[0001] This disclosure generally relates to a wiring harness assembly, and more particularly
relates to a wiring harness assembly having a flat cable bundle.
[0002] The present invention will now be described, by way of example with reference to
the accompanying drawings, in which:
Fig. 1 is a perspective view of an illustration of a wiring harness assembly in accordance
with one embodiment;
Fig. 2 is a perspective view of a portion of the wiring harness assembly of Fig. 1
illustrating a cross section of the assembly in accordance with one embodiment;
Fig. 3A is an illustration of an enlarged cross sectional view of a power conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 3B is an illustration of an enlarged cross sectional view of a power conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 4A is an illustration of an enlarged cross sectional view of a signal conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 4B is an illustration of an enlarged cross sectional view of a signal conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 5A is an illustration of an enlarged cross sectional view of a data conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 5B is an illustration of an enlarged cross sectional view of a data conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 5C is an illustration of an enlarged cross sectional view of a data conductor
portion of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 6 is a top perspective view of a portion of a first flexible planar wire cable
of the wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 7 is a bottom view of a portion of a second flexible planar wire cable of the
wiring harness assembly of Fig. 1 in accordance with one embodiment;
Fig. 8 is a section view of an electrical connection of the assembly of Fig. 1 in
accordance with one embodiment;
Fig. 9 is a section view of another electrical connection of the assembly of Fig.
1 in accordance with one embodiment; and
Fig. 10 is a section view of yet another electrical connection of the assembly of
Fig. 1 in accordance with one embodiment.
[0003] Reference will now be made in detail to embodiments, examples of which are illustrated
in the accompanying drawings. In the following detailed description, numerous specific
details are set forth in order to provide a thorough understanding of the various
described embodiments. However, it will be apparent to one of ordinary skill in the
art that the various described embodiments may be practiced without these specific
details. In other instances, well-known methods, procedures, components, circuits,
and networks have not been described in detail so as not to unnecessarily obscure
aspects of the embodiments.
[0004] Fig. 1 illustrates a perspective view of a wiring harness assembly 10, hereafter
referred to as the assembly 10. As will be described in more detail below, the assembly
10 is an improvement over other wiring harness assemblies because the assembly 10
combines electrical power, signal, and data channels in one flexible planar package.
In an example, the assembly 10 includes connector bodies attached to ends of the assembly
10 configured to mate with corresponding connector bodies of a vehicle wiring system
(not shown). In another example, the assembly 10 includes one or more branches that
extend laterally from and/or parallel to the assembly 10. The one or more branches
are configured to distribute electrical power, signals, and data to various systems
that may be installed on the vehicle.
[0005] Fig. 2 is a perspective view of a portion of the assembly 10 of Fig. 1 illustrating
a cross section of the assembly 10. The assembly 10 includes a first flexible planar
substrate 12 extending continuously along both a longitudinal axis 14 and a lateral
axis 16 of the assembly 10. The first flexible planar substrate 12 is formed of a
polymeric material. The polymeric material may be any polymeric material that electrically
isolates portions of the power, signal, and data channels. In one example, the first
flexible planar substrate 12 is formed of the polymeric material polyethylene naphthalate
(PEN). In another example, the first flexible planar substrate 12 is formed of the
polymeric material polyimide (PI). In yet another example, the first flexible planar
substrate 12 is formed of the polymeric material polyethylene terephthalate (PET).
Other polymeric materials may be selected based on application requirements for electrical
isolation (i.e. a dielectric breakdown strength), and/or temperature resistance, and/or
mechanical properties (e.g., tensile strength, elongation, abrasion resistance, etc.)
of the assembly 10. In an example, the first flexible planar substrate 12 has a thickness
in a range of 15 micrometers (15µm) to 100 µm and may be adjusted based on a dielectric
constant of the polymeric material. In one example, the PEN polymeric material has
a thickness of about 25 µm. In another example the PI polymeric material has a thickness
of about 75 µm.
[0006] The assembly 10 also includes a second flexible planar substrate 18 overlaying the
first flexible planar substrate 12, extending continuously along both the longitudinal
axis 14 and the lateral axis 16 of the assembly 10. In the example illustrated in
Fig. 2, the second flexible planar substrate 18 is formed of the same polymeric material
as that of the first flexible planar substrate 12 described above, and has the same
thickness. In another example, the second flexible planar substrate 18 is formed of
a different polymeric material than that of the first flexible planar substrate 12
described above. In yet another example, the second flexible planar substrate 18 is
has a different thickness than that of the first flexible planar substrate 12 described
above.
[0007] The assembly 10 also includes a plurality of separated conductors 20 interposed between
the first flexible planar substrate 12 and the second flexible planar substrate 18.
In the example illustrated in Fig. 2, the plurality of separated conductors 20 are
encapsulated by the first flexible planar substrate 12 and the second flexible planar
substrate 18. In an example, the encapsulation results from a lamination process of
the first flexible planar substrate 12 and the second flexible planar substrate 18
by applying heat and pressure to opposing surfaces of the first flexible planar substrate
12 and the second flexible planar substrate 18, thereby joining the first flexible
planar substrate 12 and the second flexible planar substrate 18 together. In an example,
an adhesive 29 is also interposed between the first flexible planar substrate 12 and
the second flexible planar substrate 18. It will be appreciated that the lamination
process results in a seal at an interface between the first flexible planar substrate
12 and the second flexible planar substrate 18 that inhibits moisture intrusion. In
an example, the first flexible planar substrate 12 and the second flexible planar
substrate 18 are urged into spaces between the plurality of separated conductors 20
during the lamination process to create a dielectric barrier between the plurality
of separated conductors 20.
[0008] The plurality of separated conductors 20 include at least one power conductor 22
configured to transmit electrical power, at least one signal conductor 24 configured
to transmit electrical signals, and at least one data conductor 26 configured to transmit
network data communications. The power conductor 22, signal conductor 24, and data
conductor 26 may be arranged in any order along the lateral axis 16 of the assembly
10. In the example illustrated in Fig. 2, the power conductor 22 and data conductor
26 are arranged proximate the opposing edges of the assembly 10, with the signal conductor
24 disposed between the power conductor 22 and data conductor 26.
[0009] As used herein, transmission of electrical power includes the transmission of electrons
where a voltage is typically greater than about five volts (5V), and an electrical
current is typically greater than about one ampere (1A). For example, a typical power
conductor 22 in a vehicle may supply electrical power at battery voltage (i.e. 14V
to 48V), and current at 15A to 30A. As used herein, transmission of electrical signals
include the transmission of electrons where the voltage is typically less than about
5V, and the current is typically less than about 5A. For example, a typical signal
conductor 24 in a vehicle, used for switching a component on and off (e.g., electric
door locks), may transmit electrical signals between about 0.0V and about 5V, and
the current between about 0.0A and about 0.1A. In another example, the transmission
of electrical signals includes a voltage-based state where a 0.0V signal denotes a
"low" logic value (i.e. logical zero) and a full scale signal (e.g. 5V) denotes a
"high" logic value (i.e. logical one). As used herein, transmission of network data
communications include the transmission of electrons where the voltage is typically
less than about 5V, and the current is typically less than about 0.1A. For example,
a typical data conductor 26 in a vehicle, such as a Computer Area Network (CAN) data
conductor 26 used to send messages between various vehicle controllers and/or between
vehicle controllers and electrical components, may transmit electrical signals between
about 0.0V and about 5V, and current between about 0.0A and about 0.05A. In an example,
the data communications are digital bit streams having a predetermined bit timing
and structure. In the example illustrated in Fig. 2, the data conductor 26 further
includes a pair of continuous strips of electrically conductive material (i.e. a data
pair), such as copper, aluminum, silver, gold, or alloys thereof. In this example,
the data pair enable the use of a differential voltage between the data pair as part
of a message protocol. In an example, data transmission rates (i.e. baud rates) reach
in excess of 1 million bits per second (1Mbps).
[0010] In the example illustrated in Fig. 2, a spacing between the power conductor 22 and
the adjacent signal conductor 24 is at least 1.0mm, and the spacing between the signal
conductor 24 and the adjacent data conductor 26 is at least 1.0mm. The spacing between
the adjacent plurality of separated conductors 20 are maintained at these values to
provide adequate electrical isolation between the conductors to inhibit short circuits,
and/or to inhibit crosstalk of the transmitted electrical signals. Crosstalk is a
phenomenon in electronics where a signal transmitted on one wire or channel, creates
an interference in another wire or channel. Crosstalk is a form of electromagnetic
interference (EMI) that is caused by a magnetic field generated around a wire that
is transmitting electrical current. The magnetic field from an interfering circuit
may induce an electrical current in a nearby circuit creating electrical noise or
interference.
[0011] In an example, the power conductor 22 comprises a single continuous strip of electrically
conductive material, such as copper, aluminum, silver, gold, or alloys thereof. In
another example, the electrically conductive material includes a conductive coating,
such as tin or a tin alloy, to inhibit corrosion. In the example illustrated in Fig.
2, the power conductor 22 has a width greater than the signal conductor 24 and greater
than the data conductor 26, the benefits of which will be described in more detail
below. In order for the power conductor 22 to transmit the desired electrical power
described above, an electrical resistance is kept to a minimum by adjusting a cross
sectional area of the power conductor 22. In an example, the power conductor 22 has
a width greater than 1mm and a thickness less than about 1.0mm. In another example,
the power conductor 22 has a width of about 10mm, and a thickness of about 0.125mm.
In the example illustrated in Fig. 2, the power conductor 22 has a width of about
10mm, and a thickness of about 0.7mm.
[0012] Figs. 3A-3B illustrate examples of an enlarged cross sectional view of the power
conductor 22 portion of the assembly 10. In these examples, the power conductor 22
is located proximate an edge of the assembly 10. In an example, a distance between
a first side of the power conductor 22 and a first edge of the first flexible planar
substrate 12 is about 2mm. The assembly 10 further includes a power electromagnetic
shield 28 surrounding the power conductor 22. The power electromagnetic shield 28
is configured to inhibit EMI from affecting the nearby signal conductors 24, data
conductors 26, and/or other electrical components proximate the assembly 10. The EMI
is generated by the magnetic field that surrounds the power conductor 22 that is created
when the electrical power is transmitted through the power conductor 22. Electromagnetic
shielding provides an electrically conductive barrier to attenuate (i.e., reduce)
electromagnetic waves external to the shield, and provides a conduction path by which
any induced electrical currents can be circulated and returned to the source by way
of an electrical ground connection to the shield (not shown). As illustrated in Figs.
3A-3B, an adhesive 29 is interposed between the power electromagnetic shield 28 and
both the first flexible planar substrate 12 and the second flexible planar substrate
18. This adhesive 29 has the benefit of inhibiting a relative motion between the power
electromagnetic shield 28 and both the first flexible planar substrate 12 and the
second flexible planar substrate 18, that may cause damage to the power electromagnetic
shield 28. In an example, the adhesive 29 also includes dielectric properties.
[0013] The power electromagnetic shield 28 includes at least one power shield trace 30 and
at least one power shield foil 32, wherein the power shield trace 30 and the power
shield foil 32 are in electrical contact in order to create a continuous shield. In
the example illustrated in Fig. 3A, the power electromagnetic shield 28 terminates
without wrapping around the side of the power conductor 22. This shielding arrangement
provides sufficient EMI reduction when the power conductor 22 is located proximate
the edge of the assembly 10, and the assembly 10 is not routed near any electronic
devices that may require protection from EMI. In an example, a spacing between the
power shield trace 30 and the power conductor 22 is about 1mm. In an example, the
thickness of the power shield trace 30 matches the thickness of the power conductor
22. In another example, the thickness of the power shield trace 30 is greater than
the thickness of the power conductor 22. In an example the thickness of the power
shield foil 32 is between 0.01mm and 0.04mm.
[0014] Both the power shield trace 30 and the power shield foil 32 are formed of continuous
strips of electrically conductive material, such as copper, aluminum, silver, gold,
or alloys thereof. In an example, the power shield trace 30 and the power shield foil
32 includes a conductive coating, such as tin or a tin alloy, to inhibit corrosion.
In an example, the power shield trace 30 and the power shield foil 32 are formed of
the same electrically conductive material as that of the power conductor 22. In another
example, the power shield trace 30 and the power shield foil 32 are formed of a different
electrically conductive material than that of the power conductor 22.
[0015] Fig. 3B illustrates an example where another power shield trace 30 is located along
the first side of the power conductor 22, separating the power conductor 22 and the
first edge of the first flexible planar substrate 12. In this example, the power electromagnetic
shield 28 completely surrounds the power conductor 22. It will be appreciated that
this shielding arrangement provides additional EMI shielding compared to that of Fig.
3A. While the example illustrated in Fig. 3B includes separate power shield foils
32 (i.e., an upper foil and a lower foil) individually attached to the first and second
power shield traces 30, other arrangements of the power shield trace 30 and power
shield foil 32 are envisioned, but not shown, such as a single power shield foil 32
that completely surrounds the power conductor 22, overlapping itself to create the
continuous shield. In another example not shown, a single power shield foil 32 extends
from a top side of a single power shield trace 30 and returns to a bottom side of
the single power shield trace 30, completely surrounding the power conductor 22.
[0016] Referring again to Figs 3A-3B, a dielectric material 34 separates the power conductor
22 from both the power shield trace 30 and the power shield foil 32 to prevent a short
circuit from occurring. It will be appreciated that the short circuit between the
power conductor 22 and the power electromagnetic shield 28 will make the EMI shielding
ineffective. The dielectric material 34 that separates the power conductor 22 and
the power electromagnetic shield 28 may be any dielectric material 34 that is compatible
with the requirements of the assembly 10 (e.g., dielectric breakdown strength, flexibility,
etc.). One such dielectric material 34 is the RT/DUROID ® 5880 from Rogers Corporation
of Chandler, Arizona, USA. In an example, the dielectric material 34 includes adhesive
properties to promote bonding between the power electromagnetic shield 28 and the
power conductor 22. In another example, a separate adhesive 29 layer is interposed
between the dielectric material 34 and the power conductor 22. The thickness of the
dielectric material 34 is adjusted based on the dielectric breakdown strength of the
dielectric material 34, and a voltage differential between the power conductor 22
and the power electromagnetic shield 28. In an example, the thickness of the dielectric
material 34 is between about 0.1mm and about 0.5mm. In another example, the thickness
of the dielectric material 34 is about 0.4mm. In another example, the thickness of
the dielectric material 34 is about 0.075mm.
[0017] In an example, the assembly 10 includes a plurality of power conductors 22 arranged
parallel to one another along the longitudinal axis 14 of the assembly 10. In an example,
a spacing between adjacent power conductors 22 is at least 1.0mm. In an example, the
plurality of power conductors 22 are surrounded by the single power electromagnetic
shield 28 with the dielectric material 34 separating the plurality of power conductors
22 from the single power electromagnetic shield 28. In another example, the plurality
of power conductors 22 are individually surrounded by a plurality of power electromagnetic
shields 28 with the dielectric material 34 separating the individual power conductors
22 from the corresponding power electromagnetic shield 28.
[0018] Figs. 4A-4B illustrate examples of an enlarged cross sectional view of the signal
conductor 24 portion of the assembly 10, showing three separate signal conductors
24. It will be appreciated that any number of signal conductors 24 may be included
within the assembly 10 to meet the requirements of the vehicle electrical system.
In an example, the signal conductor 24 comprises a single continuous strip of electrically
conductive material, such as copper, aluminum, silver, gold, or alloys thereof. In
another example, the electrically conductive material includes a conductive coating,
such as tin or a tin alloy, to inhibit corrosion. The signal conductor 24 is not configured
to transmit the same levels of electrical power as that of the power conductor 22,
and does not have the same cross sectional area as the power conductor 22 to achieve
the desired electrical resistance. In an example, the signal conductor 24 has a width
of less than 2.0mm and a thickness less than about 1.0mm. In the examples illustrated
in Figs. 4A-4B, the signal conductor 24 has a width of about 1.54mm, and a thickness
of about 0.7mm.
[0019] Referring to Fig. 4A, three unshielded signal conductors 24 are surrounded by the
dielectric material 34. In this example, the unshielded signal conductors 24 are protected
from the EMI of the adjacent power conductor 22 by the power electromagnetic shield
28. In this example, the dielectric material 34 is the same dielectric material 34
that surrounds the power conductor 22 of Figs 3A-3B, with the thickness adjusted to
account for the lack of a shield trace and a shield foil. In an example, the spacing
between the adjacent signal conductors 24 is at least 1.0mm to inhibit the occurrence
of crosstalk.
[0020] In another example illustrated in Fig. 4B, the three signal conductors 24 are protected
from the EMI by a signal electromagnetic shield 36. The signal electromagnetic shield
36 includes at least one signal shield trace 38 and at least one signal shield foil
40. In an example, the dielectric material 34 separates the signal conductors 24 from
both the signal shield trace 38 and the signal shield foil 40 to prevent a short circuit
from occurring. In an example, the dielectric material 34 includes adhesive properties
to promote bonding between the signal electromagnetic shield 36 and the signal conductor
24. In another example, a separate adhesive 29 layer is interposed between the dielectric
material 34 and the signal conductor 24. The thickness of the dielectric material
34 is adjusted based on the dielectric breakdown strength of the dielectric material
34, and a voltage differential between the signal conductor 24 and the signal electromagnetic
shield 36. In an example, the thickness of the dielectric material 34 is between about
0.1mm and about 0.5mm. In another example, the thickness of the dielectric material
34 is about 0.4mm. In another example, the thickness of the dielectric material 34
is about 0.075mm.
[0021] Figs. 5A-5C illustrate three examples of an enlarged cross sectional view of the
data conductor 26 portion of the assembly 10, showing a pair of continuous strips
of conductive material, hereafter referred to as a data pair. In an example, the data
pair is formed of continuous strips of electrically conductive material, such as copper,
aluminum, silver, gold, or alloys thereof. In another example, the electrically conductive
material includes a conductive coating, such as tin or a tin alloy, to inhibit corrosion.
Like the signal conductor 24, the data conductor 26 is not configured to transmit
the same levels of electrical power as that of the power conductor 22, and does not
have the same cross sectional area as the power conductor 22 to achieve the desired
electrical resistance. In an example, the individual traces of the data conductor
26 have the width of less than 0.5mm and the thickness less than about 1.0mm. In the
examples illustrated in Figs. 5A-5C, the individual traces of the data conductor 26
have the width of about 0.3mm, and the thickness of about 0.7mm. Additionally, the
spacing (i.e., spacing along the longitudinal axis 14, lateral axis 16, and vertical
axis) between individual traces of the data conductor 26 are at least 0.3mm to inhibit
crosstalk between the individual traces.
[0022] Fig. 5A illustrates the data pair of a data conductor 26A that are parallel and coplanar
(i.e., side-by-side conductors in a same plane). Fig. 5B illustrates the data pair
of a data conductor 26B that are parallel and lay in separate parallel planes (i.e.,
over-under conductors in different planes). Fig. 5C illustrates the data pair of a
data conductor 26C that are a twisted pair that alternate between separate planes
at regular intervals (i.e., a twist rate, pitch of the twist, etc.). The twisted pair
is a type of wiring arrangement that reduces electromagnetic radiation from the pair
of conductors, reduces crosstalk between adjacent pairs of conductors, and improves
a rejection of any external EMI. In the planar assembly 10, the twist in the data
conductors 26C is accomplished by vertical connections made to alternating short segments
of the data conductors 26C disposed on separate parallel planes. The alternating short
segments form a crisscross pattern when viewed along the vertical axis, which creates
the twisted arrangement.
[0023] In the three examples illustrated in Figs. 5A-5C, the conductors are separated from
one another by the dielectric material 34 that is the same dielectric material 34
described above in Figs. 3A-4B. In these examples, the thickness of the dielectric
material 34 is adjusted based on the thickness of the data conductors 26.
[0024] Referring again to Figs. 5A-5C, the assembly 10 further includes a data electromagnetic
shield 42 to protect the data conductor 26 from EMI. The data electromagnetic shield
42 includes at least one data shield trace 44 and at least one data shield foil 46.
In an example, the dielectric material 34 separates the data conductors 26 from both
the data shield trace 44 and the data shield foil 46 to prevent a short circuit from
occurring. In an example, the dielectric material 34 includes adhesive properties
to promote bonding between the data electromagnetic shield 42 and the data conductor
26. In another example, a separate adhesive 29 layer is interposed between the dielectric
material 34 and the data conductor 26. The thickness of the dielectric material 34
is adjusted based on the dielectric breakdown strength of the dielectric material
34, and a voltage differential between the signal conductor 24 and the data electromagnetic
shield 42, and/or the voltage differential between the data pair. In an example, the
thickness of the dielectric material 34 is between about 0.1mm and about 0.5mm. In
another example, the thickness of the dielectric material 34 is about 0.4mm. In another
example, the thickness of the dielectric material 34 is about 0.075mm. In yet another
example, the thickness of the dielectric material 34 between the data pair is at least
0.3mm.
[0025] Referring back to Fig. 1, the assembly 10 includes a first flexible planar wire cable
48 having a first plurality of separated conductors 20A formed in a first insulating
layer. The assembly 10 also includes at least one second flexible planar wire cable
50 having a second plurality of separated conductors 20B formed in a second insulating
layer. In an example, the first flexible planar wire cable 48 and the at least one
second flexible planar wire cable 50 are initially formed as part of a single flexible
planar wire cable that is sectioned to create separate lengths of cable. In the example
illustrated in Fig. 1, the first insulating layer and the second insulating layer
are formed of the first flexible planar substrate 12, the second flexible planar substrate
18, the dielectric material 34, and the adhesive 29, that together insulate portions
of the first plurality of separated conductors 20A and the second plurality of separated
conductors 20B. In an example, the at least one second flexible planar wire cable
50 extends from the first flexible planar wire cable 48 in a direction obtuse to the
longitudinal axis 14 of the first flexible planar wire cable 48. In another example,
the at least one second flexible planar wire cable 50 extends from the first flexible
planar wire cable 48 in a direction parallel to the longitudinal axis 14 of the first
flexible planar wire cable 48. In the example illustrated in Fig. 1, the at least
one second flexible planar wire cable 50 extends from the first flexible planar wire
cable 48 in a direction orthogonal to the longitudinal axis14 of the first flexible
planar wire cable 48 (i.e., along the lateral axis 16 of the assembly 10).
[0026] In an example, the first plurality of separated conductors 20A include a first at
least one power conductor 22A surrounded by a first power electromagnetic shield 28A,
a first at least one signal conductor 24A surrounded by a first signal electromagnetic
shield 36A, and a first at least one data conductor 26D surrounded by a first data
electromagnetic shield 42A. The second plurality of separated conductors 20B include
a second at least one power conductor 22B surrounded by a second power electromagnetic
shield 28B, a second at least one signal conductor 24B surrounded by a second signal
electromagnetic shield 36B, and a second at least one data conductor 26E surrounded
by a second data electromagnetic shield 42B.
[0027] In another example, the first plurality of separated conductors 20A include the first
at least one power conductor 22A surrounded by the first power electromagnetic shield
28A, the first at least one signal conductor 24A that is unshielded, and the first
at least one data conductor 26D surrounded by the first data electromagnetic shield
42A. The second plurality of separated conductors 20B include a second at least one
power conductor 22B surrounded by a second power electromagnetic shield 28B, a second
at least one signal conductor 24B that is unshielded, and a second at least one data
conductor 26E surrounded by a second data electromagnetic shield 42B.
[0028] Fig. 6 illustrates a portion of the first flexible planar wire cable 48 isolated
from the assembly 10 of Fig. 1. The first insulating layer includes a first substantially
flat exterior surface 52 that defines a first plurality of apertures 54. The first
plurality of apertures 54 expose at least a portion of the one or more of the first
plurality of separated conductors 20A and/or first electromagnetic shields. In an
example, the exposed portions of each of the first plurality of separated conductors
20A and/or first electromagnetic shields include a coating of conductive material,
such as a tin plating or tin alloy plating. The first plurality of apertures 54 are
arranged in clusters (i.e., bunches, groups, collections, bands, etc.) along the longitudinal
axis 14 of the first flexible planar wire cable 48. In an example, the clusters are
repeated at a predetermined interval along the longitudinal axis 14 of the first flexible
planar wire cable 48. That is, the clusters of the first plurality of apertures 54
are repeated at regular intervals along a length of the first flexible planar wire
cable 48, the purpose of which will be explained below.
[0029] The first plurality of apertures 54 are sized, shaped, and arranged such that arranging
a second substantially flat exterior surface 56 of the second flexible planar wire
cable 50 in contact with the first substantially flat exterior surface 52 enables
an electrical connection 60 between the at least one second flexible planar wire cable
50 and the first flexible planar wire cable 48. It will be appreciated that the second
substantially flat exterior surface 56 of the second flexible planar wire cable 50
is the surface that is defined by the first flexible planar substrate 12, while the
first substantially flat exterior surface 52 is the surface that is defined by the
second flexible planar substrate 18. In the example illustrated in Fig. 6, the first
plurality of apertures 54 within the clusters are arranged in a staggered pattern
relative to one another along the longitudinal axis 14 of the first flexible planar
wire cable 48. The staggered pattern of the first plurality of apertures 54 enables
the electrical connection 60 between one or more of the first plurality of separated
conductors 20A and one or more of the second plurality of separated conductors 20B
and/or between the first electromagnetic shields and the second electromagnetic shields.
[0030] Fig. 7 illustrates a bottom view of a portion of the second flexible planar wire
cable 50 isolated from the assembly 10 of Fig. 1. The second substantially flat exterior
surface 56 of the second flexible planar wire cable 50 defines a second plurality
of apertures 58 that expose at least a portion of one or more of the second plurality
of separated conductors 20B and/or second electromagnetic shields. In an example,
the exposed portions of each of the second plurality of separated conductors 20B and/or
first electromagnetic shields include a coating of conductive material, such as a
tin plating or tin alloy plating. The second plurality of apertures 58 are sized,
shaped, and arranged to overlay the first plurality of apertures 54 to enable the
electrical connections 60. In an example, the second plurality of apertures 58 are
arranged in clusters along the longitudinal axis 14 of the second flexible planar
wire cable 50. In the example illustrated in Fig. 1, the longitudinal axis 14 of the
second flexible planar wire cable 50 is aligned with the lateral axis 16 of the assembly
10. In an example, the clusters are repeated at a predetermined interval along the
longitudinal axis 14 of the second flexible planar wire cable 50. In the example illustrated
in Fig. 1, only a single cluster of the second plurality of apertures 58 exists to
make the electrical connection 60 between the second flexible planar wire cable 50
and the first flexible planar wire cable 48. In the example illustrated in Fig. 7,
the second plurality of apertures 58 within the cluster are arranged in the staggered
pattern relative to one another along the longitudinal axis 14 of the second flexible
planar wire cable 50. The staggered pattern of the second plurality of apertures 58
enables the electrical connection 60 between one or more of the first plurality of
separated conductors 20A and one or more of the second plurality of separated conductors
20B and/or between the first electromagnetic shields and the second electromagnetic
shields.
[0031] Fig. 8 illustrates an example of a bond 62 between the first flexible planar wire
cable 48 and the second flexible planar wire cable 50. For the purposes of illustration,
a section view of the power conductor 22 portion of the assembly 10 is shown, and
the description below will apply to the bonds 62 between the other portions of the
assembly 10. In an example, the bonds 62 between the first substantially flat exterior
surface 52 and the second substantially flat exterior surface 56 are located proximate
a perimeter of each of the first plurality of apertures 54 and each of the second
plurality of apertures 58. In an example, the bond 62 is achieved with an adhesive,
such as an epoxy or silicone rubber. In an example, the bond 62 is achieved through
localized heating of the first substantially flat exterior surface 52 and the second
substantially flat exterior surface 56. In another example, the bond 62 is achieved
by a chemical solvent that assists in a crosslinking between the first substantially
flat exterior surface 52 and the second substantially flat exterior surface 56. In
an example, the bond 62 exists along the full length of contact between the first
substantially flat exterior surface 52 and the second substantially flat exterior
surface 56.
[0032] Fig. 8 also illustrates an example of the electrical connection 60 between the first
flexible planar wire cable 48 and the second flexible planar wire cable 50. In an
example, the electrical connections 60 between the one or more of the first plurality
of separated conductors 20A and the one or more of the second plurality of separated
conductors 20B is a metallurgical bond. In an example, the metallurgical bond is a
weld joint from a high frequency weld, or a resistance weld. In another example, the
metallurgical bond is a solder joint. In an example, the electrical connections 60
between the one or more of the first plurality of separated conductors 20A and the
one or more of the second plurality of separated conductors 20B is a mechanical bond
enabled by a compressive fitting applied to opposing surfaces of both the first flexible
planar wire cable 48 and the second flexible planar wire cable 50. In another example,
the mechanical bond is enabled by a staking operation between the first flexible planar
wire cable 48 and the second flexible planar wire cable 50.
[0033] Referring again to Fig. 8, in this example the first at least one power conductor
22A of the first plurality of separated conductors 20A is electrically connected to
the second at least one power conductor 22B of the second plurality of separated conductors
20B. It will be understood that the example illustrated in Fig. 8, and the description
below, will also apply to the electrical connections 60 (not shown) between the first
at least one signal conductor 24A and the second at least one signal conductor 24B,
as well as the electrical connections 60 (not shown) between the first at least one
data conductor 26D and the second at least one data conductor 26E. In an example,
the electrical connections 60 between the first at least one data conductor 26D and
the second at least one data conductor 26E illustrated in Fig. 5B are enabled by lateral
offset conductors (not specifically shown) that create lateral connection points for
the superimposed data conductors 26.
[0034] In the example illustrated in Fig. 8, the electrical connection 60 is the metallurgical
bond. The electrical connection 60 is made within the apertures 54, 58 such that no
short circuits exist between the power conductors 22A, 22B and the corresponding electromagnetic
shielding. In the example illustrated in Fig. 8, a lateral gap exists between the
electrical connection 60 and the surrounding components. In another example, the gap
is filled with the dielectric material 34 to inhibit short circuits. A dimension of
the gap and/or the dielectric material 34 within the gap is adjusted based on the
voltage differential between the power conductors 22A and 22B, and the surrounding
electromagnetic shielding. In an example, the dimension of the gap is at least 0.3mm.
[0035] Fig. 9 illustrates the electrical connection 60 between the one or more first electromagnetic
shields of the first plurality of separated conductors 20A and the one or more second
electromagnetic shields of the second plurality of separated conductors 20B. In this
example, a first power shield foil 32A of the first plurality of separated conductors
20A is electrically connected to a second power shield foil 32B of the second plurality
of separated conductors 20B. It will be understood that the example illustrated in
Fig. 9, and the description below, will also apply to the electrical connections 60
(not shown) between a first signal shield foil 40A and a second signal shield foil
40B, as well as the electrical connections 60 (not shown) between a first data shield
foil 46A and a second data shield foil 46B. In the example illustrated in Fig. 9,
the electrical connection 60 is the metallurgical bond and is made within the apertures
54, 58. In the example illustrated in Fig. 9, a lateral gap exists between the electrical
connection 60 and the surrounding components. In another example, the gap is filled
with the dielectric material 34.
[0036] Fig. 10 illustrates another example of the electrical connection 60 between the one
or more first electromagnetic shields of the first plurality of separated conductors
20A and the one or more second electromagnetic shields of the second plurality of
separated conductors 20B. In this example, a first power shield trace 30A of the first
plurality of separated conductors 20A is electrically connected to a second power
shield trace 30B of the second plurality of separated conductors 20B. It will be understood
that the example illustrated in Fig. 10, and the description below, will also apply
to the electrical connections 60 (not shown) between a first signal shield trace 38A
and a second signal shield trace 38B, as well as the electrical connections 60 (not
shown) between a first data shield trace 44A and a second data shield trace 44B. In
the example illustrated in Fig. 10, the electrical connection 60 is the metallurgical
bond and is made within the apertures 54, 58. In the example illustrated in Fig. 10,
a lateral gap exists between the electrical connection 60 and the surrounding components.
In another example, the gap is filled with the dielectric material 34.
[0037] Accordingly, a wiring harness assembly 10 (the assembly 10), is provided. The assembly
10 is an improvement over other wiring harness assemblies because the assembly 10
includes the at least one data conductor 26 configured to transmit network data communications
in a flexible planar package, along with the at least one power conductor 22 and the
at least one signal conductor 24.
[0038] Although the present disclosure is not so limited, the following numbered examples
demonstrate one or more aspects of the disclosure.
Example 1. A wiring harness assembly, comprising: a first flexible planar wire cable
having a first plurality of separated conductors formed in a first insulating layer
comprising a first substantially flat exterior surface; the first substantially flat
exterior surface defining a first plurality of apertures that expose at least a portion
of one or more of the first plurality of separated conductors; wherein the first plurality
of apertures are sized, shaped, and arranged such that arranging a second substantially
flat exterior surface of a second flexible planar wire cable in contact with the first
substantially flat exterior surface enables an electrical connection between one or
more of the first plurality of separated conductors of the first flexible planar wire
cable and one or more of a second plurality of separated conductors formed in a second
insulating layer of the second flexible planar wire cable.
Example 2. The wiring harness assembly in accordance with example 1, wherein the first
plurality of apertures are arranged in clusters along a longitudinal axis of the first
flexible planar wire cable.
Example 3. The wiring harness assembly in accordance with example 2, wherein the clusters
are repeated at a predetermined interval along the longitudinal axis of the first
flexible planar wire cable.
Example 4. The wiring harness assembly in accordance with example 2, wherein the first
plurality of apertures within the clusters are arranged in a staggered pattern relative
to one another along the longitudinal axis of the first flexible planar wire cable.
Example 5. The wiring harness assembly in accordance with any one of the preceding
examples, wherein at least one second flexible planar wire cable is electrically connected
to the first flexible planar wire cable.
Example 6. The wiring harness assembly in accordance with example 5, wherein the second
substantially flat exterior surface of the second flexible planar wire cable defines
a second plurality of apertures that expose at least a portion of one or more of the
second plurality of separated conductors; the second plurality of apertures sized,
shaped, and arranged to overlay the first plurality of apertures.
Example 7. The wiring harness assembly in accordance with example 6, wherein the second
plurality of apertures are arranged in clusters along a longitudinal axis of the second
flexible planar wire cable.
Example 8. The wiring harness assembly in accordance with example 7, wherein the clusters
are repeated at a predetermined interval along the longitudinal axis of the second
flexible planar wire cable.
Example 9. The wiring harness assembly in accordance with example 7, wherein the second
plurality of apertures within the clusters are arranged in a staggered pattern relative
to one another along the longitudinal axis of the second flexible planar wire cable.
Example 10. The wiring harness assembly in accordance with example 6, wherein the
first substantially flat exterior surface is bonded to the second substantially flat
exterior surface.
Example 11. The wiring harness assembly in accordance with example 5, further comprising:
the electrical connection between one or more first electromagnetic shield of the
first plurality of separated conductors and one or more second electromagnetic shield
of the second plurality of separated conductors.
Example 12. The wiring harness assembly in accordance with example 11, wherein the
one or more first electromagnetic shield comprise a first power electromagnetic shield.
Example 13. The wiring harness assembly in accordance with example 11, wherein the
one or more first electromagnetic shield comprise a first signal electromagnetic shield.
Example 14. The wiring harness assembly in accordance with example 11, wherein the
one or more first electromagnetic shield comprise a first data conductor shield.
Example 15. The wiring harness assembly in accordance with example 11, wherein the
one or more second electromagnetic shield comprise a second power electromagnetic
shield.
Example 16. The wiring harness assembly in accordance with example 11, wherein the
one or more second electromagnetic shield comprise a second signal conductor shield.
Example 17. The wiring harness assembly in accordance with example 11, wherein the
one or more second electromagnetic shield comprise a second data conductor shield.
Example 18. The wiring harness assembly in accordance with any one of the preceding
examples, wherein the first plurality of separated conductors comprise: a first at
least one power conductor configured to transmit electrical power; a first at least
one signal conductor configured to transmit electrical signals; and a first at least
one data conductor configured to transmit network data communications.
Example 19. The wiring harness assembly in accordance with example 18, wherein the
second plurality of separated conductors comprise: a second at least one power conductor
configured to transmit the electrical power; a second at least one signal conductor
configured to transmit the electrical signals; and a second at least one data conductor
configured to transmit the network data communications.
20. The wiring harness assembly in accordance with example 19, wherein the first at
least one power conductor of the first plurality of separated conductors is electrically
connected to the second at least one power conductor of the second plurality of separated
conductors.
Example 21. The wiring harness assembly in accordance with example 19, wherein the
first at least one signal conductor of the first plurality of separated conductors
is electrically connected to the second at least one signal conductor of the second
plurality of separated conductors.
Example 22. The wiring harness assembly in accordance with example 19, wherein the
first at least one data conductor of the first plurality of separated conductors is
electrically connected to the second at least one data conductor of the second plurality
of separated conductors.
[0039] While this invention has been described in terms of the preferred embodiments thereof,
it is not intended to be so limited, but rather only to the extent set forth in the
claims that follow. "One or more" includes a function being performed by one element,
a function being performed by more than one element, e.g., in a distributed fashion,
several functions being performed by one element, several functions being performed
by several elements, or any combination of the above. It will also be understood that,
although the terms first, second, etc. are, in some instances, used herein to describe
various elements, these elements should not be limited by these terms. These terms
are only used to distinguish one element from another. For example, a first contact
could be termed a second contact, and, similarly, a second contact could be termed
a first contact, without departing from the scope of the various described embodiments.
The first contact and the second contact are both contacts, but they are not the same
contact. The terminology used in the description of the various described embodiments
herein is for the purpose of describing particular embodiments only and is not intended
to be limiting. As used in the description of the various described embodiments and
the appended claims, the singular forms "a", "an" and "the" are intended to include
the plural forms as well, unless the context clearly indicates otherwise. It will
also be understood that the term "and/or" as used herein refers to and encompasses
any and all possible combinations of one or more of the associated listed items. It
will be further understood that the terms "includes," "including," "comprises," and/or
"comprising," when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers, steps, operations, elements,
components, and/or groups thereof. As used herein, the term "if' is, optionally, construed
to mean "when" or "upon" or "in response to determining" or "in response to detecting,"
depending on the context. Similarly, the phrase "if it is determined" or "if [a stated
condition or event] is detected" is, optionally, construed to mean "upon determining"
or "in response to determining" or "upon detecting [the stated condition or event]"
or "in response to detecting [the stated condition or event]," depending on the context.
1. A wiring harness assembly (10), comprising:
a first flexible planar wire cable (48) having a first plurality of separated conductors
(20) formed in a first insulating layer comprising a first substantially flat exterior
surface (52);
the first substantially flat exterior surface (52) defining a first plurality of apertures
(54) that expose at least a portion of one or more of the first plurality of separated
conductors (20);
wherein the first plurality of apertures (54) are sized, shaped, and arranged such
that arranging a second substantially flat exterior surface (52) of a second flexible
planar wire cable (50) in contact with the first substantially flat exterior surface
(52) enables an electrical connection (60) between one or more of the first plurality
of separated conductors (20) of the first flexible planar wire cable (48) and one
or more of a second plurality of separated conductors (20) formed in a second insulating
layer of the second flexible planar wire cable (50).
2. The wiring harness assembly (10) in accordance with claim 1, wherein the first plurality
of apertures (54) are arranged in clusters along a longitudinal axis (14) of the first
flexible planar wire cable (48).
3. The wiring harness assembly (10) in accordance with claim 2, wherein the clusters
are repeated at a predetermined interval along the longitudinal axis (14) of the first
flexible planar wire cable (48).
4. The wiring harness assembly (10) in accordance with claim 2 or 3, wherein the first
plurality of apertures (54) within the clusters are arranged in a staggered pattern
relative to one another along the longitudinal axis (14) of the first flexible planar
wire cable (48).
5. The wiring harness assembly (10) in accordance with any one of the preceding claims,
wherein at least one second flexible planar wire cable (50) is electrically connected
to the first flexible planar wire cable (48).
6. The wiring harness assembly (10) in accordance with claim 5,
wherein the second substantially flat exterior surface (52) of the second flexible
planar wire cable (50) defines a second plurality of apertures (54) that expose at
least a portion of one or more of the second plurality of separated conductors (20);
and
wherein the second plurality of apertures (54) are sized, shaped, and arranged to
overlay the first plurality of apertures (54).
7. The wiring harness assembly (10) in accordance with claim 6, wherein the second plurality
of apertures (54) are arranged in clusters along a longitudinal axis (14) of the second
flexible planar wire cable (50).
8. The wiring harness assembly (10) in accordance with claim 7, wherein the clusters
are repeated at a predetermined interval along the longitudinal axis (14) of the second
flexible planar wire cable (50).
9. The wiring harness assembly (10) in accordance with claim 7 or 8, wherein the second
plurality of apertures (54) within the clusters are arranged in a staggered pattern
relative to one another along the longitudinal axis (14) of the second flexible planar
wire cable (50).
10. The wiring harness assembly (10) in accordance with any one of the claims 6 to 9,
wherein the first substantially flat exterior surface (52) is bonded to the second
substantially flat exterior surface (52).
11. The wiring harness assembly (10) in accordance with any one of the claims 5 to 10,
further comprising:
the electrical connection (60) between one or more first electromagnetic shield of
the first plurality of separated conductors (20) and one or more second electromagnetic
shield of the second plurality of separated conductors (20).
12. The wiring harness assembly (10) in accordance with claim 11, wherein the one or more
first electromagnetic shield comprise a first power electromagnetic shield (28A).
13. The wiring harness assembly (10) in accordance with claim 11 or 12, wherein the one
or more first electromagnetic shield comprise a first signal electromagnetic shield
(36A).
14. The wiring harness assembly (10) in accordance with any one of the claims 11 to 13,
wherein the one or more first electromagnetic shield comprise a first data conductor
(26) shield.
15. The wiring harness assembly (10) in accordance with any one of the claims 11 to 14,
wherein the one or more second electromagnetic shield comprise a second power electromagnetic
shield (28B).