 27. Detecting
a concentration of flammable gas above a certain limit could then trigger e.g. shutting
down the separator, i.e. turning off the feed of mixture to be separated and/or decreasing
the rotational speed of the drive member 3.
[0086] Fig. 2 shows a further embodiment of a centrifugal separator 1. This centrifugal
separator 1 functions as discussed in relation to the separator of Fig. 1 above, with
the only difference that the sensor 15a, which is arranged to detect a parameter related
to the concentration flammable gas in the rotor space 8, is arranged in an additional
space 21 that is in fluid contact with the rotor space 8. In this example, the additional
space 21 is formed by a tube shaped extension 34 of the frame 2. This tube shaped
extension 34 communicates with rotor space via through holes 22a and 22b of the stationary
frame 2, but does not itself surround the centrifugal rotor 1. Due to the flow of
air through the rotor space 8 and the through holes 22a and 2b, the concentration
of flammable gas in additional space 21 detected using sensor 15a is representative
for the concentration of flammable gas in the rotor space 8. Having the sensor 15a
arranged in such an additional space is advantageous in that it allows for easy access
to the sensor.
[0087] Fig. 3 shows a further embodiment of a centrifugal separator 1. This centrifugal
separator 1 functions as discussed in relation to the separator of Fig. 1 above, with
the exception that the separator 1 is free of any sensors for detecting the concentration
of flammable gas and uses a flow of pressurized air for ventilating the rotor space
8 and the drive space 27. This is achieved by connecting the first air inlet 9 and
the second air inlet 17 to a source of pressurized air, illustrated by "P" in the
figures, using connections 29a and 29b, respectively, which may be in the form of
pipes or tubings. The air is withdrawn from rotor space 8 and drive space 27 via first
air outlet 10 and second air outlet 18, respectively, as discussed in relation to
Fig. 1 above.
[0088] The source of pressurized air "P" is a common air source that is found in almost
all industrial environments. The flow of air in connection 29a to the first air inlet
9 is regulated using valve 30a, whereas the flow of air in connection 29b to the second
air inlet 10 is regulated using valve 30b. Having a flow of pressurized air, such
as a constant flow of pressurized air, may thus make the sensors for detecting flammable
gas redundant. In other words, the flow of pressurized air may be set at such level
so that it keeps the concentration of flammable gas in the rotor space 8 and in the
drive space 27 below a threshold, such as below a lower explosion limit.
[0089] Fig. 4 shows a further embodiment of a centrifugal separator 1. This centrifugal
separator 1 functions as discussed in relation to the separator of Fig. 3 above, i.e.
the air inlets 9 and 17 are connected to a source of pressurized air "P", but in this
embodiment the regulation of the flow of air in connections 29a and 29b are performed
using information from sensors for detecting flammable gas. The centrifugal separator
as shown in the embodiment of Fig. 4 comprises sensors as discussed in relation to
Fig. 1 above, i.e. a sensor 15a arranged in the rotor space 8, a sensor 15b arranged
in the solids collector 20 and a sensor 15c arranged in the drive space 27.
[0090] The sensors are connected to a control unit 23, which may be arranged within the
centrifugal separator 1 or as a separate unit. By means of control unit 23, the valves
30a and 30b, and thereby the flow of ventilating air may be controlled in a suitable
way so that a required flow of air is obtained. This is achieved by means of connection
32a to valve 30a and connection 32b to valve 30b.
[0091] The control unit 23 may further comprise a communication interface 26, such as a
transmitter/receiver, via which it may receive data from the sensors 15a, 15b and
15c and further transmit data to the valves 30a and 30b.
[0092] The received data may for instance include data of the measured parameter related
to the concentration of flammable gas, such as data of the ratio of hydrocarbons to
oxygen. This is indicated by connection 31a to sensor 15a in the rotor space 8, connection
31b to the sensor 15b in the solids collector 20 and connection 31c to the sensor
15c in the drive space 27. The transmitted data may for instance include a control
signal for controlling the valves 30a and 30b.
[0093] The control unit 23 is further configured to carry out a method for controlling the
flow of pressurized air to air inlets 9 and 17 according to embodiments disclosed
herein. For this purpose the control unit 23 may comprise a processing unit 24, such
as a central processing unit, which is configured to execute computer code instructions
which for instance may be stored on a memory 25. The memory 25 may thus form a (non-transitory)
computer-readable medium for storing such computer code instructions. The processing
unit 24 may alternatively be in the form of a hardware component, such as an application
specific integrated circuit, a field-programmable gate array or the like.
[0094] Thus during operation of the centrifugal separator as shown in Fig. 4, the control
unit 23 may receive information from the various sensors 15a-c, and regulate the flow
of ventilating air to the air inlets 9 and 17 based on the received information. For
example, the control unit 23 may regulate valve 30a so that the flow of air is increased
if the signal from sensor 15a arranged in the rotor space 8 indicates that the concentration
of flammable gas in the rotor space 8 is above a certain threshold, such as above
lower explosion limit. The control unit 23 may then regulate valve 30a so that the
flow of air is decreased if the signal from sensor 15a indicates that the concentration
of flammable gas in the rotor space 8 has decreased.
[0095] Regulating the valve 30a to decrease the flow of air may involve shutting valve 30a
so that no air reaches the first air inlet 9.
[0096] In analogy, the control unit 23 may regulate valve 30a to increase or decrease the
flow of pressurized air based on the information from sensor 15b arranged in the solids
collector 20, or it may regulate valve 30a to increase or decrease the flow of pressurized
air based on the information from both sensor 15a and 15b.
[0097] Further, the control unit 23 may regulate valve 30b to increase or decrease the flow
of pressurized air that reaches the second air inlet 17 based on the information from
sensor 15c, and may thus regulate the ventilation of the drive space 27 in analogy
with what is discussed in relation to ventilating the rotor space 8 above.
[0098] Thus, the control unit 23 comprise a regulation loop, i.e. it may be configured to
regulate the flow of air to the first inlet 9 and/or to the second air inlet 17 so
that the concentration of flammable gas in rotor space 8 and/or drive space 27 is
kept at a constant level or below a constant level.
[0099] The control unit may also be configured to receive information from other parts of
the separator, e.g. from the drive means 3, which may be an electrical motor, and/or
from a feed pump that regulates the feed of fluid mixture to be separated in the centrifugal
separator 1. In this way, it may regulate the flow of pressurized air to first air
inlet 9 and/or second air inlet 17 based on that information. As an example, the control
unit 23 may receive information that the centrifugal separator is at standstill or
that the feed to the separator is shut off, and may then regulate the valves 30a and
30b to decrease to shut off the flow of pressurized air to the first air inlet 9a
and/or the second air inlet 9b.
[0100] The invention is not limited to the embodiment disclosed but may be varied and modified
within the scope of the claims set out below. The invention is not limited to the
orientation of the axis of rotation (X) disclosed in the figures. The term "centrifugal
separator" also comprises centrifugal separators with a substantially horizontally
oriented axis of rotation.
1. A centrifugal separator (1) for separation of at least two components of a fluid mixture
which are of different densities which fluid mixture comprises a flammable fluid,
which centrifugal separator comprises a stationary frame (2), a drive member configured
to rotate a rotating part (4) in relation to the stationary frame, wherein the rotating
part comprises a spindle (5) and a centrifuge rotor (6) enclosing a separation space,
the centrifuge rotor being mounted to the spindle to rotate together with the spindle
around an axis (X) of rotation, wherein the rotating part is supported by the stationary
frame by at least one bearing device (7a, 7b)
wherein the stationary frame surrounds said centrifuge rotor, thereby forming a rotor
space between the stationary frame and the centrifuge rotor, and wherein the stationary
frame (2) comprises at least one first air inlet (9) arranged to provide fluid communication
into said rotor space and at least one first air outlet (10) arranged to provide fluid
communication out from said rotor space,
wherein the at least one first air inlet and the at least one first air outlet are
arranged in the stationary frame so as to provide a flow of air from the at least
one first air inlet to and out through the at least one first air outlet upon rotation
of said rotating part, and
wherein the at least one first air inlet (9) is arranged to be connected to a source
of air and wherein the at least one first air outlet (10) is arranged to allow outflow
of air from said rotor space, characterized in that
the centrifugal separator further comprises at least one sensor (15a, 15b, 15c) configured
to detect a parameter related to the concentration of flammable gas in the air of
said rotor space.
2. A centrifugal separator according to claim 1, wherein the at least one first air inlet
is arranged in the frame so that it communicates with a left portion of said rotor
space and the at least one first air outlet is arranged in the frame so that it communicates
with a right portion of said rotor space, or vice versa.
3. A centrifugal separator according to claim 1 or 2, wherein the at least one first
air inlet is arranged in the frame so that it communicates with an upper portion of
said rotor space and the at least one first air outlet is arranged in the frame so
that it communicates with a lower portion of said rotor space, or vice versa.
4. A centrifugal separator according to any previous claim, wherein the parameter is
the ratio of hydrocarbons to oxygen in the air of said rotor space.
5. A centrifugal separator according to any previous claim, wherein at least one of said
at least one sensor is arranged in an additional space that is in fluid communication
with said rotor space.
6. A centrifugal separator according to any previous claim, wherein the at least one
first air inlet is arranged to be connected to a source of pressurized air, and wherein
the centrifugal separator further comprises a control unit configured to receive an
input signal related to said parameter and generate a signal to regulate the flow
of pressurized air based on said input signal.
7. A centrifugal separator according to any previous claim, wherein said frame further
surrounds said drive member thereby also forming a drive space enclosing said drive
member, and further comprises at least one second air inlet arranged to provide fluid
communication into said drive space and at least one second air outlet arranged to
provide fluid communication out from said drive space, wherein the centrifugal separator
further comprises means for generating a flow of air from a second air inlet to and
out through a second air outlet.
8. A centrifugal separator according to claim 7, further comprising at least one sensor
configured to detect a parameter related to the concentration of flammable gas in
the air of said drive space.
9. A centrifugal separator according to claim 8, wherein the at least one second gas
inlet is arranged to be connected to a source of pressurized air, and wherein the
centrifugal separator further comprises a control unit configured to receive an input
signal related to said parameter and generate a signal to regulate the flow of pressurized
air based on said input signal.
10. A centrifugal separator according to any previous claim, wherein the centrifuge rotor
is at its outer periphery provided with a set of sludge outlets for discharge of a
higher density component such as sludge or other solids in a fluid mixture, and wherein
the frame further encloses a solids collector for collecting the discharged component,
and wherein the centrifugal separator further comprises at least one sensor configured
to detect a parameter related to the concentration of flammable gas in the air of
said solids collector.
11. A method for ventilating a centrifugal separator, comprising
- providing a centrifugal separator according to any one of claims 1-10;
- supplying a fluid mixture comprising at least two components which are of different
densities to be separated to the separation space of the centrifuge rotor; and
- rotating the rotating part so as to provide a flow of air from at least one first
gas inlet to and out through at least one first gas outlet, thereby ventilating said
centrifugal separator, characterized in that the fluid mixture to be separated comprises a flammable fluid and the method further
comprises
- detecting a parameter related to the concentration of flammable gas in said rotor
space, and
- regulating the flow of air from said at least one first gas inlet to and out through
said at least one first gas outlet based on the detected parameter.
12. A method according to claim 11, wherein the fluid mixture to be separated is heated
to a temperature of above 70° C before being supplied to the separation space.
1. Zentrifugalabscheider (1) zum Abscheiden von mindestens zwei Komponenten eines Fluidgemisches,
welche eine unterschiedliche Dichte aufweisen, wobei das Fluidgemisch ein zündbares
Fluid umfasst, wobei der Zentrifugalabscheider Folgendes umfasst:
einen stationären Rahmen (2),
ein Antriebselement, konfiguriert zum Drehen eines Drehteils (4) relativ zu dem stationären
Rahmen,
wobei der Drehteil eine Spindel (5) und einen Zentrifugalrotor (6) umfasst, welcher
einen Abscheideraum umschließt, wobei der Zentrifugalrotor auf der Spindel montiert
ist, um zusammen mit der Spindel um eine Drehachse (X) zu drehen, wobei der Drehteil
durch den stationären Rahmen durch mindestens eine Lagervorrichtung (7a, 7b) gestützt
ist,
wobei der stationäre Rahmen den Zentrifugalrotor umgibt, wodurch ein Rotorraum zwischen
dem stationären Rahmen und dem Zentrifugalrotor gebildet wird, und wobei der stationäre
Rahmen (2) mindestens einen ersten Lufteinlass (9) welcher ausgebildet ist, um eine
Fluidkommunikation zu dem Rotorraum bereitzustellen, und mindestens einen ersten Luftauslass
(10) umfasst, welcher ausgebildet ist, um eine Fluidkommunikation aus dem Rotorraum
bereitzustellen,
wobei der mindestens eine erste Lufteinlass und der mindestens eine erste Luftauslass
in dem stationären Rahmen angeordnet sind, um eine Strömung von Luft von dem mindestens
einen ersten Lufteinlass in und nach außen durch den mindestens einen ersten Luftauslass
bei der Drehung des Drehteils bereitzustellen, und
wobei der mindestens eine erste Lufteinlass (9) angeordnet ist, um mit einer Luftquelle
verbunden zu werden und
wobei der mindestens eine erste Luftauslass (10) angeordnet ist, um das Ausströmen
der Luft aus dem Rotorraum zu ermöglichen, dadurch gekennzeichnet, dass
der Zentrifugalabscheider ferner mindestens einen Sensor (15a, 15b, 15c) umfasst,
welcher konfiguriert ist, um einen Parameter zu detektieren, welcher sich auf die
Konzentration von zündbarem Gas in der Luft des Rotorraums bezieht.
2. Zentrifugalabscheider nach Anspruch 1, wobei der mindestens eine erste Lufteinlass
in dem Rahmen derart angeordnet ist, dass dieser mit einem linken Abschnitt des Rotorraums
kommuniziert und der mindestens eine erste Luftauslass in dem Rahmen derart angeordnet
ist, dass er mit einem rechten Abschnitt des Rotorraums kommuniziert, oder umgekehrt.
3. Zentrifugalabscheider nach Anspruch 1 oder 2, wobei der mindestens eine erste Lufteinlass
in dem Rahmen derart angeordnet ist, dass er mit einem oberen Abschnitt des Rotorraums
kommuniziert und der mindestens eine erste Luftauslass in dem Rahmen derart angeordnet
ist, dass er mit einem unteren Abschnitt des Rotorraums kommuniziert, oder umgekehrt.
4. Zentrifugalabscheider nach einem der vorhergehenden Ansprüche, wobei der Parameter
das Verhältnis zwischen Kohlenwasserstoffen und Sauerstoff in der Luft des Rotorraums
ist.
5. Zentrifugalabscheider nach einem der vorhergehenden Ansprüche, wobei mindestens einer
des mindestens einen Sensors in einem zusätzlichen Raum angeordnet ist, welcher mit
dem Rotorraum fluidisch kommuniziert.
6. Zentrifugalabscheider nach einem der vorhergehenden Ansprüche, wobei der mindestens
eine erste Lufteinlass angeordnet ist, um mit einer Druckluftquelle verbunden zu werden,
und wobei der Zentrifugalabscheider ferner eine Steuereinheit umfasst, welche konfiguriert
ist, um ein Eingangssignal zu empfangen, welches sich auf den Parameter bezieht und
um ein Signal zu erzeugen, um die Strömung von Druckluft basierend auf dem Eingangssignal
zu regeln.
7. Zentrifugalabscheider nach einem der vorhergehenden Ansprüche, wobei der Rahmen ferner
das Antriebselement umgibt, wodurch auch ein Antriebsraum gebildet wird, welcher das
Antriebselement umschließt, und ferner mindestens einen zweiten Lufteinlass, welcher
angeordnet ist, um eine Fluidkommunikation zu dem Antriebsraum bereitzustellen, und
mindestens einen zweiten Luftauslass umfasst, welcher angeordnet ist, um eine Fluidkommunikation
aus dem Antriebsraum bereitzustellen, wobei der Zentrifugalabscheider ferner Mittel
umfasst, um eine Strömung von Luft aus einem zweiten Lufteinlass zu und nach außen
durch einen zweiten Luftauslass zu erzeugen.
8. Zentrifugalabscheider nach Anspruch 7, ferner umfassend mindestens einen Sensor, welcher
konfiguriert ist, um einen Parameter zu detektieren, welcher sich auf die Konzentration
von zündbaren Gas in der Luft des Antriebsraums bezieht.
9. Zentrifugalabscheider nach Anspruch 8, wobei der mindestens eine zweite Gaseinlass
angeordnet ist, um mit einer Druckluftquelle verbunden zu werden, und wobei der Zentrifugalabscheider
ferner eine Steuereinheit umfasst, welche konfiguriert ist, um ein Eingangssignal
zu empfangen, welches sich auf den Parameter bezieht, und um ein Signal zu erzeugen,
um die Strömung von Druckluft basierend auf dem Eingangssignal zu regeln.
10. Zentrifugalabscheider nach einem der vorhergehenden Ansprüche, wobei der Zentrifugalrotor
an seinem Außenumfang mit einem Satz von Schlammauslässen versehen ist, um eine Komponente
höherer Dichte, wie ein Schlamm oder andere Feststoffe in einem Fluidgemisch auszugeben,
und wobei der Rahmen ferner einen Feststoffsammler zum Sammeln der ausgegebenen Komponente
einschließt, und wobei der Zentrifugalabscheider ferner mindestens einen Sensor umfasst,
welcher konfiguriert ist, um einen Parameter zu detektieren, welcher sich auf die
Konzentration von zündbarem Gas in der Luft des Feststoffsammlers bezieht.
11. Verfahren zum Lüften eines Zentrifugalabscheiders, umfassend:
- Bereitstellen eines Zentrifugalabscheiders nach einem der Ansprüche 1-10,
- Zuführen eines Fluidgemisches, welches mindestens zwei Komponenten umfasst, welche
eine unterschiedliche Dichte aufweisen und welche in den Abscheideraum des Zentrifugalrotors
abzuscheiden sind; und
- Drehen des Drehteils, um eine Strömung von Luft von mindestens einem ersten Gaseinlass
zu und nach außen durch mindestens einen ersten Gasauslass bereitzustellen, wodurch
der Zentrifugalabscheider belüftet wird, dadurch gekennzeichnet, dass das abzuscheidende Fluidgemisch ein zündbares Fluid umfasst und das Verfahren ferner
umfasst:
- Detektieren eines Parameters, welcher sich auf die Konzentration von zündbarem Gas
in dem Rotorraum bezieht, und
- Regeln der Strömung von Luft von dem mindestens einen ersten Gaseinlass zu und nach
außen durch den mindestens einen ersten Gasauslass basierend auf dem detektierten
Parameter.
12. Verfahren nach Anspruch 11, wobei das abzuscheidende Fluidgemisch bis auf eine Temperatur
über 70°C erwärmt wird, bevor es dem Abscheideraum zugeführt wird.
1. Séparateur centrifuge (1) pour séparer au moins deux composants d'un mélange de fluide
ayant différentes densités, lequel mélange de fluide comprend un fluide inflammable,
lequel séparateur centrifuge comprend
une structure fixe (2),
un élément d'entraînement configuré pour faire tourner un organe rotatif (4) par rapport
à la structure fixe,
dans lequel l'organe rotatif comprend un arbre (5) et un rotor centrifugeur (6) enfermant
une chambre de séparation, le rotor centrifugeur étant monté sur l'arbre de façon
à tourner ensemble avec l'arbre autour d'un axe de rotation (X), et l'organe rotatif
étant supporté par la structure fixe par au moins un dispositif de palier (7a, 7b),
dans lequel la structure fixe entoure ledit rotor centrifugeur, en formant ainsi un
espace de rotor entre la structure fixe et le rotor centrifugeur, et la structure
fixe (2) comprend au moins une première entrée d'air (9) agencée pour fournir une
communication de fluide jusqu'à l'intérieur dudit espace de rotor et au moins une
première sortie d'air (10) agencée pour fournir une communication de fluide hors dudit
espace de rotor,
dans lequel la au moins une première entrée d'air et la au moins une première sortie
d'air sont agencées dans la structure fixe de façon à engendrer un flux d'air à partir
de la au moins une première entrée d'air vers l'intérieur et vers l'extérieur au travers
de la au moins une première sortie d'air lorsque ledit organe rotatif tourne, et
dans lequel la au moins une première entrée d'air (9) est agencée pour être connectée
à une source d'air et dans lequel la au moins une première sortie d'air (10) est agencée
pour permettre l'écoulement de sortie de l'air depuis ledit espace de rotor, caractérisé en ce que
le séparateur centrifuge comprend en outre au moins un capteur (15a, 15b, 15c) configuré
pour détecter un paramètre associé à la concentration de gaz inflammable dans l'air
dudit espace de rotor.
2. Séparateur centrifuge selon la revendication 1, dans lequel la au moins une première
entrée d'air est agencée dans la structure de telle sorte qu'elle communique avec
une partie gauche dudit espace de rotor et la au moins une première sortie d'air est
agencée dans la structure de telle manière qu'elle communique avec une partie droite
dudit espace de rotor, ou vice-versa.
3. Séparateur centrifuge selon la revendication 1 ou 2, dans lequel la au moins une première
entrée d'air est agencée dans la structure de telle manière qu'elle communique avec
une partie supérieure dudit espace de rotor et la au moins une première sortie d'air
est agencée dans la structure de telle manière qu'elle communique avec une partie
inférieure dudit espace de rotor, ou vice-versa.
4. Séparateur centrifuge selon l'une quelconque des revendications précédentes, dans
lequel le paramètre est le rapport des hydrocarbures à l'oxygène dans l'air dudit
espace de rotor.
5. Séparateur centrifuge selon l'une quelconque des revendications précédentes, dans
lequel au moins un du dit au moins un capteur est agencé dans une chambre supplémentaire
qui est en communication de fluide avec ledit espace de rotor.
6. Séparateur centrifuge selon l'une quelconque des revendications précédentes, dans
lequel la au moins une première entrée d'air est agencée pour être connectée à une
source d'air comprimé, et dans lequel le séparateur centrifuge comprend en outre une
unité de commande configurée pour recevoir un signal d'entrée associé au dit paramètre
et pour générer un signal afin de réguler l'écoulement d'air comprimé sur la base
du dit signal d'entrée.
7. Séparateur centrifuge selon l'une quelconque des revendications précédentes, dans
lequel ladite structure entoure en outre ledit élément d'entraînement en formant ainsi
une chambre d'entraînement enfermant ledit élément d'entraînement, et comprend en
outre au moins une seconde entrée d'air agencée pour fournir une communication de
fluide jusque dans ladite chambre d'entraînement et au moins une seconde sortie d'air
agencée pour fournir une communication de fluide hors de ladite chambre d'entraînement,
dans lequel le séparateur centrifuge comprend en outre des moyens pour produire un
flux d'air à partir d'une seconde entrée d'air vers l'intérieur et vers l'extérieur
au travers d'une seconde sortie d'air.
8. Séparateur centrifuge selon la revendication 7, comprenant en outre au moins un capteur
configuré pour détecter un paramètre associé à la concentration de gaz inflammable
dans l'air de ladite chambre d'entraînement.
9. Séparateur centrifuge selon la revendication 8, dans lequel la au moins une seconde
entrée de gaz est agencée pour être connectée à une source d'air comprimé, et dans
lequel le séparateur centrifuge comprend en outre une unité de commande configurée
pour recevoir un signal d'entrée associé au dit paramètre et pour générer un signal
afin de réguler l'écoulement d'air comprimé sur la base du dit signal d'entrée.
10. Séparateur centrifuge selon l'une quelconque des revendications précédentes, dans
lequel le rotor centrifugeur est équipé, à sa périphérie extérieure, d'une série de
sorties de boue pour évacuer un composant de densité supérieure tel qu'une boue ou
d'autres matières solides dans un mélange de fluide, et dans lequel la structure inclut
en outre un collecteur de matières solides pour collecter le composant évacué, et
le séparateur centrifuge comprend en outre au moins un capteur configuré pour détecter
un paramètre associé à la concentration de gaz inflammable dans l'air du dit collecteur
de matières solides.
11. Procédé de ventilation d'un séparateur centrifuge, comprenant :
- la fourniture d'un séparateur centrifuge selon l'une quelconque des revendications
1 à 10,
- l'alimentation d'un mélange de fluide comprenant au moins deux composants qui ont
des densités différentes à séparer jusqu'à la chambre de séparation du rotor centrifugeur,
et
- la rotation de l'organe rotatif de façon à fournir un flux d'air à partir de la
au moins une première entrée de gaz vers l'intérieur et vers l'extérieur au travers
d'au moins une première sortie de gaz, en ventilant ainsi ledit séparateur centrifuge,
caractérisé en ce que le mélange de fluide à séparer comprend un fluide inflammable et le procédé comprend
en outre :
- la détection d'un paramètre associé à la concentration de gaz inflammable dans ledit
espace de rotor, et
- la régulation de l'écoulement d'air depuis ladite au moins une première entrée de
gaz vers l'intérieur et vers l'extérieur au travers de ladite au moins une première
sortie de gaz sur la base du paramètre détecté.
12. Procédé selon la revendication 11, dans lequel le mélange de fluide à séparer est
chauffé à une température supérieure à 70°C avant d'être alimenté jusqu'à la chambre
de séparation.